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Pairing Heaps: Experiments and Analysis:
Pairing Heaps: Expériences et Analyse!

John T. Stasko??2 and Jeffrey Scott Vitter?:4:5

Abstract. The pairing heap has recently been introduced as a new data structure
for priority queues. Pairing heaps are extremely simple to implement and seem to
be very efficient in practice, but they are difficult to analyze theoretically, and open
problems remain. It has been conjectured that they achieve the same amortized
time bounds as Fibonacci heaps, namely, O(logn) time for delete and delete_min
and O(1) for all other operations, where n is the size of the priority queue at the
time of the operation. In this paper we provide empirical evidence that supports this
conjecture. The most promising algorithm in our simulations was a new variant of the
twopass method, called auxiliary twopass. We prove that, assuming no decrease_key
operations are performed, it achieves the same amortized time bounds as Fibonacci
heaps.

Résumé. Le «pairing heap» a été récemment présenté comme nouvelle structure
de données pour les queues de priorité. Les pairing heaps sont efficaces et simples
a construire, mais il est difficile de les analyser exactement. Il a été conjecturé
qu’ils ont les mémes cofits amortis que les heaps de Fibonacci, c’est & dire, un cofit
O(logn) pour la suppression et la suppression du minimum et un cofit constant
pour les autres opérations, ol n est la taille de la queue de priorité a I'instant de
Popération. On présente dans cet article des données expérimentales 3 P’appui de
cette conjecture. L’algorithme le plus rapide dans les expériences était une nouvelle
forme de la méthode «twopass», appellée «auxiliary twopass». On prouve que le
coiit de cette méthode est le méme que pour le heap de Fibonacci, en supposant qu’il
n’y a pas d’opérations de décrementation de priorité.
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1. Introduction

A priority queue is an abstract data type for maintaining and manipulating a set of
items based on priority. Priority queues derive great theoretical and practical im-
portance from their use in solving a wide range of combinatorial problems, including
job scheduling, minimal spanning tree, shortest path, and graph traversal.

Priority queues support the operations insert, find_min, and delete_min; addi-
tional operations often include decrease_key and delete. The insert(t,v) operation
adds item t with key value v to the priority queue. The find_min operation returns
the item with minimum key value. The delete_min operation returns the item with
minimum key value and removes it from the priority queue. The decrease_key(t, d)
operation reduces item ¢’s key value by d. The delete(t) operation removes item ¢
from the priority queue. The decrease_key and delete operations require that a pointer
to the location in the priority queue of item ¢ be supplied explicitly, since priority
queues do not support searching for arbitrary items by value. Some priority queues
also support the merge operation, which combines together two item-disjoint priority
queues. _

In this paper, we shall concentrate on the tnsert, delete_min, and decrease_key
operations, because they are the operations that primarily distinguish priority queues
from other set manipulation algorithms, and since they are the critical operations as
far as the time bounds are concerned.

Several priority queue implementations, such as implicit heaps [Williams, 64],
leftist heaps [Crane, 72|, [Knuth, 73], and binomial heaps [Vuillemin, 78], [Brown, 78]
have been shown to exhibit an O(logn) worst-case time bound for all operations,
where n is the size of the priority queue at the time of the operation. Fibonacci
heaps [Fredman and Tarjan, 84] provide a dramatic improvement on the general log-
arthmic bound by achieving amortized time bounds of O(1) for insert, decrease_key,
and find.min and O(logn) for delete_min and delete. This greatly improves the
best known theoretical bounds for the time required to solve several combinatorial
problems.® Following the approach of [Tarjan, 85), a sequence of operations op,, op,,

® For example, a standard implementation of Dijkstra’s algorithm (which finds the short-
est path from a specified vertex z to all other vertices in a graph with nonnegative edge
lengths) uses a priority queue as follows: Let us denote the number of vertices in the
graph by V' and the number of edges by E. The key value of each item y in the pri-
ority queue represents the length of the shortest path from vertex z to vertex y using
only the edges in the graph already processed. Initially, no edges are processed, and
the priority queue contains V items; the key value of item z is 0 and all other items
have key value co. The algorithm successively performs delete_mins until the priority
queue is empty. Each time a delete_min is performed (say, the vertex y is deleted),
the algorithm outputs the shortest path between z and y, and each unprocessed edge
(y, z) incident to y in the graph is processed; this may require that a decrease_key be
performed in order to lower the key value of z in the priority queue. Thus, there are at
most V inserts, V delete_mins, and E decrease_keys during the course of the algorithm.
If a Fibonacci heap is used to implement the priority queue, the resulting running time
is O(E + Vlog V), which is a significant improvement over O((E + V)logV) using
the other heap representations. Other examples of how Fibonacci heaps can improve
worst-case running times are given in [Fredman and Tarjan, 84].
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.-+, Op is said to have amortized time bounds by, by, ..., by if
Z ti < E bi, forall1<j <k,
1i<; 1Ki<y

where t; is the actual time used by op;. Intuitively, if operation op; uses less time
than its allotted b; units, then the leftover time may be held in reserve to be used by
later operations. '

Fibonacci heaps achieve their time bounds by complicated invariants with sig-
nificant overhead, so they are not the method of choice in practice. Recently, a self-
adjusting data structure called the pairing heap was proposed [Fredman et al, 86].
Pairing heaps are much simpler than Fibonacci heaps, both conceptually and in im-
plementation, and they have less overhead per operation. The best amortized bound
proved so far for pairing heaps is O(log n) time per operation. It is conjectured that
pairing heaps achieve the same amortized time bounds as Fibonacci heaps, namely,
O(1) per operation except O(logn) for delete_min and delete.

To test whether the conjecture is true, we performed several simulations of the
pairing heap algorithms. These simulations differed significantly from the ones inde-
pendently done in [Jones, 86|, since the latter ones did not address the conjecture. In .
our simulations we tested several different pairing heaps and used “greedy” heuris-
tics and the appropriate sequences of commands to make the pairing heaps perform
as poorly as we could. The results were positive in that the pairing heaps always
performed extremely well. This does not prove that the desired time bounds do hold,
but it is reassuring and makes us optimistic that the conjecture is true.

In this paper, we study the “twopass” and “multipass” versions of pairing heaps;
the names arise from the method used to do the delete_min in each version [Fredman
et al, 86]. We also introduce new variants called “auxiliary twopass” and “auxiliary
multipass.” All versions are described in the next section. In Section 3, we discuss
our simulations and the empirical data. Auxiliary twopass performed best in the
simulations, based upon our measure of performance. In Section 4 we provide a
partial theoretical analysis of pairing heaps by introducing the concept of “batched
potential.” We show, for example, that auxiliary twopass uses O(1) amortized time
per insert and find_min and O(log n) amortized time for the other operations. Con-
jectures and open problems follow in Section 5.

2. Pairing Heap Algorithms

A comprehensive description of pairing heaps appears in [Fredman et al, 86]. A
summary is given below. Our studies involve the twopass algorithm, which was the
subject of most of the analysis in [Fredman et al, 86], and the multipass algorithm.

Pairing heaps are represented by heap-ordered trees and forests. The key value
of each node in the heap is less than or equal to those of its children. Consequently,
the node with minimum value (for simplicity, we shall stop referring to a key value,
and just associate the value directly with the heap node) is the root of its tree.
Groups of siblings, such as tree roots in a forest, have no intrinsic ordering.
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In the general sense, pairing licaps are represented by multiway trees with no
restriction on the number of children that a node may have. Because this multiple
child representation is difficult to implement directly, the child-sibling binary tree
representation of a multiway tree is used, as illustrated in Figure 1. In this repre-
sentation, the left pointer of a node accesses its first child, while the right pointer
of a node accesses its next sibling. In terms of the binary tree representation, it
then follows that the value of a node is less than or equal to all the values of nodes
in its left subtree. A third pointer, to the previous sibling, is also included in each
node in order to facilitate the decrease_key and delete operations. The number of
pointers can be reduced from three to two, as explained in [Fredman et al, 86] at the
expense of a constant factor increase in running time. Unless stated otherwise, the
terms “child,” “parent,” and “subtree” will be used in the multiway tree sense; their
corresponding meaning in the binary tree representation should be clear.

(Figure 1)

The primary action performed in pairing heap operations is a comparison-link, in
which the values of two nodes are compared. The node with larger value is demoted
in the sense that it becomes the first child of the smaller-valued node. The previous
first child of the smaller node becomes the second child, the previous second child
becomes the third child, and so forth. Ties can be broken arbitrarily. The binary
tree representation of the comparison-link is given in Figure 2. This comparison-link
action is performed repeatedly during the delete.min operation of a priority queue.
It is the primary action that we seek to minimize in order to reduce execution times.

(Figure 2)

The twopass algorithm that we examined was the variant that yielded the
O(log n)-time amortized bounds for snsert, decrease_key, and delete_min in [Fred-
man et al, 86]. Only one tree is maintained. Hence, in the binary tree representation,
the root node always has a null right pointer. The insert(t,v) operation performs a
comparison-link between ¢t and the tree root; the node with smaller value becomes
the root of the resulting tree. The decrease_key(t,d) operation begins by reducing
t’s value by d. This means that ¢ may now have a value smaller than its parent.
Consequently, it must be removed from the tree (with its own subtree intact) and
comparison-linked with the tree root. Again, the node with smaller value becomes
the root of the resulting tree.

The delete_min operation is what gives the twopass algorithm its name. First,
the tree root node is deleted and its value returned. This leaves a forest of former
children and their subtrees. Next, two comparison-linking passes are made over the
roots of this forest. Pass 1 is a left-to-right pass, in which a comparison-link is
_ performed on successive pairs of root nodes. Pass 2 then proceeds from right-to-
left. In each step, the two rightmost trees are replaced by the tree resulting from
a comparison-link; the “cumulative” rightmost tree is continually updated in this
manner until it is the only remaining tree. The root of this final tree is the minimum
of all the nodes in the tree. Figure 3 illustrates the delete_min procedure in terms of
the binary tree representation.
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{(Figure 3)

. .

o

The delete(t) operation works as follows: If the node, t, to be deleted is the root
of the main tree, then a delete_min operation is performed. Otherwise, t is deleted
from the tree. The former subtrees of ¢ are recombined into a single tree via the
twopass linking procedure. This tree is then comparison-linked to the root of the
main tree.

The multipass algorithm that we studied was also presented in [Fredman et al,
86]. Both the insert(t,d) and decrease_key(t, d) operations function exactly as those
in the twopass algorithm. The delete_min operation, however, is what distinguishes
multipass from twopass. The first operation in the multipass delete_min is the dele-
tion of the root node; its value is returned. This leaves the heap with some number
of trees, say r. Next, we repeatedly perform pairwise linking passes on the roots of
these trees until the heap is left with only one tree. Each comparison-link reduces the
number of trees by one, and each pass cuts the number of trees roughly in half. For
r trees, a total of [logr]” passes are made. A simpler heuristic is to comparison-link
the first two tree roots and place the “winning” root (smaller value) at the tail of
the forest list. Alternatively, a circular list could be used to store the siblings. Both
ways, a round robin effect emerges, and we see that for r tree roots, exactly r — 1
link operations are performed. Following the linking phase, the heap is again left
with a single tree; its root is the node with minimum key value. Figure 4 illustrates
the multipass delete_min in terms of the binary tree representation. The delete(t)
operation is the same as in twopass except that multipass comparison-linking is used
on the children of the deleted node .

(Figure 4)

While working with these algorithms, we designed two new variations, which we
call auxiliary twopass and auxiliary multipass. Auxiliary twopass works as follows:
In addition to the main tree in the heap, we maintain an auxiliary area that consists
of an ordered list of other trees. It is convenient in the implementation to store the
auxiliary area as the right subtree (in the binary tree sense) of the root.

The insert(t,v) and decrease_key(t,d) operations function as in the regular mul-
tipass algorithm except for one major difference. Rather than comparison-linking
node ¢ with the tree root, the node is added to the end of the list of auxiliary trees.
(As usual, in the case of a decrease_key operation, the subtree rooted at ¢ remains
intact.) If the find_min operation is to be implemented, a separate minimum pointer
must be maintained; each insert or decrease_key node must be checked against the
minimum pointer so that the pointer can be updated if necessary.

The delete_min operation, which is illustrated in Figure 5, begins by “batching”
the auxiliary area, that is, by running the multipass pairing procedure on the auxiliary
area. (Note that although the method being described is called auxiliary twopass,
the auxiliary area is linked together using the multipass method.) When this linking
is complete, the auxiliary area consists of a single tree. If the auxiliary area originally
consists of 2¥ singleton trees, for some k > 0, the resulting tree is a binomial tree

7 All logarithms in this paper are base 2.
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[Vuillemin, 78], [Brown, 78]. The next action is a comparison-link between the main
tree root and the new auxiliary root. After this comparison-link, the heap again
contains only one root node, that of minimum key value. From this point on, the
delete_min operation proceeds exactly as in the twopass algorithm. The root node is
removed, and we link the remaining forest of trees via the twopass procedure.

(Figure 5)

The rationale for maintaining the auxiliary area is that it prevents many com-
parisons between single nodes from an insert and large trees already in the forest. We
shall prove in Section 4 that if there are no decrease_key operations, auxiliary twopass
achieves the amortized time bounds of O(1) for insert and O(logn) for delete_min.

The delete(t) operation works as in twopass. If node t is the current minimum,
then a delete.min is performed. Otherwise, the children of ¢ are recombined into a
single tree, which is then comparison-linked to the main tree.

Auxiliary multipass is identical except that the multipass algorithm is used on
the regular tree. The auxiliary area is still batched using multipass. Section 4
derives slightly weaker amortized time bounds than for auxiliary twopass, under
the assumption that no decrease_key operations are performed: O(1) per insert and
0 ((log nlog log n)/ log log log n) per delete_min.

Lazy variants of these algorithms are also possible, in which the heap consists of
a forest of trees rather than a single tree. One possible implementation is described
in [Fredman et al, 86]. However, extra comparisons other than in comparison-link
actions are required to implement find_min, since the heap no longer has a single root.
As a result, the find_min operation in the lazy variants often does some restructuring
of the tree. The find_min operation for the auxiliary variants can be done in constant
time, since a pointer to the current minimum node can easily be maintained during
inseris and decrease.keys; the extra comparison to do this is balanced by the fact that
inserts and decrease_keys do not perform any comparison-links. In order to make our
simulation results of insert, decrease_key, and delete_min fair, we have excluded lazy
variants from our study. Their performances are similar.

Although the twopass algorithm has provided the fastest general amortized time
bounds so far, our intuition suggested that the multipass variants should run faster.
While all make roughly the same number of comparison-link actions on a similar
heap configuration, the multipass variants tend to build a more “structured” forest
configuration over time. All the uppermost nodes that are directly involved in link
actions will be formed into a binomial-like tree, which helps limit the number of
links during subsequent delete_.min operations. The simulation results described in
the next section are somewhat surprising; auxiliary twopass consistently outperforms
the multipass versions.

3. Simulations

Our test simulations of the pairing heap algorithms consisted of structured sets of
insert, decrease_key, and delete_min operations. No key values were ever assigned to
nodes. Instead, we used a “greedy” heuristic to determine the winners of comparisons,
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in hopes of causing a worst-case scenario. Every time a comparison-link operation was
performed, the node with more children won the comparison; that is, it was judged
to have the smaller key value. This node gained one child in the link operation. Our
greedy approach allowed us to keep the nodes with many children at the uppermost
levels in the heap. Since the number of children at the root level is what determines
how much work a delete_msn performs, this greedy approach forced the priority queue
to do significantly more work than would have been the case if the key values were
assigned randomly. Two methods were used for determining which nodes to use
for decrease_key operations: In a random decrease_key, we chose a non-root node at
random. In a greedy decrease_key, we used the greedy heuristic and chose the node
with the most children, subject to the constraint that the node could not be the root
or a child of the root. .

The binary tree representation of a multiway tree was used to implement the
pairing heaps. Heap nodes were implemented as record structures with left (first
child) and right (next sibling) pointer fields.

In this section we report on nine simulations of twopass and multipass pairing
heap algorithms. Each simulation consisted of several phases. A phase consisted of
some set of inserts and decrease_keys followed by a delete_min. In the descriptions
that follow, n refers to the size of the priority queue at the beginning of the phase.
The phases of the nine simulations consisted of, respectively:

(1) logn snserts, followed by one delete_min.
2

(2) 0.5 logn {insert, random decrease_key) pairs, followed by one delete_min.
(3) 0.5 logn (insert, greedy decrease_key) pairs, followed by one delete_min.
(4)

one tnsert, then z(logn) — 1 greedy decrease_keys, followed by one delete_min,
for z = 0.25, with an initial binomial tree of size 2!2.

(5) same for z = 1.0.
(6) same for z = 4.0.

(7) one insert then z(logn) — 1 greedy decrease_keys, followed by one delete_min,
for z = 0.22, with an initial binomial tree of size 2!8.

(8) same for z = 1.0.
(9) same for z = 4.0.

Our measure of performance compared the actual work done by each algorithm
against an allowance for the operations processed. The actual work done was con-
sidered to be one unit for an insert, one unit for a decrease_key, and one unit for
the delete plus one unit for each comparison-link that occurred during a delete_min.
Allowances for the operations corresponded to the amortized time bounds sought for
them: the insert and decrease_key allowances were each one unit, and the delete_min
allowance was log n, where n was the heap size at the time of the delete_min.

Phases were grouped into a smaller number of increments to facilitate graphical
display of the results; in the first three simulations the size of the heap grew by a
fixed amount in each increment, and in Simulations 4-9 increments consisted of a
fixed number of phases. For each increment in a simulation, we calculated its work
ratio. The work ratio is defined as actual work performed divided by the operations’
allowances. By seeing how the work ratio changed over time across these increments,
we were able to judge the performances of the algorithms. If the work ratio increased
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over time, the O(1)-time insert and decrease_key allowances and the O(log n)-time
delete.min allowance would not be bounding the actual work growth. If instead
the work ratio stayed constant or decreased, then the experiments would provide
encouragement that the sought-for amortized time bounds are possible.

In our simulations we chose the particular order and frequency of operations
that we did so that if any of the conjectured amortized time bounds of O(1) for
insert and decrease_key and O(logn) for delete_min did not hold, we would detect
a discrepancy in the results. The simulations of pairing heaps in [Jones, 86], on
the other hand, were limited for several reasons: First, no decrease_key operations
were performed. We shall see in Section 4 that if no decrease_keys are done, we can
prove the conjectured bounds analytically for auxiliary twopass. More importantly,
however, the simulations performed the same number of inserts as delete_mins. It is
already known from [Fredman et al, 86] that each operation can be done in O(log n)
amortized time. Therefore, it was impossible in Jones’s simulations to distinguish
between O(1) time and O(log n) time per insert. Our simulations, on the other hand,
tested the time bound conjecture more effectively by performing O(log n) tnsert and
decrease_key operations for each delete.min.

Simulation 1 allowed us to examine how the heaps performed when no
decrease_key operations were used. Work ratios were calculated over increments
of 12,000 nodes of heap growth, with the heap size eventually reaching 1,200,000
nodes. Four initial inserts were used to “start-up” the simulation. The results are
graphed in Figure 6. Only multipass showed a steady increase in work ratio; however,
there was a marked decrease near the simulation’s end. Both twopass and auxiliary
twopass remained mostly steady, while auxiliary multipass exhibited a clear decrease.
Auxiliary twopass was the fastest algorithm, a fact that would continue through most
of the following simulations. It is interesting to note that the auxiliary algorithms
were not subject to wide fluctuations in work ratio as were the regular algorithms.

Simulation 2 utilized random decrease_key operations primarily to see how ran-
dom disruptions in the heap structure would affect overall algorithm performances.
Again work ratios were calculated in 12,000 node increments, and the total heap size
grew to 1,200,000 nodes. Sixteen inserts were used to initialize the simulation. This
simulation’s results, which are shown in Figure 7, were quite similar to those of Sim-
ulation 1. No steady work ratio increases were evident, nor was there an appreciable
gain in work ratio values from Simulation 1. Both multipass algorithms exhibited
work ratio decreases, with regular multipass remaining slightly superior. Auxiliary
twopass was again the fastest algorithm, and twopass was the slowest. Curiously, the
total work ratio for auxiliary twopass over the entire simulation was slightly less than
its total in Simulation 1. In essence, the random decrease_keys helped the algorithm
run faster.

Simulation 3 utilized greedy decrease_key operations in which the node with the
most children was chosen for the operation. Nodes such as the root and children of the
root, whose choice would have no effect on the heap structure, were excluded from
being candidates. This simulation’s decrease_key operation was intended to move
nodes with many children from the central heap up to the top root level, thereby
forcing the delete_min operations to do even more work. Because of the extra storage
required, work ratios were calculated in increments of 6,000 nodes. The final heap
size was 546,000 nodes. A start-up set of sixteen tnsert operations was used.
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After showing small jumps in the work ratios, all four algorithms maintained
steady levels at the simulation’s end. The results are graphed in Figure 8. Clearly,
the greedy decrease_key operations did have an effect, as work ratio values were
higher than those in the first two simulations. Auxiliary twopass was again the
fastest algorithm, twopass was the slowest, and the multipass algorithms were quite
similar. The general mulitpass algorithm had a definite superiority at smaller heap
sizes, however. :

Simulations 4-9 primarily examined how the decrease_key operation affected al-
gorithm performances. An initial binomial tree of some size was built. This provided
all four algorithms with the same starting point, so no initial bias was introduced.
Each phase contained only one insert operation; hence, a constant heap size was
maintained, that of the initial binomial tree. By varying the number of decrease_key
operations between the tnsert and the delete_min in a phase, we could see exactly
how this number affected the work ratio.

In Simulations 4-6, we used an initial binomial tree size of n = 212 = 4096 nodes.
Simulations 4, 5, and 6 used 0.25 logn = 3, logn = 12, and 4logn = 48 decrease_key
operations per phase, respectively. We grouped 100 phases into an increment for
work ratio calculations, then we ran the simulation for 100 increments. The respec-
tive results are shown in Figures 9, 10, and 11. All three tests showed very steady
work ratio rates, which is encouraging. The actual values were quite different, how-
ever. The twopass variants had lower work ratios when there were a smaller number
of decrease_key operations per phase, whereas the multipass variants exhibited an
opposite behavior; they performed better as the number of decrease_keys per phase
increased. Auxiliary twopass was overall the best algorithm, but regular twopass ex-
hibited a curious variation on its usual slowest behavior. In the two simulations with
more decrease_key operations, twopass was clearly slowest. In fact, in Simulation 6
with 48 decrease_key operations per phase, twopass was blatantly behind the other
three algorithms’ performances. But in Simulation 4 with the fewest (3) decrease_keys
per phase, twopass was the fastest algorithm! It appears that twopass performs best
when there are relatively few insert and decrease_key operations compared to the
number of delete.min operations.

In Simulations 7-9, we used a much larger initial binomial tree size of n =
218 = 262,144 nodes. Simulations 7, 8 and 9 used 0.22logn = 4, logn = 18,
and 4logn = 72 decrease_key operations per phase, respectively. We grouped 1000
phases into an increment for work ratio calculations, then we ran the simulation
for 100 increments. The results are shown in Figures 12, 13, and 14. The relative
performances of the four algorithms were quite similar to those of Simulations 4-6.
The curious behavior of the twopass algorithm was again evident, as it performed
poorly with many decrease_key operations per phase, but improved dramatically with
few. With the larger initial heap size, however, it never overtook auxiliary twopass
as the fastest algorithm, as it did in Simulation 4.

In the last six simulations with constant heap size, the work ratio during the
formation of the initial binomial tree was just under 2.0; we performed n tnsert
operations, followed by n — 1 comparison-links. Therefore, actual work was 2n — 1
units, while the snsert allowance was n units, giving a work ratio of 2 — 1 /n. This
amount was included in the total work ratio for the simulation.

Besides Simulations 1-9, we also performed two randomized simulations to verify
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that our data were not dependent on the fixed structure of each phase. In the first, we
kept the heap size constant as in Simulations 4-9, but the number of decrease_keys
per phase was uniformly distributed between 0 and 2logn. The second began by
performing 64 initial nserts which were followed by a random sequence of insert,
greedy decrease_key, and delete_min operations, all having the same probability of
occurrence. Both results were consistent with those above; work ratio values stayed
steady or showed a small decrease, and auxiliary twopass again exhibited the low-
est overall work ratios. In the random sequence simulations, however, twopass and
auxiliary twopass performed almost identically.

The data from these simulations allowed us to make the following conclusions:
First, the O(1)-time bounds for insert and decrease_key and the O (log n)-time bound
for delete_min appear to hold in the amortized sense. Our data provided no evidence
to the contrary. In fact, they provide some clue as to the actual coefficients implicit
in the big-oh terms. Let us make the simplifying assumption that the amortized
running time for each ¢nsert and decrease_key operation in the simulations is ¢ time
units and that the amortized time per delete.min is dlogn units. Solving a set of
linear equations obtained from Simulations 4-9 gives ¢ = 2.9 and d =~ 1.5 for twopass,
¢ ~ 1.8 and d ~ 2.2 for multipass, ¢ ~ 2.0 and d ~ 1.7 for auxiliary twopass, and
¢ =~ 1.9 and d ~ 2.3 for auxiliary multipass. Second, the auxiliary twopass algorithm
was clearly the best overall. It typically exhibited lower work ratios than the other
three algorithms. Third, adding the auxiliary area to multipass caused no great
improvement to the algorithm. In our tests, the multipass algorithm was almost
always superior to its auxiliary variant. Finally, the regular twopass algorithm’s
performance was quite variable. It was often the worst, especially when many insert
and decrease_key operations were processed. As the number of these operations
declined, however, its performance improved to rival that of auxiliary twopass.

4. Batched Potential

The best known amortized time bounds of the insert, decrease_key, and delete_min
operations for the twopass pairing heap are all O(logn), due to [Fredman et al, 86].
In order to equal the time bounds for Fibonacci heaps, the tnsert and decrease_key
time bounds must be shown to be O(1). In an effort to prove the constant time
bounds for pairing heaps, we shall use the auxiliary twopass algorithm and introduce
batched potential. But before that, let us briefly review the concept of potential as
it applies to amortized algorithmic analysis.

The potential technique for amortized analysis is discussed in [Tarjan, 85]. Each
configuration of the pairing heap is assigned some real value ®, known as the the
“potential” of that configuration. For example, one could define the potential of a
pairing heap configuration to be the number of trees it contains. For any sequence
of n operations, the amortized time of the 7th operation is defined to be the actual
running time of the operation plus the change in potential, namely, t;+®(i) — ®(¢ -1),
where t; is the actual time of the ith operation, ®(z) is the potential after the sth
operation, and ®(¢ — 1) is the potential before the ith operation. If we start with
potential 0 and end up with positive potential, then the total running time is bounded
by the total amortized time, via the telescoping effect of the potential changes.
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Theorem 1. The auxiliary twopass pairing heap algorithm achieves amortized time
bounds of O(1) for insert and find_min and O(log n) for delete_min and delete if no
decrease_key operations are allowed, where n is the size of the priority queue at the
time of the operation.

Proof. Without loss of generality, we can restrict ourselves to tnsert and delete_min
operations exclusively. Let us define the rank of a node to be the binary logarithm of
the number of nodes in the subtree rooted there (in the binary tree sense). We use a
variant of the potential function used to analyze twopass in [Fredman et al, 86]. We
define the potential ® of a heap configuration to be the sum of the ranks of all nodes
in the main tree (that is, not counting the auxiliary area) plus 5 times the number
of roots in the auxiliary area.

Each insert places a new node into the auxiliary area and increases the potential
by 5; its amortized time is thus 6. There is no large single change in potential until a
delete_min is performed, when the nodes in the auxiliary area are added to the main
tree. We refer to this as “batched potential,” because in effect changes in potential
are not considered until a delete_min is performed.

Let us consider the case in which the auxiliary area is nonempty when a
delete_min takes place. We let 1 > 0 denote the number of (root) nodes in the
auxiliary area. The multipass linking spends ¢+ — 1 units of work building these 1 -
nodes into a single tree, reducing the potential by 5¢ — 5. We can show that the
sum of the ranks of the nodes in the resulting auxiliary tree is bounded by 4: — 4,
as follows: If 1 is a power of 2, then the auxiliary tree in the binary sense has a
.complete left subtree of size £ — 1 and no right subtree. Since the number of nodes
on descending levels of the binary tree doubles as subtree sizes are roughly halved,
the sum of the ranks is

log? + Z 27 log (2% —'1) .

0<ji<logt

Now let m = log ¢ and simplify. The sum is bounded by

m+m Y 27— Y g2
0<i<m  0<j<m
=m+m(2™F! —1) = m2™+? 4 (m 4+ 1)2mF! -2
=2mtl_2

=21 —2

If 7 is not a power of 2, then we can append < 7 — 2 extra dummy root nodes
to the auxiliary area so that there are 2/1°8%] root nodes. It is straightforward to
show by induction that the tree resulting from the multipass linking of the auxiliary
area without the dummy nodes can be “embedded” in the tree resulting from the
multipass linking of the auxiliary area with the dummy nodes. By the analysis given
above for the case when ¢ is a power of 2, the sum of the ranks is bounded by
2(2¢ —2) —2+26;=1 = 41— 6 +26;—; < 41— 4. (The Kronecker delta §;—; denotes 1 if
¢ =1 and 0 otherwise.) We can get a better bound by considering the contribution of
the dummy nodes, but for our purposes this bound is adequate, since we are ignoring
constant factors.
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When the auxiliary tree is linked with the main tree (so that all the nodes are
in the main tree and the auxiliary area is empty), one unit of work is expended, and
the change in potential is bounded by logn + 41 — 4 — 5, where n is the number of
nodes in the priority queue. Next, the root is deleted via one unit of work, reducing
the potential by logn, and the resulting subtrees are recombined via the twopass
scheme. If there are k subtrees, a total of k¥ — 1 units of work are used to recombine;
the resulting potential increase is shown in [Fredman et al, 86] to be bounded by
2logn — k + 3. The total amount of work spent during the delete_min and the net
change in potential can thus be bounded by ¢ + k and 210g n—t—k— 1, respectively,
which bounds the amortized time by 2logn — 1.

The other case to consider is when the auxiliary area is empty at the time of a
delete_msin, that is, when ¢+ = 0. In that case, the reasoning in the last paragraph
shows that the total amount of work and the net change in potential are bounded
by k and logn — k + 3, respectively. This completes the proof. |

The same approach combined with the analysis in [Fredman et al, 86] proves the
following about auxiliary multipass:

Theorem 2. The auxiliary multipass algorithm achieves amortized time bounds of
O(1) for insert and find_min and O((logn loglog )/ log log log n) for delete_min and
delete if no decrease_key operations are allowed.

Unfortunately, we cannot as yet extend either algorithm’s analysis to include
decrease_key nodes in the auxiliary area. The problem lies in the subtrees attached
to nodes whose values are decreased. We are hopeful that some variant of this
batching technique will prove that the O(1)-time amortized bounds for tnsert and
decrease_key and the O(logn)-time amortized bound for delete_min do hold. Note
that we can get a weaker result by a slight modification of our algorithms. If the
auxiliary area is batched whenever a decrease_key or delete_min is performed, then we
get the desired bounds, except that decrease_key and delete_min use O(log n) time for
auxiliary twopass and O((logn log log n)/ log log log n) time for auxiliary multipass.

5. Conclusions and Open Problems

The experimental data gathered from our simulations provide empirical evidence
that the O(1)-time bounds for insert, decrease_key, and find_min and the O(logn)-
time bounds for delete_min and delete do hold in the amortized sense, where n is
the size of the priority queue at the time of the operation. All the pairing heap
methods performed well in our simulations. The auxiliary twopass variant clearly
did the best. This result is satisfying because we have shown analytically that the
auxiliary twopass algorithm achieves the above mentioned bounds, assuming that no
decrease_key operations occur. Or if the auxiliary area is batched and merged with
the main tree whenever a decrease_key or delete_min operation is done, then insert
and find_min have O(1)-time bounds and all other operations have O(logn)-time
bounds in the amortized sense.

Proving amortized time bounds of O(1) for tnsert and decrease_key and O(log n)
for delete_min for some pairing heap implementation remains the major open prob-
lem. [Fredman et al, 86] has shown that an O(logn)-time amortized bound can be
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prcen for all operations of the twopass variant. No multipass variant has been proven
to achieve the same O(log n)-time amortized bound for all operations; delete_min re-
mains the primary stumbling block. Demonstrating this logarithmic time bound for
all multipass operations is another interesting open problem.
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(a) multiway tree heap representation

(b) corresponding binary tree representation

Figure 1. An example of a heap ordered tree
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Figure 2. Two binary tree heap configurations and the resulting
structures from a comparison-link between nodes X and Y

15




(a) beginning heap configuration

(b) root (minimum) deletion
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(d) pass two

Figure 3. Twopass delete min procedure,
using the binary tree representation
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(c) pass one
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(d) pass two

(e) pass three

Figure 4. Multipass delete min procedure,
using the binary tree representation
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auxiliary forest

(a) initial heap configuration

(¢) link auxiliary root to main root
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(d) root (minimum) deletion

(e) twopass back to one root

Figure 5. Auxiliary twopass delete min procedure,
using the binary tree representation
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