N

N
N

HAL

open science

An operational formal definition of PROLOG

Pierre Deransart, Gérard Ferrand

» To cite this version:

Pierre Deransart, Gérard Ferrand. An operational formal definition of PROLOG. [Research Report]

RR-0598, INRIA. 1986. inria-00075956

HAL Id: inria-00075956
https://inria.hal.science/inria-00075956
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075956
https://hal.archives-ouvertes.fr

Rapports de Recherche

AN OPERATIONAL
FORMAL DEFINITION
OF PROLOG

Pierre DERANSART
Gérard FERRAND

Décembre 1986

Une Sémantique Formelle Opérationnelle de PROLOG

Pierre DERANSART
INRIA
Domaine de Voluceau
B.P. 105 - Rocquencourt
78153 LE CHESNAY Cédex
Tél. : (1) 39 63 55 36

Gérard FERRAND
Université d'Orléans
Faculté des Sciences
B.P. 6759
45067 ORLEANS Cédex 2
Tél.: 38 6322 16

Résumé:

Nous présentons dans ce rapport une nouvelle sémantique formelle opérationnelle adaptée 2
la description des dialectes PROLOG "déterministes"” (de type PROLOG Marseille ou Edinbourgh).
En particulier, cette sémantique peut étre utilisée pour décrire complétement le futur PROLOG
standard. ' -

Cette sémantique consiste en un interpréteur abstrait écrit en PROLOG "pur" (avec
négation) dont la sémantique est purement déclarative. On peut donc comprendre 'interpréteur sans
se référer A aucun dialecte particulier. Bien que fondée sur PROLOG, cette sémantique ne se mord
pas la queue. La spécification obtenue n'est pas directement executable.

Son avantage principal réside dans le fait qu'elle est compréhensible par toute personne qui
connait au moins un dialecte et qu'elle satisfait les critéres d'une bonne spécification formelle
(abstraction, simplicité, vérifiable, utilisable pour construire des outils de validation, en particulier
obtenir une spécification exécutable).

Mots clés :

Programmation en Logique, Spécification Formelle, Sémantique Opérationnelle,
Sémantique de PROLOG, Standardisation de PROLOG.

An Operational Formal Definition of PROLOG

Pierre DERANSART
INRIA
Domaine de Voluceau
B.P. 105 - Rocquencourt
78153 LE CHESNAY Cédex
Tél. : (1) 39 63 55 36

Gérard FERRAND
Université d'Orléans
Faculté des Sciences
B.P. 6759
45067 ORLEANS Cédex 2
Tél. : 386322 16

Abstract :

We present in that report a new formal (operational) semantics well adapted to describe
PROLOG's deterministic dialects (Marseille-Edinbourgh-like dialects [Col 82, PWB 84]). In
particular it could be used in the standardization work of PROLOG [DF 86b]. :

This semantics is based on an abstract interpreter written in a "pure” PROLOG style (witl
negation) whose semantics is itself essentially declarative. Thus it can be understood withou!
any reference to any particular dialect, since the negation is treated declaratively (This poin!
will not be developped completely inside this paper). Such a semantics although written in
PROLOG, does not depend on itself. It is not an executable specification.

One of its advantages is to be readable without backgrounds by users of a PROLOG dialect
it satisfies also the criteria of a good formal specification of a programming language:

- To be of a very high level, but as simple and understandable as possible.

- To be able to describe a large variety of dialects.

- To describe with the same formalism the whole language.

- To be able to be certified, using validation methods.

. To make easy the production of validation tools ,in particular of a runnable
specification. :

Keywords

Logic programming, Formal Specifications, Operational Semantics, PROLOG Semantics,
PROLOG Standardization. :

An Operational Formal Definition of PROLOG

Pierre DERANSART
INRIA
‘Domaine de Voluceau
B.P. 105 - Rocquencourt
78153 LE CHESNAY Cédex
Tél. : (1) 3963 55 36

Gérard FERRAND
Université d'Orléans
Faculté des Sciences

B.P. 6759
45067 ORLEANS Cédex 2
Tél. : 38 6322 16

12 Dec. 86

1) Introduction:

We present in that report a new formal (operational) semantics well adapted to describe
PROLOG's deterministic dialects (Marseille-Edimburgh-like dialects [Col 82, PWB 84]). In
particular it is used in the standardization work of PROLOG [DF 86b)].

" This semantics is based on an abstract interpreter written in a "pure” PROLOG style (witt
negation) whose semantics is itself essentially declarative. Thus it can be understood without
any reference to any particular dialect, since the negation is treated declaratively (this point
will not be developped completely inside this report). Such a semantics although written in
PROLOG, does not depend on_itself. Although it is known from the folkiore that logic
programming can be used as a specification language, it is rarely realized in most of the
attempts to use logic programming to specify languages, systems or known PROLOG dialect.
Most of the realizations use some unspecified feature (built-in predicate, cut or negation by
failure, implicit interpretation strategy), because they are more devoted to simulate an
interpreter rather to specify it. Thus this "PROLOG" semantics is new because of the following
points : '

- It is completely declarative and formal. :

- It has a simple syntax contained in every prolog dialects. However it does not depend on
itself. To overcome this difficulty, one uses the notions of relative denotation and declarative
semantics of the negation. For these reasons it is not an executable specification.

- It is of higher level than all the others expressed in logic programming style: It uses the
‘search-tree as semantical data.

One of its advantages is to be readable without major difficulties by users of a PROLOG
dialect. It satisfies also the criteria of a good formal specification of a programming language:

- To be of a very high level, but as simple and understandable as possible.

- To be able to describe a large variety of dialects, with the same level of
abstraction. :

- To describe with the same formalism the whole language.

- To be able to be certified, using validation methods.

- To make easy the production of validation tools of the language implementations.

These points will be discussed in the last section.

This semantics is also interesting because it illustrates the power of logic programming tc
make specifications. It seems to us that logic programming is generally considered as
“impure” executable specification. Our purpose is to show that logic programming may also be
used as a perhaps low level but full specification language. Work is actually in progress to
apply this idea to the whole project of PROLOG standard.

The report is organized as follows: section 2 defines the semantics of PROLOG dialects
using mostly known concepts, but organized in an original way. In sections 3 and 4 we define
the formal specification dialect: its semantics (3) and the basic objects used in it (4). Section
5 gives a sample of the formal definition for a piece of PROLOG with cut and geler (freeze).
Discussion will be held in the section 6.

2) Semantic f the PROL ialects :

Most of the basic concepts are known. They are:
- denotation of a logic program [Fer 85].
- proof tree [Cla 79, DM 85].
- unification [Rob 65].
- search tree [Cla 79, AVE 82, Llo 84].

But their presentation has been modified in order to make them independent of their
historical origin, as proofs by refutation, and to fit exactly with the concepts that users of an
interactive prolog interpreter may observe (proof tree, answer substitution). Moreover, as
such they permit to simplify the presentation of the logic programming formalism used in the
formal definition. -

a) Abstracts syntax :

This syntax is sufficient to describe the (abstract) syntax of most of the usual PROLOG
dialects. It is as follows:

- Terms (without types). Variables symbols are concretely distinguished from other
symbols by begining with a capital letter.

- Atoms (atomic formulae) built with predicate symbols and terms. A litteral is a positive
or negative atom (denoted not a).

- Clauses a4 < a4,..., ap where a, is the head, aq, ..., a, the body.: a list of litterals (the
order of the litterals in the body is significative). true is the empty body.

- Program : list of clauses (significative order) regouped into packets.
- The considered goals are restricted to one litteral without loss of generality.

b) Logical semantics of a logic program P notation :

The logical semantics of a logic program P (without negation) is the set of all its atomic
logical consequences. We denote DEN(P) this set, also called the denotation of P. This approach
is different from all the others [Cla 79, AVE 82, Llo 84] which use the Herbrand model. It has
been justified in [Fer 85, DF 86a], but the properties of this semantics have been studied in
[Cla 79, Fer 85]. They are: '

-DEN(P) is also a mode! of P (also the least in the termal interpretations).

-DEN(P) is closed under substitutions.

- Given a goal b, a PROLOG interpreter build answer substitutions ¢ such that obe
DEN(P).

Examples :

P1 = { plus (0, X, X) & .
plus (sX, Y, sZ) < plus (X, Y, Z). }

DEN(P,) { plus(so,t,s")|Vnzo,Vtterm }

Answer substitutions :
plus (so, X, Y) ? & ={Y«sX}]
plus (X, Y, s0) 2 o ={X¢0,Y«s0}

) ={X+¢s80,Y 0} -

c) Constructive semantics (proof-tree):

The constructive semantics formalizes the notion of proof using the so called proof trees
(also in [Cla 79]). A proof tree is a finite tree whose nodes are labeled by atoms (or litterals
in the case of the negation), the root is an instance of a goal, all leaves are labeled by true anc
all the elementary subtrees are instances of a clause.

Such a tree is the representation of a proof of its root (atomic theorem), using the clausa

implications.

Example : (Program P
plus (so, X, sX)
plus (0,X, X)

rue

It is easy to show the following completness resuit:
DEN(P) is exactly the set of the proof -tree roots [Fer 85, DF 86a].

The constructive semantics of a program P is the set of all the proof-tree roots, i.e.
its denotation. It is declarative.

d) Non deterministic operational semantics (search tree): (procedural semantics in[Cla79])

The answer substitutions are constructed by deriving from a given goal a proof-tree in ¢
top down manner. The construction uses some unification algorithm [Rob 65] and takes
advantages of the properties of the unifiers (unique most general unifier- MGU).

We recall here the non deterministic algorithm deriving the proof-trees.

:goal

: proaram

: proof-tree .

:=b;

while it exists a leaf not labeled bv true in the tree T
do choose | some leaf different from trye ;

4 vo

choose ¢:ao ¢« al,..., an some clause with variables different from those appearing in T;
=M G U, ap);

T...o-T[o|<—- S]

681.0 can

The constructive semantics is complete. It means that for each o such that ob DEN(P), ob
is an instance of the root of some proof-tree obtained by this construction.

Search-tree (also as SLD-tree in [AVE 82, Llo 84])
The non determinism of this algorithm comes from two points :

- non determinism of type | : choice of a leaf ("computation rule” in [Llo 84]). We refer tc

the |-strateqy or L_g_b_Q_Qg function.

- non determinism of type ¢ : choice of a clause. We refer to the ¢c-strategy or c-choice
function.

The "standard |-strategy" consists in fixing the first choice by building the proof-tree
choosing the first left-most leaf different from true.

Any other strategy can be defined using the notion of search-tree.

Given a program P, a goal b, and a deterministic strategy of type | (choice of the leaves ir
the proof trees), we can associate to P a unique search-tree by the following way :

. each node is labeled by a list of literals (empty list = true), one of them being
distinguished (choosen) by the type | choice function.

- from each-node as many arrows are issued as there are heads of clauses in P which can
be unified with its choosen atom.

-if 1= by, - By wens b, is the node, b beeing the distinguished literal, and there is q
clauses in P whose head is unifiable with b;, presented in the order [1..q], noted a <= ¢,
1<j< q, then the node | has g sons : Ny, ..., My -y Ng such that :

N =success if 1=b, band 3 unifiable, ¢ = true

'nj = 0(by, =0y Cs s b,) o = MGU (b, aj) otherwise.

Example :
Given the program : 1. S «A,S,B.
' 2. S .
3. A«.
4. B <.

with the standard I-strategy and given the goal S, the search-tree is the following (the
distinguished atom are underlined) :

s
2 a
A'S B success

a2

S, B

/\

A,S,B B
R
SB B success

4/\

A S, BB, B
S B,LB, B B
etc .. success

The search-tree describes all the ways to build all the proof-trees, after giving a
I-strategy . A search-tree can be infinite. To any partial finite path issued from the root in the
search-tree it corresponds a partial proof-tree. The proof-tree is complete if the leaf of the
path is labeled by success.

.......... - Py §
\JIVEII a bb‘dlbll lIUU, lU IIK I.IIU noi UUlGllllllllblll UI lyPU C bUIlblblb HI glVIllg ail Uluﬂ Ol

tree-walk. The tree-walk defines the order in which the answer substitutions are obtained.
Thus, the operational semantics of a logic program P, given a agoal b, is the search-tree
derived from the goal with its walk order. This semantics is suffuc:ent to take into account

definite Horn clauses programs.

Also this semantics is particularly well suited to explain the effects of control features
like "cut” (dynamic modification of the tree) and delaying primitives (non standard I-choice)
[DF 86a,b]. Because of the search-tree modifications, the operational semantics of most of the
dialects cannot be described by a single search-tree, but by a (possibly infinite) set of partia
search- trees correspondmg to some sngmflcant steps of walk Thus the §eman1|cs of a logic

fol

|t should be clear that various semantlcs could be defined depending on the selected set of
partial search-trees corresponding to the semantics.

Remark that this semantics is especially interesting in the following limit cases: if the
search-trees are always finite, then the semantics may contain the unique finite search-tree
and it is sufficient to describe the whole semantics of the program (with its goal). On the other
hand, if the search-tree is infinite without finite success branches then all partial finite
search-trees must be in the semantics.

In the sequel a specific semantics will be choosen.

3) Semantics of the formal specification :
The formal specification language is a very simple logic programming dialect which we
describe now together with its semantics. -

a)Abstracts syntax :

As in section 2-a, but the order of the clauses in the packets as the order of the litterals
in the body of the clauses is irrelevant.

b) Relative denotation :

The notion of denotation is sufficient to describe the semantics, but to deal with the
PROLOG dialects which contain built-in predicates, an extended notion of denotation is needed:
the relative denotation. , '

Given a set E of atoms, we denote E the set of clauses {A «.|A € E}. The denotation of the
logic program P relative to E , denoted DEN(P|E) is the denotation DEN(P u E) of the logic
program P UE.

' For example consider a predicate N-plus(X, Y, Z) which satisfies Z = X+Y (on natural
intergers N). E contains all the clauses like :
N-plus(X, Y, Z) <. for all X, Y, Z integers such that Z = X+Y.
The logical semantics of a logic program P using this predicate (not defined in P) is
exactly DEN(PIE) = DEN(P U E).

c) _Contructive semantics : proof-trees with negation

In the formal definition we want to avoid the use of control features -like the cut- which
can be only understood by reference to some interpretation strategy. But in order to preserve
a good expressiveness of the formal specification language we will make use of the negation
which may be nicely undestood declaratively. Various logical semantics can be given to logic
programs with negation [Llo 84, Del 86]. No one is satisfactory on the programmer point of
view. So we have choosen to use a negation with a clear declarative semantics, closed to the
usage of negation by failure implemented in most of the PROLOG dialects. A similar notion has
been introduced in [ABW 86] and has been treated completely in [DF 86d]. It is based on a
generalization of the notion of proof-tree with negative literals, whose principles are recallec
here briefly. '

The generalization is the following :

A leaf of a proof-tree can also be a neagative literal "not a" iff no instances of "a" is the
root of a proof-tree.

The intuition behind this "definition" is to preserve the declarative notion of denotation
and to fit with the commonly accepted idea of the negation in the PROLOG folklore : an atom is
false if no instance can be proven true. Thus a negated atom will be true iff it cannot be root ol
any proof-tree at all, i.e. no instances are in the denotation. '

Such definition can be understood only if the programs are stratified (we use the same
name as in [ABW 86] but with a slightly different formal definition). Intuitively -only a
simplified notion is recalled here- a program (thus the specification) is stratified by levels
levels O contains packets of -clauses without negative literals. At level 1 only packets using
negative literals of level 0 are included, etc.. level n contains packets with negative literals of
lower levels. With such a stratification, it is easy to define constructively, step by step, the
set of all proof-trees with negation of a given logic program with negation.

7

The constructive semantics of a program is the set of all the proof-tree roots with
negation. We call it again the denotation of P : DEN(P).

d) larativ nti f logic pr ms with n i

The declarative semantics of a logic program P with negation is defined as the union of
DEN(P) and NEG(P) where DEN is as in b) and NEG(P) is the set of all literals "not a" such that

- no instance of a is in DEN(P).

This semantics does not have a very simple logical semantics. A complete treatment of
this aspect is presented in [DF 86d] . But it has a simple intuitive logical semantics which will
be used in the specification. Given a logic program P with negation, we denote P the program
P in which all the litterals "not a(X)" in the body of the cl*auses have been replaced by "vX not
a(X)" {or "not 3X a(X)"). Thus DEN(P) is a model of P . This shows that this semantics is
consistent (It is not the case of the closed word assumption). Moreover, this kind of program
“transformation” corresponds to the usual intended meaning of the negative litterals in logic
programs.

This last remark shows the restrictions over the negation we will make in the formal
definition language in order to preserve its clarity. A negative literal may appear with
variables in the hody of a clause, but not all variables play the same role. In fact negative
litterals appear in the context of proof-trees in which not all possible instances of the program
clauses are effectively used. It will be clear in the formal definition that some variables will
be always replaced by ground terms. For example in the -specification the semantical objects
(programs, search-trees, L-variables i.e. variable in the described languages) are representec
by ground terms. Thus in the program ‘"buildlist" (section 4) the negative literal "not
L-unifiable (H, A)" in the second clause has an intended meaning "not L-unifiable of some head
and some atom A when H and A are atoms of L ", i.e. of the specification point of view H and A
are always ground, thus the meaning of the stratified program describing the specification
becomes clear. Note that it is not the case in the program c-choice (section 4 - second clause)
in which "not son (T, _)" is used with an anonymous variable. In this case the intended meaning
is that T is ground and not "3X son (T, X)', which fits with the intuitive logical semantics.

In [DF 86d] the links between this kind of negation and the usual implementation in
standard interpreters of the negation as failure are completely developped. This shows that the
restricted use of the negation inside the specification will permit to transform it into a
runnable specification without major difficulties, using the known concept of "safe negation”
[Llo 84, DF 86d]. '

4) i lement f th rmal finition:
The formal definition will be given by a logic program (definite Horn clauses program with
negation) describing the search-tree associated to some given program P together with a goal.

Thus the operational formal semantics of a program P and a goal g is the declarative
semantics of this program.

More precisely it corresponds to the relative denotation of the relation :

Semantics (P, G, T)

where P is a logic program, G a goal, T a partial search-tree issued from G which is
complete (if T is finite) or limited to some last constructed finite success branch following the
tree-walk order of T (thus only programs and goals such that it exists at least one answer

8

" substitution obtained following the program strategy or with finitely failed search-tree will be
considered in this sample of formal definition).

The denotation of Semantics contains all partial search-trees corresponding to a
success branch obtained by the specific strategy of P and the complete one if it exists a finite
search-tree, For simplicity we have restricted the semantics considering only to steps
corresponding to success pathes or complete finite search-trees. This kind of limitation coulc
be easely suppressed to take into account infinite computations without any success path.

It is worth noticing that the intended semantics is very simple : the (non)standard
strategies of P can be described usmg only a logic program without references to any
strategy.

To understand the formal semantics one must know the used data structures : relative
denotation, programs and search-tree.

L-language

It is supposed that predicates and functions of the described language are written in a
defined language denoted L. It contains all possible symbols, including variables names which
are considered as constants in the formal semantics. In the following it will be necessary to
rename variables.

-

We will use, as.in [UM 84] integers to rename denumerable sets of variables. The used
integers will be represented in lists denoting in a Dewey like notation the nodes of the
search-tree also. .

Relative denotation

As it has been shown, the relative denotation is a way to give a meaning to the following
predicates which will be used in the formal definition without logic description.

L-var(X) iff X is a variable in L.
L-term(X) " iff X is a free term in L.
L-ground(X) iff X is a ground term in L.

L-instance(T,, S, T2)i_f_f T2 is an instance of T1 by the substitution S.
L-unify (T, T,, S) iff S exists and S is the MGU of T1 and T2.
L-rename(l, T, T,) iff T, is T; with renamed variables using the integér {or indice} I.

Notice that we could define :
L-unifiable(T4, Tp) & L-unify(T4, T, S).

We denote by = the L-syntactic equality (T, =T, iff Ty and T, are the same L-terms).

Structure of a_program P

P is a list of clauses. The clauses defining a predicate are grouped in a list called packet. Thie

9

later predicat will not be described here. its meaning is the following :

packet(P, I, A, Q) iff @ is an instance of the packet of P corrésponding to the predicate
of the atom A, renamed using I. Q@ is a list of clauses whose variables are all distinct of
those of P. If A has no corresponding packet, thus Q = pil (empty list).

r re of th rch tr
A tree is :
a node (I, G) 1 list of integers built with o and succ (successor).
G goal = list of literals.
lists are doted. Empty list is nil.
or mk-tree (N, F) N node
F list of trees.

Note that all the nodes in a search-tree are different.
A goal is represented by a list of literals denoted differently:
frue (empty goal)
A+L literal A, L goal.

Search-trees are constructed by extensions or modified (the cut modifies and extend a
search-tree).

In the whole program a tree argument is denoted by a term T-N where T is a tree (or a list ¢
trees) and N a node in T. This notation avoid the use of two arguments where it is
unneccessary. Anonymous variables, when they are not necessary to understand the
definition, are written _ as in [PWB 84].

The program uses tree-walk functions defined as follows :

if N1 and N2 are nodes in T, then:
fircteenn/T _ N. N _\ iff N_ ie tha firet ean Af N
first.son(T - N, N} iff N, g the first son of Ny,

son(T - Ny, Ny) iff N, is one of the sons of N;.

brother(T - Ny, N,) ifft N, is the first brother of N,.

father(T - Ny, Ny) itt N5 is the father of N,.

if N is a node then:

NinT iff Nis a node of T.

if G is a goal and A an atom then:
tail(G4, Go) iff G, is the list rest of G;.
head(G, A) ift A is the head atem of G.

Logical definition :

10

first-son(mk-tree(N, , N5.L)-Ny , Np) <« not N, = mk-tree(,)

first-son(mk-tree(N1,mk-tree(Nz, F).L) - Ny, No) <.

first-son(mk-tree(N,F)-N,, Np)

first-son(T.L -Nj, Né) =
first-son(T.L -N;, Ny) &
son(T -Ny , Np) | =
son(T -Ny , Nb) =

brother(N,.N,.L -Ny, Ny) <«
brother(mk-tree(N4, F).No.L Ny,

brother(N1.mk-t_ree(N2, F).L-N4,

« first-son(F-N;, N,), notN= N4
first-son(T-N4, No)

tirst-son(L - Ny, Np) .

first-son(T -Ny , Np) .

first-son(T -Ny , Ng3), brother(T _-N3 » No) .

not Ny = mk-tree(_, .
Ny) & not Ny = mktree(_, _)

Ny) <.

brother(mk-tree(N,, Fq). mk-tree(Ny, F5).L-Ny, No) &

brother(mk-tree(N, F)-N;, N,)

brother(T.L-N4, N2) &=
brother(T.L-N,, N2) =
- father(T-Ny, Ny) =
NinN - &=
NinT.L =
NinT.L P=]
N in mk-tree(N, F) =
N in mk-tree(N,, F) =
tail(A+G, G) =

head(A+G, A)

f

¢« brother(F-Ny, Np) .
brother(T-N4, N,).

brother(L-N,, N,) .

NinT .

Nin L.

NinF .

11

5) A_sample of formal specification:

Semantics(P, G, T) «
buildtree(P, mkiree(node(o.nil, root), node(o.nil,G).nil)-node(o.nil,G) , T)

where if P is a logic program and T, is a partial search-tree whose current node is N,,then
buildtree(P, T,-N,, T, -N,) is true iff T, is the partial search-tree obtained by a
constructive tree-walk of T,from N; until a success node has been reached (N5 = node (I,
true)), or a complete finite search-tree has been obtained (N, = node (o.nil, root)).

buildtree(P, T-N, T-N) N = node(l, true) .
buildtree(P, T-N, T-N) <« N = node(o.nil, root).

treatment(P, T,-N,, Tj),
bu"dtree(P, T3, T2) .

The tree construction is "interrupted" as soon as a success node is reached or the constructior
is completed. In the first case, it will continue (not exclusive cases). The axioms can be read
axiomatically or operationally : choose a node (N5) which is always a leaf, make a treatment

(the current node remains unchanged), continue the construction.

Only a very restricted part of a possible specification is given hereby. The treatments are
thus very simple ones. Morever, we will suppose that the intended c-strategy of a program

- e b

CoiTesponds 0 a top-down ieli o righi search-iree-waik.

1 e-choice(T, N) < first-son(T, N)
c-choice(T, N) = not son(T, _), brother(T, N)
c-choice(T, N) :l not son(T, _), not brother(T,),

re-c-choice(T, N)

re-c-choice(T-N1, Nr) & not brother(T-N,,), father(T-N,, Nj) ,
re-c-choice(T-Ng, Ny) .

re-c-choice(T, N) & brother(T, N)

re-c-choice(T-N, N) & not brother(T-N, _), not father(T-N,)

12

One may show without difficulty that in the case of this sample defmmon this strategy is
sufficient, because of the specific form of the trees . :

treatment(P, T-N, T-N) < N = node(_, true) .
treatment(P, T-N, T -N) < N = node(o.nil, root) .

treatment(P, T-N, T-N) < N = node(l, G), not G = root ,
not l-choice(G, A)

treatment(P, T4 -N, T,) <« N =node(l, G), I-choice(G, (J)) ,
treat-cut(T(-N, T,, J)

treatment(P, T-N, T,) < N = node(l, G) , I-choice(G, A), not A = I(J),
expand(P, T,-N, A, T2') .

if Ny is a leaf of T4 or Ny is the root then treatment(P, T{-N4, T 5-Np) is true iff Ty is
the new search-tree (after eventual modification) with N, as current node .

The treatment consists in firstly choosing a distinguished literal of the node label and
secondly either expanding it or modifying it to take in account the effect of the cut. The
intended strategy is the standard one. The effect of the "cut’ is to suppress all not visited
nodes following (in the tree-walk order) all nodes in a path from the current node to the father -
of the node where the current cut (I(J)) has been labeled by J. As the modifications do not
affect already visited search-tree parts, we still have Ny = Ny.

I-choice(G, A) < head(G, A)

This is the standard choice function of type | (first literal in the goal list). To take in account a
"geler" (freeze) predicate could give the following description :

I-choice(A+L, B) < not A = geler(_, _), first-unfrozen-geler(L, B) .

l-choice(A+L, A) < not A = geler(_,), all-geler-frozen(L)
I-choice(geler(X, B)+L, A)_ < L-var(X), I-choice(L, A)

I-choice(geler(X, A)+L, A) <«<not L-var(X)

‘first-unfrozen-geler(L, A) & conc(L,, geler(X, A)+L2, L),
all-geler-frozen(L,) ,

not L-var(X) .
all-geler-frozen(true) =

all-geler-frozen(A+L) < not A= geler(_, _) , all-geler-ffozen(L)

'aIl-geler-frozen(geler(x, A)+L) « L-var(X), all-geler-frozen(l)

All frozen goals are unfrozen following the order of freezing. conc is the list

13

concatenation on goal lists.

If P is a logic program, N, the current node of T, A the distinguished literal in N, then
expand(P, T,-N;, A, T5-N,) is true iff T, is the new tree after expansion. N, (=N,)
corresponds to a new sub-tree : mk-tree (N;, F) where F are the new sons, but which is
reduced to N, if Ny is a failure node. When a new node is created, the cuts it contains have to
be labeled by the name of the node itself.

expand(P, N-N, A, N-N) &= N = node(l, _) , packet(P, |, A, nil) .

expand(P, N-N, A, mk-tree(N, F)-N) < N =node(l,) , .
packet(P, I, A, Q), not Q = nil,
buildlist(Q, N, A, F,0)

expand(P, mk-tree (N, Fy)-Ny, A, mk-tree(N, F5)-N,) <«
' expand(P, Fi-Ny, A, F5-Ny) .

expand (P, A,.L-N;, A, A,.L-N,) =
expand(P, A{-N;, A, Ay-N,) .

expand(P, A.L1'N1, B, A.L2‘N2) (= expand(P, L1'N1, B, L2'N2) .
buildlist(nil, N, A, nil, 1) =
buildlist(clause(H, C).Q, N, A, F,) « not L-unifiable(H,.A) .

buildlist(Q, N, A, F, 1) .

buildlist(clause(H,. C,). Q. N, A, node(l.J, Go)lF. 1) & N = nodelJ, G)
‘ L-rename(I.J,clause(H1,C1), clause(H,,C»)),
L-unify(H,, A, S),
flagcut(C,, IJ, Cg)s,
replace(G, A, Cs, Gy),
L-instance(G,, S, G,),
buildlist(Q, N, A, F, succ (l))

replace(Ly, A, L,, Ly) e conc(X, AY, L), conc(l,, Y, 2),
conc(X, Z, Lg) .

flagcut(true, |, true) = .
flageut(! + L,, I, {N+Lo) = flagcut(L,, I, L,) .
flagcut(A+L, I, A+L,) = not A =1 flagcut(L,, |, L,).

14

if. N1 is a leaf node of T, whose chosen atom is (J), then treat-cuy(T,-N,, T>-N,,
J) istrue jff T, is the modified tree T . It has a new son node issued from Ny (= Ny).

treat-cut(N-N, mk-tree(N,node(0.1,Gy).nil)-N, 1) < N=node(l,G,). .
: tail(G;,G,) -
(depends on the I-trategy: here it is the standard one)

treat-cut(mk-tree(N, F4)-Ny, mk-tree(N, Fs)-Ny,) &
‘ treat-cut(F;-N4, Fo-Ny, 1) .

treat-cut(T,.L-Ny, To.nil-Np, 1) « N4 in Ty, cut-inside(l, T¢),
' treat-cut(T,-N;, To-Ny, I) .

treat-cut(T,.L-Ny, To.L-Ny, 1) = N;inT4, notcut-inside(l, Ty),
treat-cut(T,-N;, To-Ny, I) .

treat-cut(T.L4-N,, T.ly-Np,) <« Ny inly, treat-cut(L-Ny, Ly-N,, 1) .
cut-inside(l, node(J, G)) & cut-member{l, G) .
cut-inside(!, mk-tree(node(J, G), F)) <« cut-member(l, G) .

cut-member(l, [(I)+L) &

cut-member(l, A+lL) = cut-member(l, L) .

15

6)Discussion and conclusion:

We have presented a formal semantics for PROLOG dialects which seems to satisfy the
criteria of a good formal specification method as given in the introduction:

-It is of high level because without any reference to any abstract machine. Also it does
not use any too low level programming language. The logical notions it uses are simple and
known by most of the PROLOG programmers. :

-It can be used to describe with the same formalism most of the existing PROLOG dialects.
Without major difficulties it is possible to take into account the following features:

. cut

. geler(or freeze), wait (any non standard deterministic strategy)

. assert, retract

. constraints, dif, delayed negation

. infinite terms : Rational infinite terms can be added to the language L whose
treatment can be descibed in a logical specification using finite terms only. Thus even if the
described dialect containing rational infinite terms does not have any logical semantics (in the
sense of section 2), the specification still have one.

. assignment, global variables

. escape or block mechanisms »

. arithmetics and other built-in predicates. These are in fact not described by
clauses in a program, however they belong to the described language L and we want to include
their description in the same formalism. It is partially possible. As an example we give here a
description of a reversible built-in predicate plus using a semantical predicate L-eval with
two arguments: some goal (chosen atom) and the "computed" answer substitution S.

L-eval(plus(X, Y, 2), S) < N-number(X), N-number(Y), L-var(2),
N-plus(X,Y,Z1), L-unify(z, Z1, S).

L-eval(plus(X, VY, 2), S) « N-number(X), N-number(2), L-var(Y),
‘ N-plus(X,Y1,Z), L-unify(Y, Y1, S) .

. L-eval(plus(X, Y, 2), S) < N-number(Y), N-number(2), L-var(X),
: N-plus(X1,Y,2), L-unify(X, X1, S).

L-eval(plus(X, Y, Z),®) <N-number(X), N-number(Y), N-number(2),
N-plus(X,Y,2).

This description uses a not described predicate N-number. Such predicate will be
supposed to have a clear denotation which can be easely defined under the asumption that the
domain N of the natural integer is wellknown enough. Thus the denotation of N-number
contains all atoms :

N-number(i) where i is an interger of N.

N-plus is as in section 3.

-As the formal definition is a logic program the validation methods (correctness,
completeness, termination, use of the negation, ... [DF 86¢]) could be applied to validate the
formal definition itself. .

-As the formal definition is a logic program included in every dialect, it should be rathe:

16

simple to derive from the specification various validation tools like a runnable specification.

This kind of formal definition can be compared with others logical semantics of logic
programming such as in [Mos 81] and [MR 86]. Moss's approach describes proof-trees
construction in place of search-trees construction. It consists in giving a validating program
(i.e. @ PROLOG program simulating an interpreter) and thus it is less declarative. Martelli and
Rossi approach can be considered as a logic runnable specification of a denotational one and it
uses a kind of abstract machine. Considering other kind of semantics like in [JM 84, Fra 85,
Nor 86] the denotational semantics, we could say that our semantics is less concise but easiet
to read, especially for people knowing some PROLOG dialects.

We have shown how a logic program of about sixty clauses could model the formal
semantics of logic programs with cut and a non standard strategy. The size of a complete
description of a dialect or a standard would increase in proportion with the number of
considered primitives, but preserving the modularity and the clarity of the formal definition. |
can be improved also by choosing simpler data structures as ramifications in [Fer 85]. Some
questions, as input/outputs or errors handling, have not been investigated here. Some
adaptation of the presented semantic model would be necessary, but are still possible by using
the same level of abstraction.

AKNOWLEDMENTS

We are indepted to Gilles Richard for his'comments on the earlier drafts which helpec
to improve this presentation.

BIBLIOGRAPHY

[AVE 82] K. R. Apt, M. H. Van Emden : Contributions to the theory of logic
programming. JACM V29, N° 3, Jul. 1982 pp 841-862.

[ABW 86] K;R, Apt, H. Blair, A. Walker: Toward a Theory of Declarative Knowledge.
: LITP res. report 86-10, Fev 1986.

[Cla 79] K. L. Clark : Predicate Logic as a Computational Formalism. Res. Mon. 79/59
TOC. Imperial College. Dec. 79.

[Col 82] . A. Colmerauer: Prolog Il: Manuel de reference et modele theorique, GlA,
Univ. of Marseille, 1982 ’

[Del 86] J.P. Delahaye : Sémantique logique et dénotationnelle des interpréteurs
PROLOG. Note IT n° 84. University of Lille. 1986.

[DF 86a] P. Deransart, G. Ferrand: Initiation a PROLOG, Concepts de base. Pub. du Lab

17

[DF 865]

[DF 86c]
[DF 86d]

[DM 85]

[Fer 85]

[Fra 85]
[JM 84]
[Kee 85]
[Lio 84]
[Mos 81]

[MR 86}

[Nor 86]
[PWB 84]

[Rob 65]

d'Informatique, Univ. of Orleans, June 1986.

P. Deransart, G. Ferrand: An Operational Formal Definition of PROLOG. A note
for the AFNOR-BSI group on PROLOG normalization. 10/05/86, BSI PS/112.

P. Deransant, G. Ferrand : Logic Programming, Methodology and Teaching.
Actes du Seminaire 1986, CNET Tregastel mai 1986, pp75-90 (english
version available at INRIA-Rocquencourt).

P. Deransart, G. Ferrand : Programmation en Logique avec négation :
présentation formelle. Publication du Laboratoire d'Informatique, Universit
of Orléans (to appear).

P. Déransart, J. Maluszynski : Relating logic Programs and Attribute
Grammars. Journal of Logic Programming 1985, 2, pp 119-155.

G. Ferrand : Error Diagnosis in Logic Programming, an Adaptation of K.E.Y.
Shapiro's Method, RR375, INRIA Rocq. Mars 1985. (to appear in the Journal
of Logic Programming).

G. Frandsen: A Denotational Semantics for Logic Programming. DAIMI PB
201, Aarhus University, Nov 1985.

N. D. Jones, A. Mycroft : Stepwise Development of Operational and
Denotational Semantics for Prolog. Proc. 1984 Int. Symp. on Logic
Programming, Atlantic City, N.J., 1984.

R.A. O'Keefe : A Formal Definition of Prolog. Univ. of Auckland, BS| PS/22.

J. W Lloyd : Foundations of Logic Programming. Springer Verlag, Berlin,
1984.

C.D.S. Moss : The Formal Description of Programming Languageé using
Predicate Logic. Imperial College. DCS-July 1981, (BSI PS/37).

A. Martelli, G. Rossi: On the Semantics of Logic Programming Languages.
Third Int. Conf. on Logic Programming, London, Jul. 1986. LNCS 225, pp
327-334. ’

N.D. North: PROLOG A denotational Definition. National Labora‘tory, BSI-
IST/5/15, PS141, Sept 1986. -

F. Pereira, D. Warren, D. Bowen, L. Byrd, L. Pereira: C-Prolog User's
Manual. SRI International, Calif., Fev 1984.

J. A. Robinson : A machine oriented logic based on the resolution principle.
JACM 12, 1,

Imprimé en France

par
I'Institut National de Recherche en Informatique et en Automatigue

&+

4

-

