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Abstract : ) o .
We introduce the concept of a weakly metric association scheme, a generalization of metric

schemes. Applications are vertez transitive graphs, codes cver Z, for the Lee metric, "permu-
tation codes” for the Hamming metric, arithmetic codes for the modular distance.

In this contest, we define the notion of covering radius of a subset.

We give a general version of the Stanton-Kalbfletsch inequalities, leading to a linear pro-
gramming bound on the minimal cardinality of a subset of given covering radius. Eguality in
the constraints characterize perfect sets, and determines uniguely their inner distribution if the
scheme i3 metric. This yields a Lloyd theorem for vertez transitive graphs , which spectalizes to
Bassalygo’s results in Lee scheme, and Biggs’ results in distance-transitive graphs.

The outer distribution matriz of a subset allows us to generalize Delsarte upper bound on
covering radius, and Mac- Williams lower bound on the ezternal distance, yielding a strong nec-
essary condition on completely regular perfect subsets.

Résumé: -
Les schémas d’association fasblement métrigues, sont une généralisation des schémas métrigues.
Les principales applications sont les graphes sommets-transitifs, les codes sur Z[/qZ pour la
métriqgue de Lee, les codes de permutation pour la métriqgue de Hamming, les codes arithmétiques
pour la distance modulaire. i

Dans ce conteste, nous définissons la notion de rayon de recouvrement d’ un sous-ensemble.
Nous généralisons les inégalités de Stanton et Kalbfleisch , ce qui condust ¢ une borne de pro-
grammation linéaire sur la cardinalité minimale d’ un sous ensemble de rayon de recouvrement
donné. '

L’ égalité dans les contraintes du programme caractérise les sous-ensembles parfaits, et détermine
uniquement leur distribution interne si le schéma est méirigue . Cela méne ¢ un “théoréme de
Lloyd ® pour les graphes sommets-transitifs, qui admet pour cas perticuliers le résultat de Bas-
salygo pour le schéma de Lee, et le résultat de Biggs pour les graphes distance-transitifs.

La matrice de distribution externe d’un sous-ensemble permet de généraliser la borne supérieure
de Delsarte sur le rayon de recouvrement et la borne inférieure de Mac- Williams sur la distance
extérieure. Nous en déduisons des conditions nécessaires d’ ezistence sur les sous-ensembles
parfaits complétement réguliers.



1. Introduction:

In his thesis [12] Delsarte shown that the theory of association schemes - an algebraic setting
issued from Statistics and Group theory [1]- was a natural framework for coding theory. By use of
linear programming , he recovered many classical bounds on the size of codes with given packing
radius. At about the same time, N.Biggs proved the Lloyd theorem in distance regular graphis
[5], which are exactly metric schemes.

In this work , we generalize these ideas in two ways: .

- First, we introduce the class of weakly metric schemes, which includes strictly metric schemes .
Our motivation is the study of Lee distance over Z;' and modular distance over Zjs, which behave
less ’properly’ than hamming metric. We give analogues of classical results from McWilliams and

Delsarte.

- Second, we apply linear programming to covering problems rather then packing problems. For
this we need a general version of Stanton Kalbfleisch inequalities, which are derived from the very
axioms of association schemes by simple counting. The case of equality in the contraints yields
both classical and new results on perfect sets, by linear algebra, without any use of orthogonal
polynomials.

We refer to [21], [22] for any undefined term from group theory, and to [1}, [18], [12] for any
undefined term concerning association schemes.



2. Weakly metric schemes :

2.1. Definitions:

An association scheme with t classes consists of a finite set along with a partition
R = (Ro, Ry,..., R:) on X x X | satisfying the following axioms:
Ay : Ry = {(z,2)/z € X}
Az : R ={(y,2)/ (2,y) € Ri} = Ry for some 4".
As : the cardinality of {2/(z, z) € R; and (2,y) € R;} is a function p; which depends on k , but
not on (z,y) € Rx . '
Ac: ot = o
if we replace Az by the stronger condition A2’ : R ! = R; the scheme is said of Bose-Mesner
type (BM for short). We call weakly metric an association scheme equipped with a metric d
constant on the classes of the scheme:

aRib = d(a, b) = d(k) (1)

When d is graphic [9] (definition in subsection 2.5) and d(k) = k , we recover exactly the definition
of a metric scheme [12] In the following subsections we construct examples of both practical and
theoretical interest. :

2.2. An all-purpose construction

Let X be a finite set endowed with a metric d. We suppose that a subgroup of the group
G of isometries of d acts transitively on X, and we consider the action of G on the cartesian
product X X X. Let (Ry, Ry, ..., R;) be the orbits with Ry = {(z, z)/z € X}.

Proposition 1: (X, R) is a weakly metric scheme.

Proof:

It is well-known that (X, R) is an association scheme [1],[6], the incidence algebra of which
coincides with the centralizing algebra of the regular permutation representation of G.

Clearly d is constant on the R;.

2.3. Vertex transitive graphs:

Let T' be a simple, (3], undirected graph, with vertex set VT, and edge set ET. Taking
X =VT, and d = dr the shortest chain distance on VI',we can apply paragraph 1.2. We con-
struct the Lee sheme (denoted by L(n,q)), and Hamming scheme (denoted by H(n,g)}, on zp
in that way.
We denote by C; (resp.K,)the graph of the ordinary g-gon, (resp. the complete graph on q
vertices) .Then the n-fold cartesian sum (3], C(n, g) (resp. K(n,q)) admits as an automorphism
group :

Aut(C,) / Sa =D, / Sn (2)
respectively: ~
Aut(K,) / Sn =S5, / Sn (3)

where [ denotes the wreath product [21], and D, denotes the dihedral group [21].

The distance dg(n,q) (resp.dk (n,q)) is simply the sum of the distances dc, (resp. dg,) on
each summand graph [3]. We remark that the number of nontrivial orbits in K (n, q) x K(n, g)
is n, which is equal to its diameter. This implies that K(n,g) is distance-transitive [6], hence
distance-regular. On the other hand, C(n,q) has diameter ns, with s = [(g—1) /2], and t = (**)
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orbits, and is not even distance regular, which is equivalent to say [12], that L(n,q) is not P-
polynomial [19)].

2.4. Arithmetic codes for the modular distance:

We use X = Zjs, the integers modulo M, we let d be the modular distance in the sense of
[8] with radix r, and for G the semi-direct product of Tas by G;. Tis is the group of translations
of Zp, and G, the group of permutations of Zys generated by multiplications by r, and —1, We
assume that r is prime to M, so that G, is indeed a group and d(rz,ry) = d(z,y) (see [8] for a
proof in the case of M = r™ — 1). Roughly speaking the orbits of G, on Zps are the cyclotomic
classes merged with their opposite. For instance M = 17,r = 2, the nontrivial orbits of G, on
Zy are
X1 =1{1,2,4,8,—1,-2,—4,—8} (4)

of modular weight 1, and
X, = {3,6,12,7,—3,—6,—12, -7} (5)
of modular weight 2, with the convention '

Ry & z-yeX; (6)

We obtain a two-classes association scheme in the BM sense, or equivalently a strongly regular
graph [12]. (Here the cyclotomic classes coincide with their opposite). Its parameters in the
notation of (7], are (17,8,2,4). ,

In the previous case the scheme was metric for the modular distance.This is not always the
case.A counterexample is for M = 31,r = 2, with the orbits: {0},CsJC, Cs|JC11, C1 UC15
of weights 0,2,2,1 where C; stands for the ** cyclotomic class. This latter scheme is weakly
metric, but not metric for the modular distance, since two classes of the scheme share the same
modular weight.

2.5. ”Permutation codes”

We construct an example where d is not graphic, that is, it is not a dp. We let X = S,,, the
symmetric group on n letters. Any permutation on n letters can be seen as a codeword of length
n on an alphabet of size n [9]. We let d be the Hamming distance in H(n,n). Let o € S,, and
(o) denote the shape [17] of o, we have

(o) = (81,82, 3n) (7

where s; is the number of i-cycles. We define the classes Ry by
o Ryt & s(or™!) =k
with k running over the partitions of n.

Proposition 2: (S,, R) is a B.M scheme weakly metric for the distance d.

Proof: We use the construction of proposition 1 with X and d specified above. We note that:
d(o,7) =n—s1(or™1) (8)
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Hence the group S,.S, (direct product) acts as a group of isometries for d by left and right
multiplication:

(N p).o = dop (9)
for we have :

31 (op(ur71AY) = 01 (Aor A1) = oy (0r ) (10)

since s(o) is constant on the conjuguate classes of S,. Conversely , these classes are exactly the
sets with a given s(c) [17], so that the orbits of S,.5, on S, X Sy, are exactly the Ry,.

It is clear that S,.S, acts transitively on S,,.

Q.ED

d is not graphic for , if d(c,7) = n it does not exist any v with the property

dlo,v) =n—-1
{dgu,'r)) =1 (12)

since a permutation with n — 1 fixed points has to be the identity.

3. The covering radius of a set
3.1. Definitions:
Let Y denote a subset of X. Y is said to be a r-covering of X iff for any z in X :
d(2,Y) := mingeyd(z,y) <r (12)

The smallest r such that Y is a r-covering is called the covering radius of Y and is denoted by
o(Y).

Let K(X,r) be the smallest cardinality of a subset of covering radius r.

In the following we shall be interested in lower bounding K{ X, r). First we give without proof
some elementary properties which are shown for H(n, 2) in [10].

3.2. The covering bound:

Let b; be the volume of the ball of radius j for the distance d:

by = E P?,i' (13)

d(5}<s

Then, we have
| X< Y| ><bp(y) (14)

3.3. The superset lemma:
If W is a proper superset of Y, of minimal distance d{W) :
d(W) := ming4yd(z, y) (15)

we have

p(Y) 2 d(W) (16)



3.4. Maximal sets:

Y is maximal for inclusion iff

oY) <(d(¥) 1) (17)

Application: We consider the metric scheme of alternating forms over Fom [13],[14], together with

the distance
d(B, B') = (rank(B — B')) /2 (18)

The optimal (m, r) sets introduced in [14] have maximum cardinality among the sets with mini-
mum distance:

d((m, 7)) = (19)

A fortiori, they are maximal for inclusion, and verify
pl(m,r)) <r—1 (20)

Moreover they are strictly nested:
' (m,r) c (myr—1) (21)

go that we can apply the superset lemma:
p((m,r)) 2 d((m: r—= 1)) (22)

We conclude
pllm,r))=r—-1 (23)

4. A linear programming bound on K(X,r):

4.1, Linear constraints on the inner distribution of a set:

Let Y be a subset of X, z a point of X, and Ax(z) the number of points of Y k-related to
z. The inner distribution of Y is then defined as:

ar:=()_ 4(2))/|Y | (24)

z€Y

Proposition 8: Necessary conditions for Y to be an r-covering are :

Yz, Vi€ [0..t]: Z Ae(z)( Z p5;) > ol (25)

d(3)=r<d(k)<d(i)+r d(5)<r

Corollary 1: Necessary conditions for Y to be a r-covering are:

Vi e [0..t] : Z ak( Z pf]) > p?‘-: ‘ (26)
' d(§)-r<d(k)<d(i)+r  d(5)<r

Proof: Let us consider the set X; (z) defined by:
Xi(z) ={z€ X/zR; z} (27)

The definition of the intersection numbers yields:
| Xi(z) |= ol (28)
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Now any z in this set is at most r away from some y in Y, so that it exists an index 7 such that :
zR;y (29)

and:
d(s)<r (30)

Such a y is k-related to the "origin® z, and according to the triangle inequality -
|d(2)—r|<d(k) <d(i)+r (31)

Then, by definition of the intersection numbers pfj and of Ag(z), the L.H.S of equation (25)
counts the number of such y. Since the correspondence y « =z is many-to-one, the L.H.S is
superior to the R.H.S. :
The corollary follows immediately by averaging equation {25) over zin Y. Q.E.D

Example 1: In H(n,2) this specializes to the Stanton-Kalbfleisch inequalities [11], {20]. For
r=1,2 this yields :

(h=i+1)Ais+ A+ (+1) Aiga 2 (:') (32)
. 4+ 2
<" ;+2) Aigt(n—t+1)Aim1+(1+in—42) A; + (1 + 1) Aigr + (1,-{2- )A,-+2 2 (:) (33)

A generating function for the intersection numbers of H(n, g) will be given in the next subsection.

4.2. Equality in the constraints:

We recall that a set fulfilling the covering bound with equality is said to be perfect.

Proposition 4: The constraints on the inner distribution of Y are fulfilled with equality iff Y
is perfect.

Proof: These conditions are realized iff the correspondence y « z, defined in (29), is one-to-one,
which means that the balls of radius r centered on the points of Y pack the space X. Q.E.D

Corollary 2: For a perfect subset Y in a metric scheme, the weight distribution Ag(z) for an
arbitrary origin z in Y, and the inner distribution ax are uniquely determined by p(Y) and are
equal.

Proof:
For a perfect set Y it holds that:

d(Y) =2p(Y) +1 | (34)

yielding the ”initial conditions”
a0=1;a;=0 for1<i<2p(Y) (35)

The fact that the distance is graphic ensures that the coefficient of the unknown a;, in the system
(26) (with equality) for k =% + r does not vanish.
Then the systems (34) and (35) admit one and only one solution.

Q.E.D
This fact was already proved in [12], using the theory of orthogonal polynomials.

Proposition 5: In H(n, g), for any q, perfect single error correcting codes if they exist have the
weight distribution function:



v

AY) = 30 At = (14n(g=1) (14 (g-1)9)" +nlg—1) (L+(a=1)9) 7 (1-9) ¥ (30)
1=0
Proof: In H(n,g) the intersection numbers enjoy the generating function, (16], [4):
Ep 'y =z +y+ (g — 2oy [1+ (g - )zy” " (37)
From this we obtain the recursion:
(- 1)(n—i+ DA+ A+ (i + 1) Ay = (j) (g-1)° (38)
with limit conditions
Ap=1, A1 =Apy1=0; Ay = A, =0 (39)
which is equivalent to differential equation on A(y) with conditions at the origin
A(0)=1, A'(0) =0, A”(0)=0 (40)

a problem which admits one and only one solution. Tedious but direct computations show that
the given expression is this solution.
Let ¢;(z) denote the 1°* order Lloyd polynomial in H(n,q) :

Yi(z) =1+4+n(g-1) — gz (41)

Corollary 8: If H(n,q) admits a perfect single error correcting code, then the root of ¢, is an
integer.

¢ |1+n(g-1) (42)

Remark:
The sphere packing condition does not imply the Lloyd condition for general g¢:
n=17;q=10= 1+ n(g— 1) = 2° which divides 10° but ¢ = 10 does not divide 64.

4.3. A Lloyd theorem in vertex transitive graphs:

We recall that a vertex transitive graph can be embedded in an association scheme (section
2.2) that is weakly metric.
We introduce the incidence matrices of the scheme D; of size | VT | by | VT |, with ( z, y) entries
given by:

Di(z,) = { L if aRay (43)

0 otherwise

We consider the counting matrices D; with integer entries, D; (4, k) = pf, ;- It is well known 6],
(18], that these matrices form an algebra isomorphic to the incident algebra of the scheme, and

we have the same eigenvalues , say p;(7) , ¢,7 € [0..t] and are simultaneously diagonalizable.

We define the Lloyd operator of order e to be :

Z D; (44)

d(v)<e

Q.ED



and we denote by IIx () the cardinality of the set
{ze€ X/yRiz, d(7) < e} (45)
where y is an arbitrary origin.

Proposition 6: If there is a perfect set ¥ of T’ of covering radius e , then L, has rank at most
t+2—Tix(e).

Proof: We may suppose , w.l.o.g that y is in ¥. Choose vertices u; in number IIx(e) — 1 such
that y R; u; and d(4) < e. There are as many g; € AutT’ which map y on each u;; then we obtain
Ix(e) perfect sets ¥; :

Yo=Y i=q(Y)...Y5=g(Y) (46)

If we introduce the column vector a; of inner distribution of a set ¥; and the column vector k-

such that

1
ki = VT | X:(y) | (47)
Then we see that the condition of equality in (26) can be rewritten in matrix form
L xa;=k (48)
From that we deduce

Le(ap—a;) =0 (49).

By the choice of the sets ¥; the vectors ag — a; are independent , nonzero and in the kernel of L, :

dim(KerL.) > Ix(e)—1 (50)
which is equivalent to : rank(L.) <t+1—Ilx(e)+1. QED

As the incidence algebra of the scheme is finitely generated the Lloyd operator is a polynom1a.l
in the generating matrices of the algebra. Since the matrices can be diagonalized on the same
basis, the rank condition can be expressed by the annulation of a multivariate polynomial. In
the special case where I' is distance transitive there is a unique generator , the Lloyd polynomial
is monovariate and we recover Biggs’ results [5].

By letting T' = C(n, g) we recover easily the Lloyd theorem for the Lee metric [2], [19]

4.4. The linear programming bound:
Let p(2) denote the first eigenvalues of the scheme (X, R) . A well known result due to

Delsarte [12] is that the dual inner distribution is non negative:

t
Y aPi(i) 20 (51)

1=0
Then, the problem of finding a good covering set leads to the following linear programming bound:

K(X,T) > mina‘{ao +ay+ ..+ at/a,- > 0, ap = 1,(26)(51)} (52)

10
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5. Outer distribution of a subset:
We define the outer distribution matrix B of a subset Y by its (z,1) entry:

B.i =|{y€Y/zRiy} | (53)

. We call e the packing radius of Y : e =[(d(Y) —1)/2]
We call b the number of distinct rows of B for z not in Y.
We call s’ the number of nonzero a, for k nonzero and we recall the inversion formula from [12]:

t
1 o\t
a = = (2 )a; 54
T i) (54
Theorem:
rank(B) = s' +1 (55)
Proof:
It is a well known linear algebraic lemma that
rank(B) = rank(BT B) (56)
We shall prove the following:
Y|
=1 1prap 57
x| (57)

where P is the matrice of size (t + 1) X (t + 1) of the first eigenvalues of the scheme
Pik = [pe(7)] (58)
and where
A = diag(ag, ay, ...a3) (59)
First an elementary counting argument shows ‘that

t
> BioBia =Y | >k (60)
z€X k=0

Using the inversion formula and the following relation

pi(u)pi(u) =D pkipe(u) (61)

which stems from the same relation on adjacency matrices, yields:

t

Z B; . Bjz = %Jl' Z pi( u )a':lpj( u‘) (62)

z€X u=0

11



which is the desired relation.

Corollary 4: s’ > IIx{e)—1

Proof:
Let y denote an arbitrary point of Y, fixed once and for all, and z such that zR;y with d(z) <e.

By the definition of IIx( e) there are IIx(¢) such z with pairwise distinct 3, yielding that many
rows beginning with ¢ zeros, hence that many independant rows. (i=0 is counted in this process).

Q.E.D _
In the case of a metric scheme this yields the MacWilliams inequality [12], [18] :

s'>e (63)

Corollary 5: p< &'

Proof:
Same reasoning with z such that d(z,y) =4,1 = 0..p Q.E.D

Example : Consider an AN code [15] for the modular distance [8] with radix r and modulus
M such that M = AD.
AN ={Ai/1<i < D} (64)

Then the additive dual of AN in the sense of [12 p 23-88] is DN and s’ is the number of nontrivial
orbits of G, on DN. This is also the number of nontrivial orbits of G, on Z4 , say n4, since, for
any integers a and b < A we have that

a=b(+p')|A] <= Da = Db(xp‘) [M] (65)

We obtain immediately the known [15] result:

p(AN) < n4 ' (66)

As shown in [15] this bound is attained on examples and the number of modular weights of DN
can be < p(AN), so that the analogous statement of Delsarte bound in H(n,q) is wrong in
general.

Corollary 6: b > g

Proof:
There are b+ 1 distinct rows in B, whose rank is ¢/ + 1 .

QE.D
A set Y is said to be r — regular if the row B(x) depends only on d(z,Y) for d(z,Y) < r and
completely regular iff p — regular, i.e p = b.

Corollary 7: if Y is completely regular then p = &'

Proof:

12
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Obvious from the two preceding corollaries.

QE.D

Proposition 7: If Y is a completely regular perfect code then:

nx(e)—1=e

Proof:

. Y is perfect hence p=e¢.

Y is completely regular hence p = s’

Since s’ > Ix(e) — 1 the result follows , for e < IIx{e) — 1 always holds.

QE.D

We point out that there exists perfect codes in weakly metric schemes that are not completely
regular. For instance we take X = L(n,g) with n = 2,¢q = 13, and Y the negacyclic elf dual
perfect code [4] with generator polynomial g(z) = z + 5 and "negacycle representatives” (0,0),
(1,5), (3,2), (6,4). :

We have p = ¢ = 2 and s’ = 3 # 2. Therefore Y is not completely regular.

Proposition 8: For ¢ > 5 and e > 2 there are no completely regular perfect codes in L(n, g).

Proof:

Clearly llx(e+1) —Ix(e) > 1

Since ¢ > 5, 1 #2:n Z; and [Ix(2) =4

then an easy recurrence shows that IIx(e) > e+ 2 fore > 2.

Q.ED ‘

This contrasts strongly with H(n,q), where every perfect code is completely regular.It can be
shown that, in L(n, g), the negacyclic single-error correcting codes [4], for ¢ a prime are completely
regular.
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