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Abstract.- This paper deals with adaptive control, based on explicit
identification. The problem of the identified model stabilizability is
solved in the passive approach, i.e. without requiring persistingly
excitling inputs. This solution is robust, Acovering time varying processes,

unstructured model errors and underestimated model order.
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STABILITE ROBUSTE DE LA COMMANDE ADAPTATIVE EXPLICITE
SANS EXCITATION PERSISTANTE

Résumé.- Ce papier concerne la commande adaptative basée sur une identification
explicite. Le probléme de la stabilisabilité du modéle identifié est résolu dans
I'approche passive, c'est a dire sans nécessiter des entrées continuellement excitantes.
La solution est robuste, dans le contexte de processus variable dans le temps, avec
erreurs de modéle non structurées et ordre sous estimé.
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INTRODUCTION

According to the certainly equivalence principle [1], the most
natural approach for adaptive control associates some real time
identification method, and continuous updating the control law from

the identified model.

Before 1980, almost everybody thought that this approach could not
lead to any complete theoretical analysis, in a somewhat general

framework.

That is the reason why, between 1970 and 1980 most of the theoretical
works concerned the "direct approach”, i.e. direct adjustment without
explicit identification (see e.g. [2] to [8]), in spite of major limi-

tations, such as minimum phase hypothesis.

In the early eighties it was recognized that the stability conditions
in indirect approach could be formulated in a very general and fruitful

form [7,8 ]. Typically, these conditions are the following
1) the identified model must satisfy some smallness conditions concerning :

- the equation error v(t), which appears in the process equations, when

written with the identified 6(t), and the observed input output signals,

- the evolution rate of 6(t).
iZ) the identified model must be stabilizable.fbr the adjustment algorithm

may lead to a control parameter vector k(e), such that the closed loop
characteristict polynomial involved by e(t) and k(e) be strictly Hurwita.

These conditions do not restrict the choice of control algorithm. Then

the adaptive control problem begins to be widely recognized as a pure

identification problem.
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In fact, most of theclassical identification methods, based on the

Prediction Error Method [8], directly satisfy the first above condition (i).

Unfortunately these methods do not present any special properties
concerning the above stabilizability condition (ii). In order to solve
this key problem, the so called active approach states that the process
must be persistingly excited, either by means of the reference input,
either by additive extra signals. Then, the convergence of é[t] towards
a vicinity of the exact (and stabilizable) parameters 0*(t) solvgs the

problem [10].

However, artificial exciting inputs are generally nocuous for the

control purpose itself, especially in the regulation mode.

An other solution lies in some projection techniques of 6(t) in an
a priori given stabilizable (or admissible) domain Daps This approach holds.

only if D, is simply connected and convex, which is a very restrictive

A
assumption.

A first general solution to the stabilizability praoblem was proposed

by de Larminat [11}. It is based on the use of two models
- a model 6(t), delivered by an ordinary least square algorithm,

- a model @(t), constrained to be stabilizable, and then usable for

control.

When 6(t) escapes from the admissible domain Dp, it is reinitialized

-

into the intersection of D, with an ellipsoid centered on 6(t), defined

- A
by [|8 - e p-1¢ 1, where P(t) is the classical L.S. matrix.

Althouth this algorithm was designed having in mind the noisy case,
the complete proof of satisfying (i) and (ii) was performed in [11] only
in the noise-free case, and one could fear it did not present any robustness
property with respect to noise. The same criticism could be objected

to a similar work of Lozano and Goodwin [12].



In [13], de Larminat presented a solution based on the same principles,
_including a robustness analysis, with regard not only to noise, but
also to unstructured model errors (non linearities, underestimated model

order), and even to time varying processes.

The present work consists in a reviewed and completed version of [13],
then, it offers a very complete solution to the indirect passive approach
in adaptive control. This solution takes form as a typical example of an
identification algorithm, satisfying the above conditions (i) and (ii).

In addition, a theorem of robust stability for time varying systems
plays the role of a technical lemma, for the stability analysis of
adaptive control systems. This theorem is widely derived from a previous

work of Praly [14];

For simplicity, only one identification algorithm is presented.
Though a general class is not explicitely given, its basic features are

the following

- the algorithm belongs to the Least-Square type, involving a signi-
ficant matrix P, which is necessary for the stabilizability correction

below. It means that scalar gains must be discarded,

- the classical forgetting is introduced, for time varying process

identification,

- the prediction error is normalized by the norm of the observation

vector,
- an attraction towards zero permits to keep 6 and P bounded,

- all the previous characteristics are organized so that the pair

[9, P) define a certainity area around 9

- from this first algorithm, a stabilizable model 6(t) is deduced :
the pair (6,P) is used as a permanent memory of the past input output
data, in order to define a possible reinitialization for 6(t), when it

escapes the admissible domain DA'



The general principles above are quite reasonable and their appli-
cation is relatively simplé. However, it was not straightforward that
they could lead to a proof of overall stability for adaptive control
systems. For simplicity, this paper deals with the continuous time

case, for which complete proofs are provided.

In section 2, the hypotheses and notations are introduced, for the
control of monovariable, continuous time, n-order processes. The coﬁéept
of admissible domain DA is also defined. Section 3 is devoted to a
theorem of robust stability, particularly suitable for adaptive control
analysis. This theorem formalizes that a process {x = F{t)x(t)+w(t)}
is stable if there exist convenient upper bounds for ||w(t)]| and Hﬁ(t)||:
In section 4, the primary identification algorithm is described and it
is shown (section 5) that the robustness theorem applies, assumiﬁg that

-

6(t) remains uniformly stabilizable.

The heart of the paper relies in section 6, where the admissible model
8(t) is introduced : It is shown that 8(t) simulaneously satisfies the
required conditions (i) and (ii). The key problem was to exhibit an con-
venient upperbound for the number of possible reinitialisation of
8(t), in a given interval of time. The main conclusions are provided in

section 7. The appendix describes the proof of the robust stability theorem.

2. PROCESS AND CONTROL LAW : NOTATIDNS. EQUATIONS AND HYPOTHESES

First consider a deterministic, time invariant process, input u(t],
output y(t), which is equivalently described by the following equations
(2-1) to (2.3)

n n-1 n-1
d ﬁ + a, d = ¥_+ cee v 34 g%-+ ay = b1d ng1 * e v b, %% +bu  (2.1]
dt dt"” dt n
Als)y = Blslu . (2.2)

2(t) = ¢(t) e | (2.3)



where :

s is the differenciation operator

Als) = 8" + a8’ |+ Ll e a (2.4)
Bls) 2 b1sn_1 + e b (2.5)
n
2ty & 9Y (2.6)
dt"
n-1 | n-1
T A d v dy d u du
¢ (t) = —= .. 5 v | — «ve =7 U (2.7)
dtn 1 dt | gt" 1 dt
T | e m | 4 |
6 = 8y .- a1 ag | b1 bn_1 bh] (2.8)
|

A time-invariant control law is defined

n

Y Tete) + ky (£) (2.9)
n r’r
dt
where : yr.is the reference signal,

kr a scalar gain,

Ta _ ‘ o

k' = [}1 v Q : Py +es Pq (2.10)
Then, the control law can be written as

P(s) u = - Q(s)y + Kryr (2.11)

Nota : The feedback transfer Q(s)/P(s) is strictly proper (i.e.
qg = 0 in Q(s)), which yields more simplicity without appreciable loss
of generality. Similarly, one can introduce a polynomial Kr(s) instead

of kr(s). Moreover, the orders of A, B, C, D could be lower than n.



The closed loop equations are written

*either into the polynomial form :

1t
us]
~
<

(AP + BQ) vy

i
>
=

<

(AP + BQ) u.

*oither into the state form :

$ = F¢ + w

where :
oT [
.___.__l._l_____-_ :
1 ! 0
“..0p 0 :
F:A —__1—:_|-—__‘__ ’ we __.
kT k
r
B -
1 . | 0
o, "0 :
i L

In order to satisfy the required performances,

to 0, according to an application 4

2n

(2.12)

(2.13)

(2.14)

(2.15)

k and kr are adjusted



This adjustment law J¢ must at least satisfy

. Iﬁ(s] P(s) + B(s) Q(s) ] be an Hurwitz polynomial (2.18)

<

(for stability)

. ap, * ba, = b k. . (2.17)

(for zero static error)

All the classical control methods for linear systems lead to adjustment

°
laws which satisfy at least (2.16).

-

However, according to the control method, then it exists some constraints

on 6, for example :

- A(s) and B(s) must be coprime, when using all-pole placement,

- In addition, B(s) must be Hurwitz (minimum phase condition) for pole
and zero placement, or perfect model following, or minimum output variance,
- For any method : if A(s) and B(s) are not coprime, their common

factor must be Hurwitz. This necessary stabilizability condition is also

sufficient for various methods, such as Linear Quadratic optimization,

- In order to satisfy (2.17), bn must be non zero.

It follows that, for a given control method, 6 must belong to a
specified subset of the parametric space, i.e. an Admissible Domain
2n

DA C R
stabilizable domain, but is strictly included in it.

. For many adjustment laws o , DA do not reduce to the

In order to deal with concrete adaptive control problems, introduce

a set of properties, defining the admissible domains.



Let # an adjustment law, which yields k = k(8), and thus

= F(8) (from 2.15). A subspace D, is said to be admissible
with respect to cZ if there exists some positive constants
Qp, wp, My and Mp, such that, for any @ € D,, the following

P, -Pp and Py, properties hold :

I7cell < 2 (2.18)
PF i
R, (A;(8)) < =-wp<0 (2.19)
(AZ Ay v Ay, ¢ Eigenvalues of F(6))
P, & < M (2.20)
Il Fee,-Fre |l
Py, ¥e,, 6,€0, : Do ol $ Mg (2.21)
‘ 1 2
Comments :

*(2.18)is a simple boundedness condition

*(2.19) involves the asymptotic stability of F.

It could be added more restrictive conditions (pole damping or others) but

(2.19) is the strict minimum to be required.

*(2.20) will be associated with a boundedness hypothesis on Yy

* Finally, the continuity condition PD will be necessary when analysing

adaptive control systems, where 6 (or 6) becomes time-varying.




A basic example : pole placement control

An arbitrary Hurwitz polynomial is given

D(s) 4 SZn + d1 SZn—1 + ee. + d s +d

The roots ci(i=1, ..s 2n) are assumed to satisfy :

Retoi) NI (2.22)
and d2n # 0
Define k(0) as the solution of the diophantian equation :
A(s) P(s) + B(s) Q(s} = D(s)
which is equivalent to the linear system
S(e) k = d
where
— I - F - — -
1. 0. P 9
a"-. | b1 A : A .
S * ' t . = = '
S[e] é : . 1 —L . . O > k Dn r] d [2-23]
b —_ — - " —
an . ?1: bn. ?1 q1 .
-.l l ... .
i an, qu 9n d2n
Then J# is defined :
[ k(o) = s (e)d (2.24)
2 ap_ +bg d
= nn nn = -—2—.rl
krtel 5 - 5 (2.25)
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Now, it is proposed to define D, as follows

A
.26
lell « Ry (2.26)
eED, = llkeed || < Ry (2.27)
Ik (o] < M (2.28)
~J
where Re, Rk’ Mr are a priori given constants.

It is clear that D, is an admissible domain. In effect, for any 6 &€ DA :

A

* (2.26) and (2.27) imply the existence of a bound QF in (2.18)
* (2.22) implies (2.19) :

* from (2.24) and (2.25), it follows that k(6) components are some rational
fractions of 6, which denominators are not zero for any 6 satisfying (2.26)
and (2.27). Thus their derivatives are bounded for any 6 & Dpe MD exists

in (2.21).

N.B.2In (2.18) to (2.21), only the existence of the bounds

Q_, w

F Mn’ M- is reguired. In the example above,

F? D

* Mr‘is directly given

* Q_ can be deduced from the given R, and Rk

5]
will be more difficult to deduce from D(s), R

F

* M and Rk

D 6

* moreover, the exact shape of D, is practically impossible to deduce. It

A
is not convex, neither simply connected since the constraint (from 2.25, 2.28)

d2n
M
r

lb_| (2.29)

n

;
" at least divises it into two disconnected subspaces.



However the knowledge of the shape of DA will not be necessary in the
sequel. Similarly, the knowledge of the bounds QF' W s Mr’ MD could be
usefull in order to quantify the robustness of the given'control law J ,

but is not necessary for proving the existence of this robustness.

Finally, it will be necessary to introduce a strongly admissible domain

DSA’ based on the following assumptions :
- . . . .
DSA is strictly included into DA
* the distance § between ﬁ; and Dg, is non zero :
§ £ min lle, - e ll > o - (2.30)
61 e D A
6265. DA

In the case of pole placement, DSA will be similarly defined, from
. ’ ’ ’ .
some 'R 5 R K’ M .

' » ) ’
R <R, , R K < RK » M r < MP

The existence (not the Rnowledge] of 6§ is straightforward, . knowing
that k(8) is bounded and differenciable when 6 & DA'

From the above example, it is clear that most of the reasonable
control methods could exhibit similar properties : the admissible domain
will be preferably defined from some thresholds occuring in the imple- .
mentation of the method. It is obviously easier to determine the ad-
missibility of 6 from the norm of k(8), than from a direct measure (if

exists !) of the coprimeness of A(s) and B(s).
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In addition, DA will depend also from the a priori knowledge of

the considered class of process.

In some very specific problems, DA could be defined as a local
vicinity of an a priori given model. Then, the convexity hypothesis

could hold, but that will not be assumed in the sequel.

3. A THEOREM OF ROBUST STABILITY FOR SLOWLY TIME VARYING SYSTEMS

Reconsider now the state equétion'

X = F(x) + w

in which F and w do not necessarily exhibit the structure defined in

eq. (2.15).

Now, F(ti will be a function of time, and w(t) will include possible

model errors.

More precisely, it means that, x(t) beeing some function of time,
F(t) being some given model, either a priori given, either an identified

one, then w is now defined as the difference : w é X - Fx.

It is clear now that even if {Re[Ai(E)] $ - wF} for every t, the
stability is no longer assumed, unless HFII and Hw|| be "relatively
small”. Various upperbounds could be proposed for H%II and |lw|l. In
this section, such upperbounds will be selected, for their further

interest when dealing with robust stability in adaptive control.
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Theorem 1
Let x{t}, w(t), F(t) be some functions of time [dim.(an1], [an1),
and (annF)]. Assume that the following properties hold for every t,
tand T > 0 :
9X - F(t) x(t) + w(t) | (3.1)
dt :
l|x (0)]] is finite. (3.2)
There exist We and QF' positive constants, such that :
R, {21} ¢ w0 =12 .0 (3.3)
IFedl] ¢ o <= (3.4)
Assume also that :
t+T .
HE (o |
. dt ¢ + T1 (3.5)
K
2
et fwetd ||
dr T + T (3.8)
> 2
. M, * kxllx[t)H * kg E0E)
where &£(t) satisfies
0 ¢ E(0) ¢ = (3.7)
Tg E0) = - E(t) + ||xC0)|| (3.8)
and where
- T1, T2, Mw are some positive constants (possibly large)
- TE' Kd’ Kx’ kE are positive constants which depend on We and QF.

Then : x(t) is uniformly bounded.




For T_,

k
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kx' K., the following expressions are proposed :

g’ d’ £’
TE < Te (3.9)
T
hy § s (3.10)
2TF
T
1 F
k, ¢ -3 (3.11)
X 18TF TF
-
1 3
kK, & ==— == (3.12)
3
2 6T, T
" where
A n'f. 20, 2ne
TF = L (—) (3.13)
2mF W
A 1
T_ = —_ (3.14)
F o
Comments

The above expressions are not unique, and more efficient ones could be
possibly found. Obviously, they depend on certain arbitrary choice occuring
in the derivation of the proofs (see appendix), In concrete application
(3.10) to (3.14) show that Kd’ kx, KE could often be very small. That is
the price to be .aid for the generality of the hypotheses (3.1) to (3.8).

Under some additional constraints (damping coefficients of the complex
conjugate Ai' for example) Kd’ Kx’ kE could be larger. However, our present

interest does not lie in the robustness problem by itself, but in its

application to adaptive control.



From this point of view, we prefer to base our work upon a minimal

set of properties, like (3.3) and (3.4), for which :

x* kE exist

* the robustness involved by (3.5) - (3.6) can be guantified (at least

* the above non zero constants kd’ k

theoretically)
* the quantification depends only on some characteristics of F(t)

* the general form of (3.9) to (3.13) permits to inlight some general

connections beetwen the characteristics [mF, QF] and the robustness.

For example, if F(t) is the closed loop matrix (2.15), and if k(8) is
a control based on some "large gain principle”, then QF is large. The

robustness dependance can be analyzed via (3.39) to (3.14).

Consider now the feature of the upperbounds (3.5} and (3.8).

Taking T large, k, bounds the mean speed rate of F(t). Taking T — O,

d
T1 bounds the magnitude of jumpsF(t}. Then (3.5) permits continuous, but

slow change in F(t), and also large, but rare jumps.

Now, analyze how the bound (3.6) may cover unstructured model errors :

Assume an exact, Ne-order, non linear model f*(-),
x = f*{x]) + W (3.15)
where W is an exogeneous. bounded input
w1l < m, (3.16)
Now, F is a given model matrix. From (3.1}, w(t) is defined as

A

WS W, f*(x) - F x (3.17)
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If f£*(x) is weakly non linear, so that, for any x the following

(3.18) ineguality hold

£ 0x) = Fxll < K (3.18)

then (3.6) will be satisfied.

Consider now an exact model of order greater than ng.For simplicity
we reduce to the linear, deterministic case, where x(t) is assumed to

be the solution of an extended state, exact model

T Tl I (3.19)
' 2 Far ) Faz| | B
Then ; = Fx+ w (3.20)
where F is assumed to be the given model and w is the output of :
£ = Foy £+ Fpy X (3.21a)
W = F12 X (3.21b)
An other form of (3.21) is given by the convolution
wlt) = H(t) * x(t) (3.22)

where H(t) is the impulse response of the triplet {F22, F21, F12}

If F is exponentially stable, F .or F sufficiently small, there

22 12 21
exist T_ and k,_, such that
g £
—t/TE
HEED ¢« ke (3.23)
and then Hx(t]” < KE E(t) (3.24)

which satisfies (3.6) to (3.8)
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More generally (3.6) to (3.8) permit to handle unstructered model

errors, of the general form
wlt) = wlt, x(t) |t ¢ t) - (3.25)
It could be thought that the simple inequality
[l

M, K XM+ K &

< 1 (3.26)

could be sufficient for most of the robustness analysis, and (3.6} be an

academic refinement.

In fact, (3.6) will be really necessary for adaptive control analysig/
where F(t) results from an identified model. Then, w(t) depends on the
equation error, and will satisfy an integral inequality like (3.6).

Similarly, the identified 6(t) will satisfy an inequality like (3.5).

Finally, the above theorem will reveal itself as a basic "Technical
Lemma”, when analysing robust stability of indirect adaptive control

systems.

Proof of the theorem

The proof is detailed in appendix A. It is based on a Lyapunov type

approach, using the function :

WiE) = x (£) Z(t) x(t) + T, £2(t) (3.27)

where X(t) is the solution of the Lyapunov equation :

FTee) 5(t) + £(t) F(t) + 2T = O (3.28)
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According to the stability theory, (3.3) and (3.5) imply the

existence of upper and lower bounds :

I Yt) ¢TI | (3.29)

TF
The first part of the Appendix is devoted to deriving the explicit

forms (3.12) and (3.13) for T. and T..

F F

The second part concerns the relationship between E and F : it is

shown that
. o ot
NEI < =" NIFll (3.30)

Then, from (3.27) to (3.30), it is provedina third part that W(t) is

bounded.

4. AN IDENTIFICATION ALGORITHM ORIENTED TOWARD ADAPTIVE CONTROL

In the passive approach, the inputs are not necessarily persistingly
exciting. Thus, it is unrealistic to aim at tracking some "exact” model

e*(t).

The only reasonable goal is to reduce the magnitude of the equation
error :

A

vit) 2 zee) - o7 ct) B(t)

and the speed :

ue>
Q
@D
—
o+
A

o(t)
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Both must be "relatively” small for the model to be usable.

Clearly, it will be interesting to bound v(t) and 6(t} by some
expressions in connection with inequalities (3.5) and (3.8), arizing

in the robustness theorem.

Fortunately, classical algorithms, such as continuous-time

Least-Squares algorithm, directly satisfy such inequalities.

However, L.S. must be slightly modified in order to satisfy some

additionnal requirements :
- 6(t) must be kept bounded

- the real process may be noisy, slowly time varying, weakly non linear,

and underestimated order

~ the algorithm must be Least-Squares type, not only gradient type. In

other words, a significant "variance covariance” matrix P must exist
- upper bound and lower bound over P must exist
- the identified model must be admissible, i.e. at least stabilizable

- in order to solve the stabilizability problem (see §5), the pair
0(t), P(t) is required to define a certainly domain around 6(t)

- all that must be obtained without prejudice to inequalities over
v(t) and 8(t).

In this paper, we present only, as a characteristic example, an
algorithm which satisfies all the required conditiocns. One can imagine
possible variations, alghough the above conditions are not straight-forward

to meet together.

Define first the process to be identified,control input u(t),
output y(t).
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Assume that there exists some vector 8*(t), so called "nominal” or

"hest model”, and denote v(t) the equation error :

vit) 8 ZzeE) - ¢T ) e*(t)

where z(t) and ¢(t) are defined above (2.6), (2.7]).

Some constants o, P, e, B are given, such that :

ni
~ e~
ctfct
At B
/~

where s(t) LR rl| o] + o w(t)
¥(t) beeing solution of
P o= - BlYlt) - |letd|]) (0 ¢ p(0) ¢ =)

]]é(t]|| is bounded by a given R :

2
le*l| « R?

For further simplification the bound for lle*]| is defined as

follows : a positive a is given, such that :

2 R2r2

R2+P2

le*l| <

(4.1)

(4.2)

{4.3)

(4.4)

(4.5)

(4.6)

Remarks

* From (4.2), (4.3), (4.4), the process can be non linear, and underestimated

order.

* (4.5) defines an & priori, spheric domain. One can consider an-ellipsoidal

domain centered around any given eN :

. T ) 2
(6* - 8, ) QO* - B ) < R

(4.7
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Where Q is non singular, factorizable into :

9-=5's (4.8)
(4.1) can be rewritten as A
vit) = |ze)-pTey | - lo's™1| |sce*-8y) | (4.9)
Then replace” . z by (z - ¢T6N]
¢T by ¢TS-1

* * L
6* by S(6* - §,)
The new 6* satisfies now (4.5)

* Note that the given constant r plays a role in the inequalities on v(t)
and on 6*(t) (cf. (4.5) and (4.6)). Thus for a linear, but time varying
system, r could be zero from (4.5) but not from (4.6).

Then, from the given o, r, e, B, r, a, the following identification algorithm
is proposed

8lt) = o (P(t) ¢(¢) AEL_ . PIE) BCE) 2 (4.10)
s (t) R
: -PCt) $(t) $(t)PCE) P(t)?
P{t) = af > + P(t) - > N (4.11)
s4(t) R
with lle (o]} <R ‘ (4.12)
2
P(0) = R°I (4.13)
where vit) & 2t) - oTee) oce) (4.14)
s(t) is defined above (4.3), (4.4) ,
and where A =0 1if “é|| ¢ R (4.15)
A =1 1f |[8]] <R (4.16)
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Comments

- The above algorithm could be compared with the exponentialled wheighted
L.S., which are given by

-~

e

Powv (4.17)

0
n

Pé ¢Tp + aP (4.18)
The differences first concern the factor a/52 on P¢v and p¢¢TP.

In connection with %he hypotheses (4.2) to (4.6), this factor will permit

to derive a certainty domain from the pair (6,P), and also the desired

inequalities bounding v and 6.

Remarks that o Cén be zero in 4.18 (no forgetting) but not in
(4.10), (4.11). That will be the price of the certainty domain (4.25). On the
other hand, the additional terms PeA/R® and P?/R® work in association in
order to bound é and P.

The algorithm (4.10) to (4.16), under the hypotheses (4.1) to (4.6)
exhibits the following properties.

Property 1 : P is bounded

R2 r2 . .
P(t) y — > I (4.19)
R®™ + R
2
P(t) ¢ RI (4.20)
Proof
A o1
Denote M(t) = P '(t) (4.21)

wich yield from(4.11):

. T
S YO
M=a =z M- = (4.22)
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Let a be any constant vector, and U(t) 4 aTMa

. T, 2 .
From (4.22) : U = o (&) - U+ [[a)“/R

2 2 2
P ail 1lsll [EMl
From (4.3) : [—E—J K¢ 5 & >
G orlloll +ow® T
2 . 2 2
. llall Uy lall®  llall
Thus @ - + = & + +
R2 N oo R2 r2 \
2 2 2 2
\ou & UC) llail liall ( lall= el
ow ¢ = » +
R2 RZ R2 r2

When U(t) rise the upper bound of the above interval, U(t)} becomes non

. positive. Thus U(t) cannot cross over the bound. Idem for the lower

bound.

Thus, (4.18) and (4.20) are proved, via :

My I/R® (4.23)
me1s v L (4.24)
7
R r

Comments

Clearly, the term R2/I, in (4.11), ‘prevents the possible divergence

of P, when using exponential forgetting.

On the other hand, if ¢(t) is not bounded, P could be infinitely
small in the ordinary L.S. (4.17, 4.18). A first advantage of the
normalization involved by r2H¢I| in &2 (cf. 4.3} is to yield the lower

bound (4.19]).



- 25 -

Existence of a non trivial certainty ellipsoid :

Property 2 :
(6 - 6*) P (6 - 6*) ¢ 16 (4.25)
Proof
define L85 - o (4.26a)
vagT e 1y (4.26b)
by differenciation, using (4.18)
V=8 mg 28" P o - 0%
Then, from (4.22) and (4.10)
v o 8T )2 At v, 88
A R
o 2 2
s R
Y 2 _ 2
+2’8T¢L_2>\'5Te_2'é' Pe ., - v
2 a 2
S s
Thus
2 AT o AT 2 8T 2
Vo . B8, Ty B2 gy ey
o, 2 2 2
s R S
1" *
Z’é'T _p 1e (4.27)
o
consider that (gT ¢ +v) = (6 - G*JT ¢ + (z - ¢T6) =z - ¢Te* = v
thus
y 2 AT - 2 -1 *
-‘1+L-—v+(38—2x'¥e)+"———2§—1——9—— (4.28)
o 2 RZ 82 a
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Now, consider the following terms of the second member of 4.28 :

e
P8 AT %
S2-218 o¢a |

In effect
- 1f |||l < R, then A =0

Then lell < llell + ll6*]] ¢ 2R, which yields (4.29)

-1+ |8] 2R, then A = 1and. .

n_
T N, o n LA VI, - - -
000 a8 6. [670-206+6"d-6" 5]
2 2
RS R
ot TS
R R
s o 6l o*
R
< 1, which yields again (4.29) a
= = = =
L2 \
(11}  from hypothesis (4.2) | 7 S 4,
-8 . _ a
CTL T T T
- . i
(111) PP L BV ,
| o \
e o e — — Y |

(4.29)

(4.30)

(4.31)
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Then, using (4.26b), (4.24), and (4.8) :

v g . 2 2
o'l es| s Vv ,fllewlz‘*"; sa/V Qg
r

R2
By substitution of (4.28), (4.20) and (4.31) into (4.28)

. 2 :
LS s-veasar2/V | (4.32)
o S : T .
which yield
V- (V-2/V-8) =~ (/V-4) (/V'+2) 4 . (4.33) -
o : _

Thus V becomes negative for N > 4. Knowing that 0 ¢ V(0) ¢ 16, it
follows that V is always lower than 18.

Comments

(4.25) defines a continuity domain arround 6, which is not trivial,

In other related works, similar equality arises, such as

P VY,
¢V

Where Vy is deduced from the upper bounds of ife*|]. llel|l, and P71, so

that the above certainty domain be trivial, including the given a priori
domain ||e*]| < R? |

In our case, VM is independant of all the other parameters [VM = 16),
and the lower bound of P may be very small, if r2 < RZ. Thus if P becomes
small, the certainty domain may be reduced to a very little subspace of

a priori domain.
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Property 3 : & 1s bounded by -
(4.34)

lefl ¢ 5 R

%1, 1t follows |[6- 8*|| ¢ 4 R

In effect, from (4.25), where P ¢ R
and from ||6*]] ¢ R, it yields (4.34)

an inequality for v.

Property 4 :
For any positivé tand T
t+T
v2 1
—5 dt & 16 (T+=) (4.35)
t S
Proof

Recall (4,32),1in which A/ ¢ 4, it yields

v2
S

i<

Then, by integration :

2

t+T 2 .
I Y __dt S 18T
t s

V(t + T) - V(t)
o

wich yields[4.35],using 0 ¢ VIt) and V(t+T) ¢ 16

Property 5 : an inequality for aftl

For any positive t and T
( 4.36)

teT 2
I el ¢t s 18 Y Ra (T+ 1/a)
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Proof
From (4.10) fof| < |-224 Y | « 252 ( 4.37)
s R
where el s R? , Hélls 5R
Thus
t+T : t+T t+T
I | 6]l dt s I I —°‘f-2—¢—"—|| dt + J SRa dT (4.38)
t t- s t
Consider the term ||_g_f_g_lL” =»”_2_E_i; ” | > |
2
s s s
Applying the Sch@artz inequality
t+T | 2 t+T
P P 2
I R IS R N
t s s t s
t+T '
J | 1%t (4.39)
t s
On the other hand
Py 2 Pog P P2 p
=20 = 70 52"y = Tr (P - - ) (from 4.11)
s s R V]

$ Tr (R - )
a
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Thus

jt+T 2 ar s vr R%1) T + JE[P8I] - Tr[Pct « ]
S a

2
STrRPD) T« JERD L2, 1
¢ ) r a

I beeing the 2n-unit matrix : Tr(I) = 2n

Thus

t+T '
f |2 P ¢t s 2n RZ (T + 1/a)
t s ,

Then substitute (4.35) and (4.40) into (4.39)

t+T 2
j II-———O'PZwVHdT S 32n a? R (T + =2
t ] o

Using (4.38)

t+T .
[ Weler s /mRana Ly san
t a

S (/32n + S) a RT + v 32n R

I

S (V32n + 5) & R(T + —)
knowing that o

v32n +5 S (V32 +5)vVn < 15 ¥ n, (because n » 1)
thus (4.38) is proved.

(4.40)

(4.41)

(4,42)
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5. ROBUST STABILITY OF AN ADAPTIVE CONTROL, ASSUMING THE STABILIZABILITY
OF THE IDENTIFIED MODEL

The robust stability results from the following theorem.

THEOREME 2

Let gb a pracess, parameters'e*[t) satisfying (4.1) to (4.6).
Let 6(t) the identified parameters, identified by (4.10} to (4.15).

Assume (asa temporary extra-hypothesis), that 8(t) is admissible, for

every t, with respect to the given adjustment law A& , the admissible domain
beeing defined by (2.18) to (2.21).

Then the closed loop system is uniformly stable if :

where TF’ kx' K

a >0

1s/F\F§a § ky/M
4V/2r &k

4 V2 p LY
1/8 ¢ T

k. are defined in (3.9) to (3.13).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

g’ d
Proof
Let : .
- 8 (t) ~
T - T = T -
\\ '
A A . | 0 A 0
X = ¢, = ‘1 0' W =
————— '—- — — a—
T -— -
K
_____ © ka(81y,
|1 - = =
0 N 0
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Then

- x, F and w satisfy (3.1)

- assuming ||¢(0)|| finite yields (3.2)

6[t] being admissible, (2.18) and (2.18) yields (3.3) and (3.4)
note g 4 ¥, define TE = 1/8, then (3.7) and (3.8) are satisfied

From (2.21), 6 being admissible :

el s Mo Iléll (5.7)

Then.(3.35]becomeé

teT g 2 M teT
J Iell ¢ g0 I o]l ar
t kd kn t

From (3.36)

teT gy - M
f I S—2 16/ maR (T +—

t kd | kD (]

From (5.2), it yields now (3.5) with T1 = 1/a, which isfipite from (5.1).
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From definitions (5.6), it follows

1 k2 yZ

2 .2
, + ko Ixlls kg 87,k ol kg W)
using (5.3) and (5.4)
2 2

2
M Vit Y

) :
m, kol kg £)2 m, + a2l Wil « 4T W)

A
-

0 beeing admissible

Define Yr as the maximum value of yr(t]

2
Yp (t) <,Y12, ¢ »

r

Then define

M 2/ T+ M_Y) ¢ w
w r r
It follows

2 2
1| wif My E e v
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Now, by integration, using (4.34) :

t+T I|W||2 dt

2\(%+;—[T+%]=T+_—
t (Mw+kx||x|| * kg £)

Defining T2_= 1/20 < o, 1inequality (3.6) is satisfied.

Now, all the necessary conditions of the robustness theorem are

satisfied, thus the stability is proved.

Comments

In (5.2} to (5.5) the first members of the inequalities concern the
model of the processP(noise, model errors, rate of variation}, which are
related with the design parameters of the identification algorithm. The
second members concern the closed loop system characteristics [wF, QF), wich

are related with the chosen adjustment law &% .

To some extent, kd, kx, Kg are the measure of the intrinsec robustness
of A& . It follows also that & must be as continuous as possible, in order

to yield 1/njlarge.

kys Kyo Kg’ Md beeing now assumed given, (5.2) to (5.4) impose o, r, p
to be small. Then (4.2) to (4.8) bound the non linearities, the unmodelled
%

dynamics components in v, and the magnitude of 8 .

Note that a, r, p will be generally very small, but TF being large, slow
unmodelled'dynamics are permitted by (5.5).

[

Moreover, ¢ is not constrained : it must be only finite. It means that

large bounded disturbances do not entail the stability.
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Moreover, if the process is strictly 1inea5 time, invariant, exactly

known model order, the adaptive contrel will be stable, even for r and

p = 0.

It yields that the normalization (by s = o + r|¢]l + ellv]l) and the

2.2
r R } vanish.

lower bound (P y I
r+R

Thus, normalization and lower bound of p are not necessary features

in the strictly linear, time-invariant case.

6. SOLVING THE STABILIZABILITY PROBLEM

The above theorem (§5) locally solves the stabilizability problem. In
effect, if the a priori domain (4.7) is sufficiently small, and is included

in the admissible domain, then 6(t) will remain continously admissible.

However, in most cases, the a priori domain is large, and includes non

admissible areas.

Then, if é(t) reach a nonadmissible area, it is necessary to do something,
.8,

i) to constrain 8(t] into the admissible domain, by means of some
amendement of the above identification algorithm. Notice that it could be
very difficult if DA has a complex shape, and if ithis not simply connected.
Then jumps are to be emphasized, because 6*(0) and 6(0) are not necessarily

in a same connected area.

ii) an other solution consists in waiting for the emergence of 6(t)
from the -non admissible domain (ﬁA]. However if there is no persistingly

exciting inputs, 6(t) can stay indefinitely in'ﬁk.
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iii) even if 8[t]‘is transientely allowed to enter in DA' it is ?t least
necessary to freeze k(0), in order to avoid unreasonable valuss of k(6} and/or
ult). Then, it can be said that the model from which k is adjusted can be
different of the identified model. This principle was already used in the

past (e.g. in "cautious control”).

The same principle is applied here, under the following form :

the equations of 6 beeing unmodified, then a distinct model a(t) is

defined, from 5(t), such that 6(t) be always admissible, and satisfy the
desired inequatities.

Define 8(t) as the solution of

.
«©

T=aPp % + T o(t-t,) A | (6.1)
2 i i
S i=0
where :
. 9(0) = 8(0) € Dy
a- ® Glé z - ¢T€
. The instant times ti in {6.1) are those where
8(t) reaches the frontiers of DA
. §(t-t,) 1is the Dirac pulse, at time ty

ne>

. Ai ETt;) - Ett;] is an arbitrary jump, such that
E(t;] belongsthe intersection of the strongly admissible domain D
(see end of §2), with an ellipsoid E[ti) centered over e[til. and

defined as :

SA

(e et} e {Jlo- ot % < 16} (6.2)
P |

t1]

where 6(t) and P(t) result from the above identification algoritﬂm
(4.10) to (4.15).
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The hypotheses on the process 79 are the following

- the assumptions of §4 (eq. (4.1} to (4.8))

- moreover, assume that 6*(t) is strictly included in DSA for every

t (Fig.6.1)

Min lexct)- o]l 22> 0
t %0, 86& D,

- assume that § (see 2.30) satisfies

- and that

s 0, = |leoff ¢ R

(6.3)

(6.4)

(6.5)

WA

Admissible
domain Da

)

///

\

////////

Strong]y admissible

///omam Dsa ///

Fig.6.1: The admissible and strongly admissible domains

A _

Non stabilizable subspace (in the strict sense):
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First, notice that the intersection DFA N E(ti] exists, since it
includes at least 6*(ti] (from (6.5}, and (4.22) to (4.24)).

Then, a typical trajectory looks like 6(t) on figure 6.2

é(t;J )
A 6t
Bct) ' 0
é(tzJ 2A
A3 9(t1*1)
A
2 " —
D
8et,) A
8(t,) ?ft;l
i | A\

5 /
‘. -
8(0) S, 6(t+T)
8(t,)

Figure 6.2 : A typical trajectory 6(t)
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—_  +
Consider now the search problem for a reinitialization Otti].

. ~ —+_",
If it occurs that G(ti) I~ DFA' simply take e[ti] = B[ti).

If e[ti)gi DFA' recall that :

- T(ti] is bounded (4.20)

- e[ti) is bounded (4.34)

e*(ti] is strictly included in E(ti] - {6.2)
(bounded, from (6.5))

Oea € DA

SA

(=

Fi ) : f N
gure B3 e[tll e DSA

From examination of the worst case in a figure like (Fig.6.3), it follows

that there existsa non zero lower bound for the following ratio :

Volume of E[ti] n DFA(dashed]
Ratio = yR >0
total volume of E[ti]
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In the limit, Rm approaches unity if BA and BFA approach the strictly

non stabilizable domain, whose measure is zero (Fig.6.13}.
Then, one can design some search algorithm for Elt;).

In the general case where the shape of DFA is complex and unknown,
a simple way lies in implementing a random search, defining

1/

~— + -~ ) 2
BE,) = oty ) + P OoCt,) y (6.6)

1/

where P 2 is a factorization of P, and y a random vector, uniformly

distributed inteo the radius-4-sphere.

From the existence of Rm, it follows that the expected number of
trials will be finite (mean of a Bernouilli variablel}, and if Rm approaches

unity, this number willalso approach unity.

Of course, anyone can imagine more sophisticated procedures. However,
such procedures must succeed without any e*ception (even if jumps across. D,
reveals necessary). In fact, systematic procedures may sometimes decieve
due to some unexpected case, so that a random choice can be the most cautious

way.

Main properties of the algorithm

a) Consider again the figure (6.2) and define N(t, t+T) as the number
of jumps between t an t+T. Define also D(t, t+T) as the length of the
trajectory of 8(t), excluding jumps (heavy line on figure 6.2).

From the definition of the distance §, and the localization of Eft;] and

) (t;] (respectively on the frontier of D_ , and into QA]’ it is clear that :

A

D(t, te+T) » [N(t.t+T] - 1] § (6.7)
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b) define now
Ve £ 8- el

At an instant time t+ ETt;] satisfies

i)
| 8cey ) - 8ee )11 24 s 16
| : PT(t)
and from (4.25)
Cllece,) - erce ] 2q S 16 (&g, (4.25))
P (t)

thus

V(ti') $ 4x16 = 64

+

Similarly to the proof of (4.24), from ti

follows :

V(t) S 64 for every t

c) Using (6.10),and similarly with (4.35)

2

( )
1 s

Then, if N reinitializations occur between t and t+T

1
drs64 [t -t +—]

—_—
ct ot
+ -
+
—
|

toT =
J (—>—% gt s g4 [T 221
t s | a

d) From (6.1),D(t, t+T) is given by

teT v
n(t.t+Tl=J loPo I dt

t 52

as initial time,

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)
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Then; from {4.40), (6.12) and the Schwartz inequality

p’tt, t + ) Sl 2n RE(T + ) L ga [T+ 21 (6.13
a ' o
Using (6.7)
(N-12682 S 128n R (T + 1) (aT + N + 1)
Now, definé
2
128
N, & 128 R (6.14)
8
It follows
2
(N - 1) < NOIaT+1] (N=-1+aT + 2)
Thus
N - 12 g Ny@@T + 1) (N = 1) + Nj@T + 1) (oT + 2) (6.15)

For simplicity, the last term is bounded using N0 > 1 (from 6.4) and
aT<2aT

2

| 2
Ng@T + 1)@T + 2) s Ny [Ny@T + (2T + 2] =2 N“@T + 1)

(6.15) becomes

(v - 1% - NylaT « DN - 1) - 28 %aT + 1) 5 o

By factorization

[iN-1 + NylaT + 1) ] [(N-1)-2N0(aT+1]] S0
Thus |

- ND(aT +1) S(N-1) 8 ZNO(aT + 1)
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and thus

N(t, t +T) S 1+2N0(C¢T+1)

This key result provides a bound of the possible number of
reinitialization between times t and t+7T

Now, it will be easy to bound 32 and B(t).

e) Substituting (6.16) into (6.12)

£eT G2 | 1 +'§N0[dr 1)+ 1
— dts64 [T
t s o
} 2 1
=64 [T » ¢ 2Ny (T + — ]
) a a
sea (21 2 v r e 1)
a : a
Define
N1 = Nj + 1
It follows
teT 32 4
— dtr S 128 N_(T + )
1
t s o
to be compared with (4.35) : ... S 16(T + L )
- o

) Similarly, from (6.16) and (6.13)

0%(t, t + T) S a2 2n R2(T + 1].128N1(T+ 1,
[s 3 o
From (6.15)
2 2 2
128n R® = Ny 8% s N, 8
Thus
'__————-——_

i

|
bDee, £+ T) S 208 N (T« —)
I o '

— o - e e e e .
_— e - -

(6.16)

(6.17)

(6.18)

(6.19)
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On the other hand, the jumps satisfy ||AiH $2R (from 6.5}. It follows
the bound for the whole length (now including jumps).

IIel] dt ¢ D(t,t+T) + 2R N(t,t+T) (6.20)

t+T

Transform using (6.16) énd (6.19)

t+T .
It Ie]l dr « 2a Ny (T + %) + 2R(1+2Ng(aT+1))

For simplicity, introduce § ¢ R, and(1 + N0(1+aT]) ¢ 2Ny (1+aT)
{from 6.17). It follows ’

t+T 1
8 dt & BN, a R(T + =) (6.21)
o
t

1

to be compared with (4.37).

Now, from the new inequatities (6.18) and (6.2), the robustness theorem

applies again, and leads easily to the following thecrem :

Theorem 3

Let T the process. The parameters 6*(t) satisfy (4.1} to (4.6) and (8.3)
to (6.5), where the domains DA and DSA are related to some given adjustment law
satisfying (3.3), (3.4).

The identified model is given by (6.1).
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Then, the closed loop system is globally uniformly stable if :

a >0 (6.22)
4N1 o R ¢ Kd/Md (6.23)
186N, r ¢ k (6.24)
1 X
1f3/|\T1 p < ke (6.25)
1/8 & TF (6.26}
where
2
N, & DRy (6.27)
2
§
and where TF’ kx, kg’ kd are defined by (3.9) to (3.19)

Comments

From ineﬁualities (6.23) to (B6.25), robustness is clearely reduced,

due to the number N1 (eq. 6.27), in which R/$§ is necessarily large.

More‘precisely, for a given process, o, o, T, p, R,are to be defined
from the level of noise, non-linearities, under_modellization, and the rate

of time variations, but not from (6.23) to (6.25).

The reason is that the existence of 6 depends on the existence of the

non empty subspace Dgp N E(t;).

Thus, the above data (o, o, r, p, R) must be defined from the best

avaliable prior knowledges.
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Now, consider that 6 is introduced in order to ensure the existence
of the upper-bound (6.18) for N(t, t+T), even in the worst imaginable case.
It follows that transgressing (6.23) to (6.25) fortunately does not implies
unstability.

An other interpretation of the conditions (6.22) to (6.25) is that for
a given indirect adaptive control, defined from non zero coefficients a, r, p.
There exist a non empty class of veakly undermodelized and time varying pro-

cesses, for which stability is ensured.

7. CONCLUSIONS

The main contributions of the paper are the following :

First, a theorem of robust stability is provided, dealing with weakly
undermodelized systems (dynamics and non-linearities). This theorem belongs
to the so called "small gain” family. As an original feature, it may deal

also with slowly time varying systems.

Moreover, the given upper bounds are possibly‘satisfied not only by
the "exact” models of the. processes, but by the classically identified models

(typically R.L.S. algorithms).

It follows that the above theorem plays the role of a basic technical

Lemma, when analyzing indirect adaptive control systems.

If assuming the identified model be stabilizable for every time, the
application of the theorem is rather easy and our results are not really

stronger than those of PRALY [14], from which ours are derived.

The main resemblance lies in signals normalization by 1/H¢|l, but
there are some differences in the way for bounding 6 and P. Moreover, we

are dealing with adaptive control of slowly time varying systems.
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Then, we proposed, just as a prototype, an identification algorithm
satisfying the conditions which are required for applying the robustness
theorem. Among other properties, the pair 6, P defines a certainty
ellipsoid around 6. This domain is non-trivial, in the following sense :
if P becomes small, the domain really reduce to a small domain (better than

the given a priori knowledges).

The existence of this certainty domain already is, by itself,an usefull
property. Moreovef, it is the basis for producing a new model Bt),
distinct from 6(t), which is not only stabilizable for every t, but also

satisfies the required conditions when applying the robustness theorem.

Up to now, the proof concerns only one "prototypical” identification
algorithm. However, the main feature of this algorithm are rather common,

and generalizations will be provided in the next  future.

The only goal of this paper was to prove the existence of some fair

solution to globally stable adaptive control in the purely passive approach.

- Obviously, it remains thrue that exciting imputs are a propitious
factor for identification, and then for adaptive control. However it is
very important to clain that exciting imputs are not a necessary condition

Y

for robust overall stability of adaptive control.
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APPENDIX

PROOF OF THE ROBUSTNESS THEOREM

First part

Lemma 1

Let X be the symmetric solution of
FTZ + LF + 21 =0

where F satisfies the properties PF :

HEXEE
< -
RE(Ai) S - owe <0
'Then :
I s TF I
>
I 2 ‘[‘F I
Where :
2 2n
F
ZwF wF J
‘[F = .._1—._
Q

A.1

A.2

A.3

A.4

A.5

A.6

A.7
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Proof

-1} For any eigenvector Py of F :

| - Il pi” ) e eyl < Max LFall & | Fi
e

‘ 9% 0 q
A Il e, I I all
Thus, from (A.2)
| <o | - A.8

ii) Let a(s) be the characteristic polynomial of F :

_1 ‘
A nF nF = - --x eee [s = k ]
a(s) = s+ as +oae. * anF (s k1)(s 2] e
Then :
n
F 1 }
a,l= || | sn_Q. =¢C Q
I 1 121 M FF ne F
Y A A s &2 a2
layl= 11 1 A2y n. F.
i=1j=1 F
’ n-1 n-1
Ian-1 l s Cn 'QF
F
n
<
lanFl = QF )
‘o 1 1
iii) lets consider a factor —— of ——=
s—Ag als)
2 2 2 2 2
where A;= a;+ jB, a% + B =_lkd < QF S a2 We
then 1 5 = ; 5
|30 - Af (w -8 +a
and obvioysly :
|~ — = == — — — = /== ' ,
2
' l-—i—\ s ; s 12 : A.11
' Jw - At o w i )
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there exists also y satisfying
T 8
(w-B)+a A2+ o?

vy must satisfy :
y[(w - 837 +a12] - lxilz—wz 2 0

which yields

2 2.2, 1412 _,2
Ylw® - 28w+ B ag) - A7 - w

(Y - Dw - 2Byw + (y - 1) Ikdz
which is always satisfied for

By = (y-1) I)\i!

Thus :
Y S o
I -8l ,
Other form : Y = léd (A + |8l M+ IM |84
2 - 2
(I - 180 ] + [8)) N2 -8f
o2 2
IMZ s I JBd | 2™ %
2 Y2 7
o “i wF
Finally : _ _ _ _ _ _ _ _ o __ __
: 02 202 I
I 1 2 F < I
o -l _ai ﬂxdz v 02) w2 (2 2|
i e
An upper bound of , o - KL
- - - - - - - - - - 7
| w 2 < deZ QF '
! , XJ L s
R S . I
iv]) Prove that
|= = ~— - — e —— e e —— o - m— o mm— m— — o— .
| L 1 :
| et -0 s 2B F ' 2:
| 2 w W o+ W
F F |

‘A.12

I can also be easily verified :

A.13

A.14
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Proof V

First, verify that

n_-1 n_-2
(s1 - ) =1 (& " a,s e va o8 +a I
a(s) e F
nF-2 nF-3
+ (s +a,s + ... *+ A JF
1 n--2

. F
. ©on_-=2
+ (s + a1] F F
fF ) A5

(by multiplication of (A.15) by (sI-F) and using the Caley-Hamilton theorem :
n n_-1

FF+ a, Fl 4 ... +a I=0)

Then, using (A.2), (A.10), (A.15), it follows

n_-1
_ n_-1 1 n_-2 n_-1
ot - ©37 Y s |2 x (ol T +c ool «..vc aF
n F .n F
a(jw) F F
n_-2 n_- -2 n_-1
F 1 2l F F F
+ Qo] T o+ QFImI ter 0
: . n_-1
n_-2 1 F
+ Q. F° Jo| vc a
- F
n_-1 '
+ Q F A.16
consider any term of (A.16) defined as :
-1-1
1 n
a 2 1 l X Qe lw] ©
i . .
a(jw)
éi can be_rewritten into
" Q 93
N =P—~—E———x SV i Ix [ n[“' X eee X Alwl x [ L
le - )‘1 ' le - )‘i‘ lJU) - )‘i+1| ljw"an_1| ij-anl
Then, from (A.11), (A.12)and (A.13) i
2. Q. m_-1-i Q 2
a, s (=t 9 F T T — 5 )
W We _ We, Wt w
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From which :

Thus, (A.18) becomes

12
B n--1
1+C + .. * Cn
0 2nF e F
F 2
N2 g () e 1 n
l(jwz - FY | N w.l + w? +1 +C 4+ ... +CF-2 A.17
F F nF nF
+ 1 + C1
F
+ 1
L J
The last factor is given by
n n n
2
(—— (1 + '+ 2 +...+c:‘ sl —2F
2 e TF F 2
Thus (A.17) becomes (A.14)
2 2n
- n 2Q F
lgur - £ 2s 26 (TE =
4 LUF, wF +w
(v) " End of proving (A.4) and (A.5)
Recall that if
PF +FIP +Q =0 A.18
where F is asymptotically stable and Q is a symetric matrix
(positive definite or not), then
Fr F :
P = f” e T Qe Tt A.19
70
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Ft : - .
On the other hand, the Fourier transform of e is (jwI-F) 1,»them, applying
the Parseval inequality : '

T
L =2 j” eF T BFT dr = 2 f” (jwI - F) T(JmI - F) 1 g?
(8] o

Then

+00

R R
-00

27

Recall that -

+00
2 1 dw - 1
2 2
- wF + W 2% W,

Thus, using (A.14)

n 20 F
F
Izl < (

ZwF mF

which proves (A.4) and (A.6)

(vi) Proof of (A.5) and (A.7)

Let £(t) be a solution of £ = FE, and define E 2 &' &
Then E = ZCT FC :

and €l s 2l zlf IIFll s 2 EQ.

Thus -229 S E S 2 Q.

By integration of the above inequality

S 20t -2 t
e)2E@e - = Jlzmlfe T

A last integration gives

r-E‘” w » Alz@]f

0 ' ZQF



- 56 -

On the other hand

.
Et) = o) [ et ) g(o)

From [A.1B] and (A.19)
f: E(t) dt = 2(0)7 -2 z(o)
2

Thus, for any £(0)

£'(0) L z(o) s Ao
Q
F

which proves (A.5), (A.7)

Second Part

Lemma 2

Now, F is assumed to be time varying, then, the solution of (A.1) becomes Z(t)

FTCE)Z(t) + L(t)F(t) + 2I = O A.20

Assume that QF and wg are constants in (A.2), (A.3).
Then (A.4), (A.5) are true for all t, and :

Iz s 2T§ el A.21

Proof
By differenciation of (A.20)

Fl L ZF+ (Fl g+ 3F) =0

}

Apply (A.18), (A.18) with P = Zand Q = (F' 5 + £ )
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. T . . T
Z=JmeF‘“T[Fulzn1+zu1Fn)JeF‘“Tdr
o |

Then

A

. . T

Flt F
151 s 2lERiel [ & o e
- . o

- z “ 2 ,
2 fll L)zl Il-:;— s |IFll Te (from (A.4))

L7a)

Third part

Introduce the following positive function :

ne>

Wit) 2 xT(t) E0t) x(t) + T, E2(t) A.22

13

By differenciation, using (3.1) and (3.8)
. T . T
W=x Ix +2x ZL(Fx +w) - 2(§ - || x]p &

Using (A.1) :

W=x Ix+2xZw- 2xx - 2e% 2|l x| &
8
= xIx ¢ 2x'mw - x'x - E2 - [ | x|F+€% - 2| x|l €]
2
T T, & :
where - xTx - 52 g - X x . _§ (From (A.4) and (3.8))
T T
use again (A.22) :
- - - - - - -7 —
LW o§ X Ix + | 2x" Ew | - L : A.23
| T |
| F
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» consider now the first term XTZX of (A.23) :

From (A.21), (A.5), (A.22), it follows :

-2
. . T . T .
ox s | xIf T2 F s 2B I El s —— wllFl
TF : TF
and, from (3.10)
L
l .
X Ex § — el : A.24
| 2T 3
S s -

* Then consider XTZW. From the Schwartz inequality :

MUV IP LIPS

From (A.22) and (A.4) :

Tl s Vw Sl s /T el A.25
' M

where A
a A.26
MiE) =M+ ok ke ||+ kg ECt)
From (A.5) :
Ty
M s M + K X X + Kk 2
W X T 3
F
From (A.22) :
K K
MoS Mo+ (=X s 5 ) VW
W T /f?gﬂ

Then, (A.25) becomes :

_T—"
T T | F W
Ix'zul s [ /T M, /W k, * —;——kEJW]"M I
£ g
and from (3.11} and {3.12)
T . :
" .
‘ 2|x Tw| < [ 2v Tem VW ! wl 1=l : A.27
. w
4T _ M ,
|

| . m — ——
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Now, from (A.23), (A.24) and (A.27])

) . 2VT_ M
5—1 + 1 ”F” + ( Fw+ 1 ]”w"
TF ZTF kd v W 4TF M
Define WD as :

A 2
Wy = Max { woy , (8T, /‘ Te M) }

and ty a. time t (if it exists) such that W[tO] = W..

'fhen, as lohg as W(t) » WU’ it yields
AZ/TFMW L
vV W 4TF
and A.28 becomes
W S _ 1, + 1 ”F” . 1 “ w ”
W TF. 2TF kd 2TF M

Apply the Schwartz inequality :

t+T " 2 t+T w t+T
2w [ P 1 e
It M t M t
From (3.6)
t+T w 2 ' )
[I' |2 || dr] s (T +T )T (S5 (T +T)9)
t M 2 2

°

'%hus

ST ,
j 12 flor s 7T,
S dy T m

By integration of (A.29), using (3.5} and (A.30)

t T, P T, + T
J 0. W dt £ + ,2; + T1 + 3%— +'T2 I
t, W F F 2Te

A.28

A.29

A.30
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Thus
Wit + t) T, + T
Log ( 0 )swo—l——z—
W(tol 2TF
and
T,
2T

WItO +t) S WO e

- Thus W(t) is uniformly bounded’ and from (A.22), (A.5)

7T,

T
” )<”2 < X Ix < W <
T % T

A
ju]
’”~
8
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