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FACTORING POLYNOMIALS OVER AN EXTENSION FIELD

Paul CAMION

ABSTRACT

Let Kg be a field. Two irreducible polynomials f,(Z) and fz(Z) are
ngen in Kol Z]. The aim of the algorithm is to obtain all factors of
J1(Z) in Ko[Z], where K; is the field K,[Z)/ (f,_(Z)). Complete fac-
torization is shown to be achieved when K, has characteristic zero. -
If Kg is a finite field, then specific hypothesis are to be considered. _

FAC'I'ORISATION DE. POLYNOMES DANS UNE EXTENSION DU CORPS DES
COEFFICIENTS.

RESUME

~ Soit Ky un corps commutatif. On se donne deux polynomes irréductibles
J1(Z) et f,(Z) dans Ky[Z]. Le but de l'algorithme est d'obtenir tous les

facteurs de f,(Z) dans K3[Z]. o0 K est le corps Ky[Z]/ f 5(Z). On mon-

tre qu'une factorisation complete est obtenue lorsque la caracte'ristique

de Ko est nulle. Lorsque Ky est un corps fini, la preuve est sujette a* des . .

hypothe'ses restrictives.

Dmmnnmz .
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INTRODUCTION

In D.E. KNUTH, [11], 1971 printing, an algorithm due to H.
ZASSENHAUS for factoring a polynomiale f (z) in K[ X], K, a finite field Fy is

_ described. _One. essentially computles powers (X-s)/—1 mod .f.(X), for_well.

chosen values of j, where s is taken randomly in F;. The method looks attrac-
tive regarding computation time, compared to E.R. BERLEKAMP algorithm [1],
at least for large q.

In 1980 the author gave a counterexample to ZASSENHAUS algo-
rithm which appeared in P. CAMION {7] and he there observed that RABIN's
algorithm [13], very similar to ZASSENHAUS, avoids the failure by _takin.g s in
an extension field. However this makes the computation unusefully expensive
when a linear factor is not sought. When knowing BERLEKAMP’s algorithm it
becomes clear that the failure can be avoided by replacing X by g(X) such
that g?(X)=g(X)mod f(X) in (X—s)/, j=(q—1)/2, for q odd, g and s being
taken at random, s in Fy. The author then published a short description of an
algorithm based upon that remark, P. CAMION [4], 1980. The same idea was
developped in [5], [7] and further in the other papers quoted. Notice that an

important contribution to factorization algorithms by F.S.McWILLIAMS has

been inciuded in those works as well as a method due to McELIECE [8].
Independently, D.G. CANTOR and H. ZASSENHAUS developed the same idea
[10]. In the next printing of D.E. KNUTH [11] the first method of ZASSENHAUS
is skipped. The factorization aigorithm which is now apparently the so-called
"CANTOR-ZASSENHAUS algorithm", has still a weakness. When factoring a
polynomial from F,[X] into F.[X] for ¢ even and k odd. one has to perform
computations in F=[X] which is four times more expensive ([7], page 61).
That is why we investigated a general algorithm for the problem stated in
title. Here we forget the exponentiafion techniques and we use power series
expansions of rational functions, a method that we introduced in P. CAMION
[8] for constructing large irreducible polynomials. Fortunately the algorithm
works here for any fieid K. Curiously the algorithm is easily shown to achieve
complete factorization only when K, has characteristic zero or is a large
finite field. Consequently the case of finite fields has to be paid special atten-
tion, which is done in section 3. There the algorithm is actually shown to
achieve complete factorizations 1n thé following situations. The polynomials
J 1 and f of the abstract have respective degrees d; and d,. The field Kq is a
finite field Fj and f,7and f; are both irreducible in Ko[Z] and f  is primitive.
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Moreover one of the following conditions should be s!a-ti.sﬁéd," s .

l) dlzdz-':k
ii) d =tk ,dp=k,(t,g¥-1)=1 and k is a prime

e

iii) &=tk .do=k (t.g¥~1)=1 and [, is primitive.

Outside thoses hypothesis any counierexample or proof would help i'mprbve-
ments. For finite fields. the copplexity of computation is the same as that
one of comparable siluations dealt with by exponentiation algorithms.




1. A USEFUL CONSTRUCTION

1.1 A HADAMARD PRODUCT OF SERIES

, As told in the abstract, we will have to consider two polyﬁonﬂals. 1 1(2)
and [ »(Z) with respective degrees d, and d,, of the form

71(2) = T] (1~-a2),

acH,
(1)

J2(2) = [] (1-82).
[.13: %

where the elements of HyHz lie in the splitting field K of f,(Z)f2(Z). In
P.CAMION[8]. we introduced an algorithm for then constructing the polyno-
mial

C9@)= JI (1-ap2) . (2)

(a.8)€H,xHy

of which the most expensive operation is the ged of two polynomials with
degrees d,d,, in the case where (d;,d,) = 1. We first recall the straightfor-
ward

Property 1

Let

7 (2) = TI(1—=2). (3)

yel »




| Then we have that
@D = T2 (12).
7€ -
Then Prépefty { entails
l"roﬁerty 2
The fbfm,cl Ppower series expansion

s(2)=-29'(2)/9(2)

i the hadamard product of the power series Zf '1(2)/ 7 x(Z) and

Zf .2(2)/.!2(2) .

This relies on the fact that namely

20°(2) f(2) = ~a,Z—aZ%~.....~a ZP= - - -

where

a, = ) a™,

a€H,;

since ~a—a2Z--- - —a®Z"~1~. .. jgthe power series expansion of the formal

logarithmic derivative of 1 ~aZ

1.2 THE ALGORITHM FOR OBTAINING SOME FACTOR OF g(2)

. (4)

(5)

(6);
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Since the degree of g(Z) is d,d, then -Zg'(Z) over g(Z) can be com-
puted when the first 2d,d, coefficients of s(Z) are known. This can be done
by the so-called BERLEKAMP-MASSEY algorithm or by‘the extended EUCLID
algorithm. ‘ |

Expanding the first 2d,d; terms of p(Z)/q(Z), namely for
p(2)==2f'(Z), and q(Z2)=f;(Z).i=1,2, can be performed in several ways. We .
first have that ¢(0)#0 and we may assume that p(0)#0. Then if we denote by
n, the degree of p(Z) and by n, the degree of g(Z) by ?(Z) the reciprocal. -

polynomia! of f(Z). we have that for m=2d,dy+n,—n, -1

Z™P(2) = §(2)5o(2) + u(2) (7)

where deg u{Z)<ng and $4(Z) is the reciprocal of the expected sqo(Z) consist-
ing in the first 2d d, terms of (5).

Replacing Z by 1/Z in (7) and multiplying both sides by Z™° where
m=2d,d,+n, -1 shows that

P(2)=q(2)so(Z) mod 223 (8)

1.3 THE OBTAINED g°(2)

By Berlekamp-Massey algorithm, what we obtain is a pair of polynomials
p{Z)and q(Z). But g(Z) is not necessarily g(Z). It may be a proper factor of
g(Z). Denoting by g°(Z) the obtained polynomials q(Z), then certainly g*(Z)
has no multiple roots as a consequence of the properties of the formal loga-
rithmic derivative (Property 1).- . ‘ ‘ 0

1.4 THE ALGORITHM

The subsequent steps in the algorithm of factorization consist in




S

3

any available algorithm For finite fields we refer to P. Camion [4]. [5].
[6]. [7]. [8]. See also section 3.3.1 for a gain on complexity. =~ - ...

!

' - computing ged (g‘gxr).fl(x» in Kp[X] where K, = Ko[ Y]/ (f2(Y)) for
someti =1,..,k. :

. In section 2, the conditions under which an irreducible factor of J1(X) in
Kg[X] is obtained by the described algorithm are preclsely given by t.heorem

1.

When Kj is 2 finite field, all irreducible factors are obtained from one of

them, by conjugating the coeflicients in K,. The algorithm was implerhented -

on MACSYMA and we could not find an example where 1t would fail. In section
~ 3 the case of finite fieids is investigated. i ’

4

2. SOME ALGEBRAIC PROPERTIES

2.1 THE LAGRANGE TRANSFORM

Let Ko be a field and f; a polynomial in Ky[Z] , i=1',2. without rhuvltipl,e'

‘root.

We denote by B the algebra Ko[X.Y]/ (f ((X).f2(Y)). As in P. CAMION. [4].
we will use an explicit representation of B into a product of fields. The set of
roots of f; is denoted by H;, i = 1,2. Let H be the product H\xHj. The splitting
field of the product f ((2)f 5(Z) is denoted by K. '

For f in B and for h=(a,f) in H, we denote by f (k) the field element. -

J (a.8)-

We usually denote by J the unique polynomial f (X,Y) of degree less than
d, in X and d; in Y in its residue class of B, where d; is the degree of f;,
1=12

- computing in K3[Z] the irreducible factorsgl'(Z) 9e(Z) of ¢%(Z). by



o
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We first have the straightforward
Property 1 Let f be an element in B. Then f =0.iff f (h)=0 for every h in H.
“Wethenrecall . . _ _ . el

- Proposition 1 : The Lagrange transform f:B - KH defined by f » f =(f(h)),
heH is a isomorphism of the K,-algebra B into the Kq - algebra KH.

Since the mapping defined by f -+ f (k) is an homomorphism of B into K
for any h in H. then proposition 1 proceeds from property 1. O

2.2 A COMMUTATIVE DIAGRAM

We now consider the polynomial

9(2)= I (1-aB2), (1)
(a.B)eHi\xHy

and we denote by 4 the algebra Ky(Z]/(g(Z)). Moreover, let us denote by I
the set

{ 7l7=aB.(a f)eHxH ). (2)

We then have the

Proposition 2 : Substituting XY for Z in all polynomials a(Z) in Kq[Z] defines
a mapping A from A into B. We have that A is a Kj-algebra-homomorphism
Jrom A into B. The kernel of A is the ideal (go(Z)) of A, where

90(2) = TI(1—2). ) - (3)
yel
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Clearly, a(Z) » a(XY) defines a mapping from Ko[Z] into Ky[X.Y] which
is an algebra-homomorphism. We see that a residue class 6f A is mapped into
a residue class of B. Indeed if a(Z) and b(2Z) are congruent in 4. ie.
a(Z)fb(Z)ﬁg(Z)c(Z), then g (XY)c(XY) is in the zero residue class of B. by
" property 1. : ‘ : O

Noﬁ the kernel of A 1s a principal ideal (go(Z)) of A where go(Z) is the
polynomial with smaliest degree such that gqo(aB) = 0 for very couple (a,8)€H.

The diagram
KO (2] —p— KO X, Y1

A

A
- A > B

yo
=3

is commutative. By Proposition 2, the diagram is well defined. Now by Proposi-
tion 1 it remains to observe that all a(Z) in Ky[Z] and for all (a,8) in H. sub-
- stituting af to Z in a(Z) gives the same result as substituting XY to Z in a(2)
and then substituting a to X and fto Y.

2.3 THE ORTHOGONAL SET OF PRIMITIVE IDEMPOTENTS OF B .

2.3.1 THE ORBITS OF THE GALOIS GROUP G OF K OVER K, ACTING ON H.

Clearly G acts as a permutation group on the set A, as well as on the set
Hz. Hence G acts on H and we have that )

VoeG .Vh = (a, )€H , oh = (oa , 0f). (4)

"The orbits of G on H are denoted 0,.0;.....0;.

t
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Proposition 3 : The number 'of primitive idempotents ‘of B equals the number
s of orbits of G on H. These idempotents are '

(X = ¥ T (X-a)(Y-g)/(-a)t=B). i =15 -(5)
(.60 (aB)eH

An element in K¥ is an idempotent iff it is non zero and every component
z verifies in K:z2 = z or equivalently if each of its components is 1 or 0.Since
we have that

e;{¢.8) = &y

as (¢.¢4) runs over 0,.i.j = 1.5, e;(X.Y) is an idempotent, by Proposition 1.
(Its coeflicients are fixed under G, thus e;(X,Y) is in B). Now assume that e, is
a sum of two orthogonal idempotents £, and ¢;. We would have S;\S; = 0

and S{1JS2¢0;, where S; and S, are the subsets of H on which ¢; and ¢; don't
canceli, respectively. But for any element a in B, if a(¢.¢) # 0 for (¢.¢)€0; then
a(¢.¢) cannot vanish on any element in 0;. O

-

2.3.2 REMARK 1 : Similar constructions as for e; show that the inverse yq.f a i_

unit u of K# lying in pB is itself in pB.

2.4 MAXIMAL IDEALS OF A WHICH ARE MAPPED BY A ONTO MAXIMAL IDEALS
OF B. '

-

2.4.1 THE BASIC THEOREM

We first have

Proposition 4 : An ideal (a) of B is mazimal if there exist an orbit 0, such

that a cancels on every (a,f) of 0; and nowhere else.

We first know that B is a principal ideal ring since it is a semi-simple ring.

There certainly exists a primitive idempotent e; which does not belong to (a)
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so long as @ is not a unit. In particular if (a) is a maximal ideal. for such an

idempotent e; we have that

(@)+(e,) = B, » (e
or

au+e,v =1, (7)

for some uw,v in B.

This shows that a cannot cancel outsxde 0;. Moreover if there was an
(a.B) in 0; for which a(a,f)#0, then a would be a unit in B since pa is a unit
in pB<KH, by the above remark. Conversely if @ only cancels on 0;. then it is

easily seen that (a) = }; (e;) = ( 3] e;) which is a maximal ideal of B. O
_1 * 4 j 1

For a better description of representation p of B in K we recall

Proposition 5 : Algebra B is the direct sum of its minimal ideals e;B. The-

dimension of e; B over K is the length of the ordit 0;.1 =1, ...., s.

These properties where already. used in P.CAMION [9]. We have that

dmeo = | H|, since a basis for B is {X*Y7};4, i<q4, But also
dimKOB = 2 d‘émxoeiB. ) (8)
1<i<s .

We are left with proving that dimge,B = [0;|. But the ideal ¢;B. con-
sidered as a ring, is a field K’ and we just have to show that the degree of the
extension of K’ over K, is at least |0;|. We recall the line of the argument in
P. CAMION [9]. First @ +» a(h) for a fixed h in 0; ., as @ runs over e; B, defines
a field isomorphism of e; B onto K'. On the other hand every couple h,h'in 0;
defines @ mapping by @{h) » a(h) which is a field automorphism over Kj. It is
then seen that |0;| distinct field automorphism ovér K, are exhiBited in that
way, which shows by ARTIN’s Lemma that dimg K" = |0 |. _ (o




-12 -

We are now in a position to investigate the maximal ideals of A which are
mapped by A onto maximal ideals of 5.

By (1), (2) and (3). we see that y is a multiple root of g(Z) whenever
there.are two distinct {a,8) and (a',8') in H;xH with ¥y = af = a'f'.

.For the aigorithm in view. the following statement is the most informa-
tive. o S
Theorem 1 : Let f(Z) and [ ,(Z) be polynomials without multiple roots in
Ky[Z) and g(Z) be defined asin 2 1. Alsa

4= Kol 2V (9(2)),

B = Kol X.Y])/ (f (X).f 2(Y))

~and A4 + B is defined by a(Z) » a(XY). We have that a mazimal ideal (d(Z))
of A meps onto a marimal ideal (Ad(Z)) of B iff for ¥ a root of d(Z). whenever
(a.B) ari (a'.8') in HyxH, are such that y = af = a'f', then there exist an auto-
morphism o of the splitting field K of f,(Z)f 2(Z) over Ky such that o' = ca
and 8’ = of.

- Let ¥ and ¥’ be any two roots of the irreducible polynomial d(Z). Then
7 =af and 7' = a'f’ for (a,B).(a’.f') in H. But there exist an automorphism o of
the Galois group G’ of the splitting field X' of g(Z) over K, that maps 7 onto
7'. Let 0; be the orbit of H under G to which (a,8) belongs. Then (ca.o8) is in
0¢ and since a’f’ = ga.gf = ¥, we have that (a',8') is in 0;, by hypothesis. Pro-
position 4 completes the proof. O

Corollary 1 : If y is a simple root of g(Z) then its minimal polynomial d(Z) in
Ko[Z] generates an ideal of A which is mapped by A onto a marimal ideal of
A

Every root of d(Z) here is a simpie root of g(Z). In the preceeding argu- :
ment when we observe that o'’ = ca.0f = 7' we may conclude that a’ = g and
B’ = of straight away and get the same conclusion. O
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Corollary 2 - Assume that f(Z) and f,(Z) are both irreducible in K,[Z].
Denote Ko[Z)/(f,(Z)) by K, ,i=1.2. If 9(Z) is irreducible in KO[Z] then fl(Z)
is irreducible in KZ[Z] and f »(Z) is irreducible in K, Z]. . '

For finite fields we will next prove a converse to corollary 2.

This is actually entailed by Proposition ‘2. We have that 4 is a field and A
~ maps isomorphically 4 onto £. But B is isomorphic to both K[X]/ (f (X))
and K[ Y]/ (f2(1)). a

Examples :

1) - We take Ke=Fp; ., f(Z)=2°+Z+1 and f,(Z)=2%+Z%+1. Then
9(2) =(Z+1)%(2°+2+1)(Z3+22+1) If ais a root of Z3+Z +1, then the roots of
1 1(2) are a,a%a* and those of f3(Z) are a®a%a3 The Galois glr:ou'p of the .
splitting field K = Fg of (Z7+1)/(Z+1) over F, has three orbits on H. One of
the orbits is {(a.a®).(a®,a%).(a*.a%){ It corresponds to the maximal ideal
(Z+1) of 4 which maps onto the maximal ideal (XY+1) of B We then must
have that ged (XY +1,X3+X+1) is an irreducible factor of X3+X+1 in KZ[X]

But here K; = Fg and the canonical map of B onto K,[X]/ (f 1(X)) sends Y
onto a root. say ab, of f5(Y). We thus obtain X+Y~! = X+a as a factor of

J1(X).

2) - We take Ko = Q. f,(Z) = &5(Z) and f(Z) = &,4(2). I ¢ denotes a primitive
tenth root of unity, then the roois of ,4(2) are ¢.¢3,¢%¢” and those of ¢5(Z)
are ¢2,¢8,¢8.¢%. The Calois group of Q (¢) over Q is the group {1.3.9.7{ of units,
of Z/mzZ = 10. One sees that H has four orbits under G and
g(2) = (Z+1)4<p o(Z). We then have that ged (XY+1 ¢5(X)) =X+Y"' We then
get in that way a linear factor of ¢5(X) in K[ X]. However, it is easily seen that
$,0(XY) is a primitive idempotent of B. Hence the maximal 1deal (¢10(Z)) of A
" maps onto the minimai ideal (¢10(XY)) of B.

3) - We take Ky =Q, f,(Z) = Z* + 1 and Fp(Z) = Z% + 1. The algorithm fails to -
factor Z* + 1 as (2% + i)(Z2 —1). For, the polynomial 9(Z) hereis (2% + '1)2.

Corollary 3 /f KO has characteristic zero, then f 2(Z) can be changed to
J 2(Z—-c) for some well chosen ¢ in Ky in order that g9(Z) has only simple roots
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and the algorithm always achieves a complete factorization.

Consider the polynomial y

- T p—(‘n = H’
(a.ﬁ(:phgz’:‘f)lxﬁ

and let ¢ be in Kj, p(c)#0. Such a ¢ exists since Kj is infinite. Now going back
to 1.4, one sees that the polynomials ged(g;(XY).f (X)) in K3[Z] i =1,...k
are all irreducible factors of f,{.XY) in K3[X], by Theorem 1, Corollary 1.

As an example of application. take f;=2%*+1 and f,=22+1. For
¢ = -1 we have that f, becomes Z2? + 2Z + 2. The algorithm then actually
produces Z4 + 1 = (2% -y — 1)(Z% + y + 1) where y being a root of the new
J 2. we have thaty =1 — 1. ‘

Now let 151 be a root of f;(Z) and ¥, a root of f;(Z). The algorithm also
tells if Ko(¥,) is contained 1n K(Vz). This occurs iff f,(X) has a linear factor
in Ka[X] for Ka = Ko(¥3). Such an example is dealt with as an application of
the algorithm at the end of this paper. We there consider
F1(Z) = 2% +52% + 4Z + 1 which has the root ©; = @, + 0%, where 0; is a root
of f2(2) = Z.4 + Z + 1. All computations up to obtaining g(Z) are performed
mod p for p = 9999999967 to avoid huge integers.

Clearly. Corollary 3 also applies to finite fields whenever | K| is larger
than the product d,d;. Thus there is a real problem for justifying the algo-
rithm only if the size of Kj is small. That problem is investigated in section 3.

2.4.2 THE CASE OF FINITE FIELDS

Let K, be the finite field F,. Denote by £, and F, a,

o q 7 oq ge's i

two subfields of a finite field. Denoting (d,.d;) by d, we know that
FqN\Fy, = Fae. This is ~a straight consequence of the fact that

(g% - 1,9%-1) = q9~1.

(X +B) =n(X+9),
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We have the

Coroliarylll et f,(Z) and f5(Z) be defined as in Corollary 2. Then g(2Zj) is
irreducible in Ky Z] iff (d.d;) =1
. 9

If g(Z) is irreducible in Ko[Z]. then by Corollary 2 .f 1(Z) is irreducible in
K3[Z]. We then krow that K;rKj = K, = Fq. (see also section 2.5). Hence
(d,.d3) = 1. Conversely. consider the permutation T on H;xH, defined by
T(a,8) = (~a.78) = (a7,89) Since (d;.d3) =1 then T is made of a single cycle of
length -d,dz. We must now show that for af = (t*a)(7*8),i>0. then we have

that i =d d, Necessarily the element alt*a isin KK, = F,. Denote per- -

mutation 7* by u. Then ua = ka. keF,. Since u is a Galois auiomorphism of K,
over Kg. then Lhere exist a smallest j such that a = wWa=kia We have that j
is the order of k 1n F and alsc divides the order d, of the Galois group of K,
over K, But similarly. we see that j also divides the order d, of the Galois
group of K, over K. Thu<] = 1. This entails that k& =1 and iisa multlple of

dids. | | O

Remark If an irreducibie polynomial v(Z) in F,[Z] is such that

v(9) =v(kv) = 0 for 1#k €Fy, then it is easily shown that v(Z) = w(27) where

J is the order of k in F,. The remark in section 3.2.2. deals with such an

example.

2.5 NUMBER OF ORBITS AND NUMBER OF FACTORS

With the notation introduced in section 1.1, 2.1, 2 3.1 and in the state--

ment of Corollary?2 of this section, we prove the following

Theorem 2 Assume that both f ,(Z) and I 2(Z) are irreducible over Ky[Z). If
moreover f (Z) splits over K,[Z], then the number s of factor of f (Z) over

K3[Z] is given by (11) and's is the number of factors of f2(Z) aver K,[Z] as

well. Purther, the dimension of Ky(a,8) over Kq does not depend on a pa.'ft'icu.-'

lar choice of (a.8) in H xH,. We have the relation®

|Giapyl (aB)C] = |G, | (9)
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where (a,B) is an element in H and G4 denotes the stabilizer of {«,8) in G.
Moreover (a,8)¢ denotes the orbit of H under G to which (a,f) belongs. We
reca:: our previous notations Ky = Ko X]/ (f 1(X)) and K = Ko[ Y]/ (f 2(T}). Ve
first observe that

9

Gap) = GaNG. (10)

where a is a root of f(X) and B a root of f,(Y). We first observe that for any

two members (a.B)Jand («',8) in HyxH, we have that G, g) is a conjugate of"

G@g)in G. For. there exists a ¢ in G such that o = g and therefore
g} Glagy = Gioag) = a"GaUﬂGﬁ- = GaNGyg = Ga:r\Gh'.

since G, is an invariant subgroup of G. by hypothesis. This shows that all
orbits (a.8)¢ have the same length. This also shows that the dimension of
Kola,B) over K¢ does not depend on a particular choice of (a,B) in H. Indeed
that dimension is the index of of G(,p) in G, since G(q ) is the Galois group of
K over Ky(a,B). By Proposition 5, the common length of the orbits is the com-

mon dimension of a minimal ideal of B. It also is the product of

dimg K, = d,(resp dimg K, = d,) by the degree of each irreducible factor of E

72(Y) in K[ Y] (respf {(X)inKo[X]). Consequently the number s of factors in
both cases s

s =dd3|GaNGgl/ G| (11)

and the degree of a factor of f,(X) isd,;/s (resp of fo(Y)isdy/s). O

In particular. we see that if ged(d,d,) =1, then necessarily s =1, which

~ ‘entails that g(2) is irreducible in K[ Z]. By (11) we see that for finite fields,

we always have that s = ged(d,d,). This is not true in general since $5(Z) has

the same degree as $,(Z) and the irreducible polynomial g (Z) here is

2967334727 7244 2187124 797341,
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that is $g3(Z).
3. THE ALGORITHM FOR K, A FINITE FIELD Fq..

3.1 THE CASES TO BE CONSIDERED AT THE LIGHT OF THEOREM 1

A general probiem here to be submitted to the algorithm is the following.
Given two irreducible polynomials 7 ,(Z) and f2(Z) in K,[Z] with respective
degrees d; and d;,{d;.dp) =k, find all factors of f,(Z) in Fq.[Z]. namely k
irreductible factors as mentionned in section 2.5. Each factor has degree
d,/k and the coefficients of two terms with the same degree invany:'t."wb fac- .
’ ‘tors are conjugateé under the Galois group of Fis over Fp© Hence we just ask
the algorithm to produce one of the irreducible factors of f,(Z) sought.

The coefficients in Fqr are obtained as elements in K, =F[Yl/(f2AY)). -

All such general factorization problems dealt with by the algorithm intro-
duced in section 12 were solved by means of a program made of MACSYMA
Command lines. The used factor d(Z) of g(Z) of which the required property
i.e.(Ad(Z)) shouid be a maxirnal ideal of B was obtained by factorizing g(Z) in
Ko[Z] by using the MACSYMA "FACTOR” C.L. with the appropriate flag when g
is a prime. The fact that (Ad(Z)) is maximal is here a straight conseqdenéé..qf
the fact that the degree of the found factor of f(Z) is actually &,/k, and-
this hever failed to be observed. Thus practically, the-“;lgorithm works all
right since we would be warned if no irreducible factor d(Z) of g(Z) obtained

by the algorithm would meet the requirement stated in Theorem 1.

However there are some natural cases where we can assert in advance
that the algorithm will work efficiently. The first case is the following.

3.2 THE POLYNOMIALS f , AND f ; ARE BOTH IRREDUCIBLE IN Ko[Z]. MOREOVER
f2ISPRIMITIVEAND d, = d, = k.

3.2.1 THE HERE INTRODUCED ALGORITHM COMPARED TO RABIN'S

Here the problem could be solved by RABIN's first introduced probabilis-
tic algorithm of factorization which would produce all linear factors of
J 1[13]. However that algorithm only works for ¢ odd. The operétions are per-
formed in F{Z]. All products of polynomials are reduced mod f(Z) in that
algorithm and since a product in F needs O(k?) products over F, every
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product of poiynomials needs O(k*) products over Fq for any usual algorithm
of polynomial products. But O(k log q) products are needed for an exponen-
tiation by d . d = (g% -1)/2. This leads to 0(k®log q) products over Fy to get
a factor. All other linear factors are the conjugated of the first one obtained.

In the here presented algorithm. polynomial g *(Z) of section 1.3 is first
obtained by performing the g.c.d of two polynomials of degree 2k2? By a clas-
sical algorithm this needs O(k*) products in F,;. Now for this algorithm to be
comparable with the one of RABIN,.g'(Z) has to be factored over f,{Z] in
O(k% log q) operations. This is made possible by first observing that the
degree of each irreducible factor of 9°(2) in F,[Z] divides k. As a conse-
quence we have that~the algebra 4y = Fy[Z2]/ (g9"(Z)) is isomorphic to a pro-
.duct of fields, each of them isomorphic to Fqn or to one of its subfield. With
that representation of Ay we may define the F,;-subalgebra IB of Agp
represented by a product of subfields isomorphic to F as we did in P. C&MION

[4]. [5] (6. [7].

In P CAMIO\ [Dj we recall the definition of Mc ELIECE operator T and we
'derlve some new properties for 7. That operator here maps Ag onto B and it
.ag:tglally takes the trace from F‘n onto F, of each component of v in 4,
';epresenped as hereabove described. Then

M= Y ou(xe). | (1)

e , 0si<k

‘- Since the degree of g*(Z) is k2, obtaining the X9'i =.0,...k—1 and from
there the polynomial v needs O(k®log q) operations over Fq. Such polyno-
‘mials' v may be seiected as required by Theorem ! of [5]. Now v being
obtained, two cases are to be considered.

Tv)® is computed in 4g.2 = (g —1)/2. The result is the square-root_.
of an idempotent. Added to one, the polynomial obtained generally
shares a non-trivial factor w with 9°(Z). That factor w or g°(2)/ w will

i replace 9°(2) in a next step if necessary (See [4]. [5] or [9]).

EES
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ii} g is even
Here g = 2. We can again use Mc ELIECE operator which takes the trace
of every component of the representation of Tv from Fq onto Fj, We

obtain a polynomial w with the some properties as in’i).

If obtaining one factor is considered as a main step in this algorithm as
well as in RABIN's one, then clearly the number of main steps required to get
an irreducible factor of g*(Z) in F,[Z] is essentially the same as for getting a

linear factor in RABIN's algoritnm.

Finally, performing ged(d(XY).f (X)) in K3[X] needs O(k*) operations in
a classical aigorithm. T

Conclusion Our algorithm is comparabie in execution time to RABIN's one in
this particular case, help to the use of Mc ELIECE operator. However the algo-
rithm here presented is more versatile and works the same for g even or odd
exceptl in one easy step. '

3.2.2. FACTORIZATION IS ALWAY ACHIEVED

»

From Theorem 1 of section 2.4. we get an easy sufficient condition for
the existence of a factor d{Z) of g°(Z) such that (Ad{Z)) be a maximal ideal
of B. All we here nc-;ed is that d(Z) be irreducible with degree k£ and that it be
a simple factor of g(Z). We will see Lhat this is always true if f5(Z) is primi-

tive. If not the hereby remarks gives a counterexample.

Remafk Here is an example for Kj 2 finite field F;,q = 3, where the polynomial
g(Z) has no simple root at all. Let ¥ be primitive 80 th root of unity and
a = 9% The polynomia} f,(Z) of degree 4 has « and its conjugates as roots
and f2(Z) is the reciprocal of f(Z). Then the roots of g(Z) are ®*i</ for
I = {0,10,30,40,50.70). The 16 roots of g(Z) consist in two quadruple roots 1
and -1 and four double roots, Moreover the highest degree of a factor of g(Z)
is two.

The Proof.
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Let ¥ be a primitive element in Fjs. We recall the

Property. The integer ¢ 1is such that ¥° is a root of an irreducible polynomial
of degree k in F,(Z)] {f g¥c=c mod(q*~1) as long as w=0 mod k.

On tie other hand, we know that ¥° is primitive iff (b.m)=1 for
m =g*-1. Now let' ¥9° be a root of f;(Z).(b,m) =1, and -¥° aroot of f,(Z).—
Then each factor of g(Z) has a root of the form ¥% for a =b + g'c mod m, for

some 7.

Lemma 1 of section ¢ proves that the minimal polynomial d(Z) of such a ¥%
firstly has degree k (j must equal 0) and secondly has multiplicity one (¢
must equal r) for at least one integer 7 in [0,k|.

3.3. THE POLYNOMICALS f, AND f, ARE BOTH IRREDUCIBLE IN K,{Z] . MORE-
OVER f, IS PRIMITIVE AND d, DIVIDES d,.

In the following we denote d, by tk and d; by k.

3.3.1 COMPARISON OF THE ALGORITHM WITH AN EXPONENTIATION ALGORITHM
AS P.CAMION'S [4].

In the quoted algorithm. the algebra 4% = K,[{Z]/(f1(Z)) is to be con-

sidered, where K, = Ko[Z]/(fg(Z))—F Then 4° is isomorphic to a product of'
fields, precisely of & fields, each one isomorphic to Faa. What we called
BERLEKAMP subalgebra B of 4% in [4] is the subalgebra of 4° isomorphic to a_
product of subfields 1' + in the hereabove representation. Constructing a
basis of B3 takes 0(t3k3) operations over F,. Such a basis is made of k£ poly-
nomials in F,{Z]. Then a polynomial v(Z) is chosen randomly in Band raised
to the power d where d = (g*~1)/2 for ¢ odd and d = (g*-1)/3 for q even
and & even (The case where q is even and k odd was dealt with in (7], page
61). This needs O(t2k5 log q) operations over Fy. since v(Z) is actually in
F h[Zj. as a linear combination over Fqn of t.he polynomials in the basis ofB.

In the present algorithm. 49 is replaced by Ay as in 3.2 while polynomial
9(Z) here has degree tk2. However Ag 1s again a product of fields isomorphic
to Fou and Mc ELIECE operator yields a trace from Fu onto F:. Nevertheless,
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if we must work in A¢ for finding polynomals inBWe will need more com-
puter time and larger memory space since deg g(Z) = kdeg f(Z). For-
tunately working with Mc ELIECE operator in A° vields polynomials which
actually lie in the BERLEKAMP subspace of A,. For, let v be any polynomial in
A% and

u=T= ¥ v(29%)e40

Osi<t

All we have to show is that u being considered in A4, the LAGRANGE
transform of Au has its components in Fqr. We have that for {a,8)€H .

u(af)= ¥ v((aB)?) =B ¥ v(a9")eFyk,

Osict O=:1<t

since B isin £, + and v is in the BERLEKAMP space of A°. We show that the cost
of constructing such a u is O(¢3k%). provided v is taken from Aof\F {Z]. For.,
we first compute 29" mod J 1(Z). The other polynomials needed in A° are

79" = i zua,.jzf mod f;(Z)i =0, .tk—1 (2)
<5 <

This needs tk operations over A°, ie. 0(t3k3) operations over F, as for

BERLEKAMP's algorithm. Next, we compute 7v = » v(297) by shifting ¢
0=j <t

times polyniomials by the substitution X« X?" and performing for each shift a
linear combination of the rows of matrix (a;;). This needs .0(t3?) operations
over Fy. After computing 7v which is now considered in A4g. step i) or 1) of
3.2.1 is applied with appropriate value of d. This needs O(t2k%log q) opera-
tions. Since we 6nly need one irreducible factor of g(Z) then that step is
repeated at most logzk times. Moreover the smallest factor obtained, say
d(Z), replaces the prekus one (the first is g°*(2)) at the end of each such
step. The polynomials X9' are reduced mod d(2).

Conclusion When a polynomial f,(Z) is to be factored over Fu[Z] but actually

lies in Fq[Z], the here presented algorithm is comparable to the exponentia-
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tion algorithm of P CAMION [4]. The algorithm is programmed for any couple
of degrees d; and d;, and need not be specialized for d, =tk and d, = k. An
appiicaiion to factoring any polymomial in Fqn[Z] for ¢ =2 and k£ even may
aiso be derived.“The aigorithm doesnt care of ¢ being even or odd except in -
one easy step. The coeflicients of all polynomials concerned lie in te ground
ﬁé‘lqu.m » ' ' i T T T —
However this algorithm needs some further theoretical investigations.
The following discussion in section 3.3.2 and the remark after Lemma 2 prove
that if f, is priritive as f 1s and if (£.9¥~1) = 1 then the algorithm always
achieves a complete factorization of f(X) in K[ X].Kz = Ko[ Y]/ (f2(T)).
Moreover, we show in particular that when k is a prime, f x}eed not be primi-

tive.

3.3.2 DOES THE ALGORITHM ALWAYS ACHIEVE A COMPLETE FACTORIZATION ?

As told in 3 1 the algornthm never failed so far. However some hypothesis
on the integers d; and d; are needed for the proofs given here. We here show
that under the hypothesis stated for this section 3.3, if k is a prime, and if no
prime factor of ¢ divides g¥—i. then the algorithm always produces an irredu-
cible factor of f in Fu[Z] where Fae is given by F,[Z]/(f 2(Z)). Remember
however that the algorithm always factors whenever ¢ is larger than d,d,

(section 2.4.1 last paragraph).

The arithmetic condition is verified in particular whenever for every

prime factor p of ¢ one has:
g*1 mod p and p #1 mod k. (2)

This is true in particular if ¢<p=k for every prime factor p of t or if ¢g=2
whenever t is odd and p<k Now assume k& is a product of primes,
k =kky - ks ky=k= - 2k, Moreover we have that q#imodp, q +1modk,
and p #lmodk;i =1, .s for every prime factor p of ¢. Then at least we 'can
prove that s applications of the aigorithm will produce an irreducible factor
of f, in Fq.[Zj. For, we first take as f, a primitive polynomial of degree k,
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and we obtain a factor of degree tk/k, of f, over Fqb,[Z]. Indeed condition

(2) 1s verified since k;sk,.j =2...s Next, all conditions requirea are met for

another application where Fg is replaced by Fq., and f, is now a primitive
polynomial in Fqk‘[Z]. Fin‘aily we will obtain an irreducible factor of f,; in

Fat[Z] as demanded.

The reason why the algorithm achives the factorization is only slightly
different from that one expiained in section 3.2.2. Here ¥ will dehote a primi-
tive element in Foa . Then with the notations n = g¥t—1.m =¢*¥-1 and
dm =n, we have that 9% is a primnitive element of Fq. And a primitive polyno-
mial f, in Fg[Z] of prime degree k 1s the minimal polynomial of ¥¢ for some
such ¥. Now in the Property stated in 3.2.2, we replace k¥ by tk and ¢ bv s to
characterize the irreducible polynomial f; in F,[Z]. minimal polynormnia! of
V*. Then each factor of g(Z) has a root of the form v° for a=s +q"d mod n,
for some 7, since each root of g(Z) is the product of a root of f,(Z) a}xd one
of f2(Z). Finally, Lemma 2 of section 4 proves that the minimal poiynomial
d(Z) of such a ¥® firstly has degree kt (; must equal 0) and secondly has
multiplicity one (i must equal r) for at least one integer r in [0.k].

4. SOME ARITHMETIC PROPERTIES

Before stating our first Lemma, we recall the easy
Property 1 One has qt=q? mod (g¥~1) iff i=j mod k

Lemma 1 Denote g¥*—1 dby m and let g.k and b be integers such that
(bom)=1 for m =gqk-1. Moreover let ¢ be an integer such that
g¥c=c mod m only if w=0mod k. Then there ezist an integer r such that

the equation for i and j :

b +qTc=ql(b +q'c) mod m, (1)

has no other solution that j =0 and i1 =r.
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Denoting by a the product of ¢ by the inverse of b mod m . then equation

(1) can be replaced by

1+qTa=qi(1l + q*a) mod m (2)

3

We will show that iaking for r the integer in [0.k[ such that the
remainder of the division of g”a by m be the smallest possible. then equation

(2) has for only solutionj =0 and i = r.

We first introduce some usefull notations. We denote the se: [0.9[ by &,
and we identifiy € =cocy - Cp_EKE with the mteger
cotcg + °  +cg*7! in {0,g%L This is convenient because multifiying
the integer c in [O.q"‘[ by ¢7 corresponds to transiating the set of posiiions of
¢ by —r mod k. Thus q"c. as an element of K§,isc_,c_,,; - cgc, - - Ck oy ~1-
There is no loss in generality by taking for a the smallest integer among all
residues mod m of g"a, 7 =0....k -1. We will refer subsequently to that pro-
perty by just saying that a is minimum. Thus we make » =0 1n (2). We will
now consider two cases.

i)a=q~-1mod g

Together with that property. then a considered in k% should have the
longest among ali possibie runs of zero’s for its last components. Let s be the
length of that run of zero's. If for example s = 0 then none of the components -
of a is zero. Necessa_rily, a + 1 has exactly one run of s’ zero's, s'>s, since
@¢ = g —1. Thus there is only one j such that (2) holds for a given i. Moreover
1 + g*a must have a run of s’ zero's and thatfor a_; must equal g ~1 and that
a_; must take place imme'diatly after a run of s zero's. Since the two runs of
s’ zero's must coincide after the permutation yielded by g7, then a + 1 must
coincide with a _, + 1. This entails that J = 0. But then by (2), a=q*a mod m,
and multiplying both members by b, we get ¢ = qtc mod m. Hence by
hypothesis i = 0. '

ii) a#g—1 mod q
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.We still assume that a is minimum. We restate equation (2) as
g¥(i +a)=q¥ +a mod m, (3)

with ©u = —j— and v = =t We first observe that a, = a,<g—1. We thus prove
that there is no other solution to (3) than u = v = 0. Else we first consider
the case where (u.k); = 1. Thus to every integer v<k there corresponds a
smallest w such that

<

wu =dk +v. (4)

§

This means that iterating a translation mod k£ by —u a number of times -

equal to w yields a translation by -

Let z be the value of a,. We have that w =1 iff v =u by (4). and (3)
entails that g¥a =a mod m which by the hypothesis on ¢ is only possible if
u=0v =0 Else ag + 1 =a, =z + 1 which is denoted by-;_z‘/-l For-all !l less than -
w then Uy =Y. Then necessarily @(y-y)y =2, +1 Thus a,, =a, =z.
Further as.long as [ is less than k we have that a;, =a(_;), =z since only
the vtk component of gV + a differs from its homologous in a. Finally we have

that avo = a‘(k~1)u =Z.

This last remark shows that we rust have v>0,v<k if w>1. But this is

"impossible since a; = z<y and a is minimum.

Next we consider the case where (u,k) = ¢t<k. We then write u = tu' and
k = tk' Hence (u'k') =1 and the case is reduced to the previous one when
considering the involved integers in the radix ¢' = g’ in place of ¢. A slight
difference however appears in the proof. The integer a + gV is not necessarily
obtained from a by encreasing its component a, by one.

First the concerned component in the radix g’ is ¢, where g = [v/t] and
it is seen that e, =a,_, —q¥ where v'=v ~gt. We write thisasy - q¥ =z
which is worth z in the only case where v' = 0. But the argument further

shows that z =ag=ak.-), =2. Hence v’ =0. The rest of the argument
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holds. -

Remark When a is not minimum in (2) for » =0 we may actually have other
solutions that 1 =j =0. Take ¢ =k =3 and a =16. We then have that
1 + a=3(1 + 3a) mod 26.

In the proof of Lemime 2 we will make use of the easy

Property 2 Jf k 1is a prime integer and v<k then, if v 1is not zero, q¥V-1 isa
unit mod (g% -1).

In view of applying Lemma 2 to section 3.3.2 we also recall

Property 3 Denote by d  the integer (g*-1)/(q%-1). Then
(d.gk-1) =(tq*-12.
We now have

Lemma 2 Let ¢ and t be given integers and let k be a prime integer. Denote
q¥ -1 by ng*—1 by m andd =n/m. Now let s be any integer in [0.kt[

such that (g.s)=1 and g'’s=s mod n only for j=0 mod Ict‘. Moreover

assume that (t.m) = |. Then there exist an r in [0.k[ such that the equation
s +qTd=q’(s + qtd) mod n (5)

Jor the unknowns i,j with i in [0.k[ and j in [0.kt[ has for anly solution
J=0andi=r. '

Preliminary remark Since q"d and ¢'d are elements in Z/nZ in equation (5).
then r and ¢ may be defined indifferently in Z/ kZ or in Z/ kt Z.

Now equation (5) may be rewritten as

Where u=i+jmodk and v=r —i—-j mod k. With the notations
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n,=(sd)d=nnzands =n;b. then LHS. of {8) writes

b((gj—l)/nz). o | (7

Then by Property 2 we have either that (b,m)=1orthatv=C lfv =0

then j =0 mod kt, by hypot.hesis. We now rewrite (8) in the form

b +gTny,=qi(d +giny) + wn,m ' (8)

But by Property 3 and by nypothesis. we have that (n,m) =1 which
entails that n, verifies the hypothesis on ¢ of Lemma 1. Then Lemma 1
applies and there exists an r in [0.k[ such that necessarily j =0 mod & and

i=r mod k. But this is not enough since we need that j=0 mod kt. Coming
back to eguation (6) under the form '

s(g?-1) = q¥(g¥-1)d + wn. )

since now m divides g’-1 .and (m.d)=1, then m divides
g¥-1,s(g/ -1)=0 mod n and by hypothesis, j =0 mod kt.

Remark If (s,n)j =1 we don't need £ to be a prime. For, here b =s and
(sm)=1. ’
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(c2)'bofch(és):

(c3) p1:zt4+452212+40241; , :
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(d3) 2 +52 +42 41
(c4) p2:zt4+2+1;
4 -
- (d4) - oz +z+1

/c5) showtime:true$
iime= J msec.

(c6) ql:rat(diff(p1,2))$
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(¢7) q2:rat(diff(p2.2))$
Time= 15 msec.
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m2: h2+2=*n—-n2-1%
19 msec.

rpl:expond(zthissubst(1/2z,z,p1))$
75 msec.

rp2:expand(zth2ssubst(1/z,2,p2))$
30 msec.

ql:expand(ztniesubst(1/2,2,q91))%
54 msec.
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- Time=
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q2:expand(ztn2ssubst(1/2,2,q2))3%
35 msec. ) - -

|1:expand(ztm1+q1)$
32 msec.

12:expand(ztm2q2)$.
21 msec.

prem:9999999967%
3 msec.

modulus:prem$
191 msec.

st:first(divide(11,rpt1,2))$
285 msec. '

s2:first(divide(12,rp2,2))$
247 msec.

t1:hipow(s1,2)$
15 msec.

t2:hipow(s2,2)$
14 msec.

s1:expand(zttissubst(1/2,2,51))$
884 msec.



(e33) s2:expand(ztt2esubst(1/2,2,52))$
Time= B18 msec.

(c34) s1:expand(ztbiss1)$
Time= 474 msec.

(c¢35) .s2:expand(ztb2es2)$
Time= 445 msec.
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Time= 4 msec.

{c42) for i:1 thru m unless hipow(q,z)<n dof |
' q:remainder(el,e2,z),e1:e2,¢2:q

) '
Time= 2279 msec. |
(d49) : ‘done
(ed1) qi
‘Time= 1 msec. ' :
15 12 1 9

“{d41)/R/ - 409336889 z + 1491033896 z + 877880040 z + 2077989971 z

. 4 8 7 6 5 4
= 2630234690 z + 827187193 2z - 1783660576 z + 3421007812 z - 1929973916 z

3
© + 4239681430 z + 3494164482 z + 2602334194

- (c42) bq:lopow(q,z)$
‘Time= 52 msec.

(c43) q:rat(q/ztbq)$
Time= 15 msec.

(c44) hq:hipow(q,2)$
Time= 52 msec.

(c45) bs:iopow(s,z)$
lime= 136 msec.



+.c46) s:rat{s/ztbs)$
[ime= 20 msec.
(c47) hs:hipow(s,z)$
cime= 140 msec.
[c48) q:expand(zthqssubst(1/2,2,49))$
[ime= 277 msec.
(c49) s:expand(zthsssubst(1/z,2,s));
[ime= 2983 msec.
31 30 29 28 27 26 25 24
(d49) 4 z +6 2 + 42 + 542z + 384z + 1500z + 4344 z + 4134 2
23 22 21 20 19 18
- 1796 z + 36 2 4+ 116736 z -+ 683900 2z + 1598744 z + 2043824 2z
17 16 18 14 13
— 1764816 2 - 8496154 2 + 17541216 2 + 189318156 2 + 601379796 2
12 11 16 : 9
+ 762725124 z' <~ 1315438700 z + 2479428783 z + 2331847903 2
8 7 6 5

+ 2628461888 2 -~ 4532248556 z + 4343382825 z - 2817512357 z

4 3 2

- 3511797398 2z + 1960092229 z + 4408090363 z - 1990129252 z + 4356606612

‘c50)
[ime=

‘e51)
[ime=

ns:hs+bs+n~hq-bq$

19 msec.

Iq:expond(ztnssq)$

144 msec.




(c52) pol:first(divide(lq,s,z));
Time= 435 msec. ‘
' 16 15 14 12

(d52) — 4349416435 z - — 2602334194 z - 1747082241 z  + 3940079626 z
. 11 10 9 8
+ 4385994770 z - 39035081291 z - 2682334194 z ~ 13533983985 z
7 6 4 3

- 1929973816 z + 2792200993 z -~ 73156670 z + 2192997385 z - 4349416435
(c53) pol:num(pol)$ .
Time= 12 msec. '

(c54) pol:rat(subst(1/z,z,pol)szthipow(pol,z));
" Time= 275 msec.
16 13 12 190

- (e54)/R/ — 4349416435 z  + 2192997385 z -— 73158670 z + 2782200983 z

9 8 7 6
— 1929973916 z -~ 1353398395 z - 2602334194 z - 3903501291 z

S 4 2
+ 4385994770 z + 3940079626 z -— 1747082241 z - 2602334194 z — 4349416435

(¢55) pol:rat(pol/coeff(pol,z,hipow(pol,z)));
Time= 81 msec.

16 - 13 12 10 g 8 7 : &
(¢S5)/R/ 2 ~-122 +46z +158 2 + 1202 +851 2z —42 -6 2

S 4 2

-~ 242z —-17 2 +5z -4 2+ 1



(c58)

: Time=

(c59)
- Time=

. (d59)

: (c60)
" Time=

é (c61)
" Time=
- (c62)
: Time=

" (d62)

" (c63)
~Time=

(d63)

modulus:false$
4 msec.

factor(pol);

2753 msec. : R - ,

4 3 2 12 11 . 18 9 8 7
(z +3z +52z -5z+1)(z -32 + 4z -4z 4222 -232

6 5 4 32
+932 +702z +3%9z +17 2z +5z + 2z + 1)

fac:first(%)$
28 msec.

fac:subst(xsy,z,faoc);

47 msec.
4 4 3 3 2 2 .
x y +3x y +5x y =5xy+1

ri:subst(x,z,p1)$
18 msec.

r2:subst(y,z,p2)$
19 msec.

algebraic:true;

4 msec.
true
telirat(r2);
14 msec.
4 A
. ' Iy +y+1)




(=64) r:fgc$
Time= 4 msec.

(c65) for i:1 thru m2 unless hipow(fac,x)=8 do( - - - - - - .. . __
fac:remainder(r,r1,x),r:rt1,r1:fac)$ T
Time= 965 msec.

(c68) fac:rat(r,x);
Time= 33 msec.
' 3 2 :
(d68)/R/ ((11061@3749 y + 3657942137 y - 4404169234 y + 5322210562) x

3 2
+ 746227097 y + 188062421 y + 547939073 y + 4764045886)/3198655227

(c67) g:coeff(fac,x,hipow(fac,x))$
Time= 69 msec.

(c68) g:rat(1/9)$
Time= 78 msec.

(c69) fcc:gtfdcs
Time= 70 msec.

(676) foc:rat(fac,x);
Time= 19 msec.

2
(d70)/R/ X—-y -y
Time= 22601 msec.
(d71) BATCH DONE

(c72) closefile(tetaplusteta2);
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