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boundary value problem to be well-posed.

Owing to the strong regularizing effect of the heat equation, even a weak
solution of the Lagrangian system is continuous. It is then straightforward to
come back to the usual Eulerian coordinates, and to prove that similar
existence and uniqueness results hold for the original Eulerian system of govern-

ing equations.

The paper is organized as follows:

Introduction.

[y
.

Governing equations of the flame propagation.

Assumptions and main results.

Recalling some basic results from semi-group theory.
Existence and uniqueness for the combustion variables.
Existence and uniqueness‘ for the hydrodynamical variables.

Back transformation to the Eulerian variables.

® 2o o o » Db

Extension to chemically complex flames.



THE EQUATIONS OF
ONE-DIMENSIONAL UNSTEADY FLAME PROPAGATION :

EXISTENCE ET UNIQUENESS

Abstract: This paper deals with the mathematical analysis of a system of partial
differential equations describing the tifne-dependent propagation of a planar
flame front within the framework of the well-known isobaric approximation of
slow combustion. The problem to be investigated takes the form of a non linear
mixed initial-boundary value problem in an infinite one-dimensional domain. We
show Lhe existence and uniqueness of weak and classical solutions of this prob-
lemn, depending on the assumptions on the initial data and on the non linear
temperature dependence of the chemical reaction rates. The crucial point lies
in the introduction of a Lagrangian space coordinate, which uncouples the
reaction-diffusion equations for the combustion variables from the remaining
hydrodynamical subsystem. The analysis then uses some classical arguments of
functional analysis, such as the application of the theory of linear semigroups to

non linear partial differential equations.

Key-words: partial differential equations, reaction-diffusion systems, combus-

tion.



LES EQUATIONS DE LA PROPAGATION
D’UNE FLAMME PLANE INSTATIONNAIRE:

.EXISTENCE ET UNICITE

Résumé: On étudie dans ce rapport un systéme d'équations aux dérivées par-
tielles non linéaires modélisant la propagation instationnaire d'une flamme
plane dans un mélange gazeux & faible nombre de Mach. On montre 'existence
et I'unicité de solutions faible et classique, selon les hypothéses sur les données
initiales et sur la dépendance en température des taux de réaction. L'argument
essentiel de I'analyse consiste a introduire une coordonnée Lagrangienne, ce qui
découple le systdme d'équations en deux sous-systémes: un systéme non
linéaire de réaction-diffusion pour les variables de température et de composi-
tion, et un systéme linéaire pour les variables de vitesse et de pression. Le
premier systéme est résolu en utilisant des outils classiques de I'analyse fonc-
tionnelle (application de la théorie des semi-groupes aux équations aux dérivées

partielles non linéaires), et le second systéme est traité en une deuxiéme étape.

Mots-clés: équations aux dérivées partielles, systémes de reaction-diffusion,

combustion.



1. INTRODUCTION

The mathematical analysis of systems of ordinary or partial differential
equations arising from the theory of gaseous combustion has received an
increasing attention in recent years: one can mention for instance several stu-
dies of the equations of the stationary planar flame (see [2],[8]) or of the two-
dimensional zero Mach number model (see [8]), and in a different domain some
mathematical works dealing with the existence and the asymptotic behaviour of
the solutions of the Kuramoto-Sivashinsky equation for the flame front instabili-
ties {(see [1].[8]).

We present in this paper a new rigorous mathematical result which con-
cerns the time-dependent'. one-dimensional flame propagation. More precisely,
we consider the governing equations of an unsteady planar flame propagating in
an infinite channel. These equations, which we recall in Section 2, are written
using the classical isobaric approximation for reacting flows in open domains
(we first consider a simplified one-step chemical mechanism; the extension to
chemically complex flames or to non adiabatic flames is given at the end of the
paper). With appropriate hypotheses on the initial data and on the temperature
dependence of the reaction rate, we show the global existence and the unique-
ness of both weak and class;cal solutions of the resulting initial-boundary value

problem.

The crucial point in our analysis (and in fact the point which restricts our
work to the one-dimensional case) lies in the introduction of a Lagrangian space
coordinate. This change of coordinates has the effect of decoupling the
reaction-diffusion equations for the combustion variables (temperature and
mass fraction of the reactant) from the remaining equations for the hydro-
dynamical variables (density, velocity and pressure). The reactive diffusive sys-
tem involving the temperature and the mass fraction takes the form of two cou-
pled nonlinear heat equations and is known as the thermo-diffusive model for the
flame propagation. This parabolic system of partial differential equations is
solved in a first step, using classical tools of nonlinear functional analysis such
as semigroups generated by linear operators in functional spaces. The remain-
ing subsystem for the hydrodynamical unknowns is then solved in a second step,
the temperature being considered given. This provides the existence and unique-
ness of solutions of the Lagrangian system. In particular, the analysis shows that

no initial data for the hydfodynamical variables need be given for the initial-
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2. GOVERNING EQUATIONS OF THE FLAME PROPAGATION

2.1. Reactive flow equations in one dimension

We are interested in the description of a compressible heat-conducting
chemically reacting gaseous mixture with the assumption of a one-dimensional
geometry. For the sake of simplicity, we first assume a one-step chemical
mechanism nd4 - nB : the mixture is considered to be made of only two species,
the reactant A and the product B. The extension to the case of a chemically

complex flame will be investigated in Section 8 below.

The reactive gas flow is then described with the usual variables p, v , P, T
(denoting respectively the total density, velocity, pressure and temperature of
the mixturé) and an additional variable for the mixture composition, the mass
fraction Y of the reactant A [ pY is the separate density of the reactant and
p{1-Y) is the density of the product]. The time-dependent flow of this reactive
mixture is then described by the following set of equations (see [5],[7].[14]):

pr+ (p‘u.)‘ =0,
pu; + puuy = — Py, .
peyTr + pucy Ty = (AT)e = Qu(Y.T) + P, + uP, (2.1)
pYr + puYe— (pDY )¢ = -mau(Y,T),

mP

pT = "o

where ¢ and 7 denote respectively the space and time variables; c, is the
specific heat at constant pressure of the mixture, A the heat conductivity, D the
diffusion coefficient of the reactant A, m its molecular mass, and R is the
universal mass constant. The effects of viscosity and gravity are neglected.
Lastly, § (>0) is the amount of energy released by the exolhermic chemical
reaction per unit mass of the reactant, and w(Y,T) is the rate at which this reac-
tion proceeds. From the Arrhenius law and the law of mass action, Lhis reaction
rate is given by:

n -E

e BT (2.2)

o(Y,T) = B(T) —’7’%
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where E is the activation energy of the reaction (a constant), and B(T) is some

given function of T (which usually has a polynomial type dependence on T).

2 2. Eulerian form of the flame propagation equations

For writing down the governing equations of the unsteady flame propaga-
tion, we will use the so-called "classical approximation of combustion": the flame
propagation is essentially a very subsonic, almost isobaric phenomenon. In other

words, the Mach number M of the flow is very small and consequently the pres-
sure variations are also small: P(§,7) = Po + p(&7) , with —1% = 0(M? «< 1. For
this reason, we may set P = Pg = Constant everywhere except in the momentum

equation (2.1.b) (see [5],[7] for a more detailed discussion of this approxima-

tion). The system (2.1) then reduces to:

pr+ (pu)¢=0.
PCyp TT+ PpUCy Tt - (}\Tt)e = Q C«J(Y,T) ’
pY +puly— (pDY Qe = —mu(Y.T), (2.3)
L _ mPO .
pT - R '
pur+ puug= — P¢. (2.4)

Some authors use the system (2.3) alone, repl_acing the momentum equa-
tion (2.4) by P = Pg (see [14]). This is legitimate in one spatial dimension since
the only role of the relation (2.4) is the calculation of the small pressure varia-
tion p. But this simplification is no more valid when the space dimension N is
higher than one, since it eliminates N scalar momentum equations and only one

variable p. For this reason we will mainly consider the full system (2.3)-(2.4).

The flame propagation equations (2.3)-(2.4) will be investigated with the fol-

lowing upstream and downstream boundary conditions:
Y(~wo,t) =Y, , T(~wot) =Ty, u(-=t)=u’, p(-=t)=0, (2.5)

(whereY, >0, T, >0, u® € R are given constants) in the fresh mixture, and:

Y.
Y(+o,8) =0, T(+ot) =Ty =Ty + —f:-?—n— , (2.8)



in the burnt gases.

2.3. Lagrangian form of the governing equations

From now on we will assume that the Lewis number Le = A . and the

pepD
specific heat ¢, are constant. We will also assume that the thermal conductivity
of the mixture A is proportional to the temperature T; this additional assump-

. tion will be discussed below, after the derivation of the Lagrangian equations. -

We now derive an alternate formulation of the governing equations (2.3)-

(2.4) using the usual mass-weighted Lagrangian coordinate:

_ x.t) '
z = [ p(e.t) de'. (2.7)
(0.t)

Although the use of this transformation is classical, we detail the calculation for
sake of completeness. Let us define a Lagrangian coordinate (i.e. a variable
whose value, defined at time 7 = 0, remains constant during the flow for each

fluid particle) by setting:
¢
z=[ p(¢.0) at.

We also set ¢ = 7. Then z(¢,7) represents the Lagrangian coordinate of the parti-

cle which is located at the abcissa ¢ at time 7 and the last relation is to be read
¢
as z(¢,0) = f p(t'.0) d¢' . Inversely, ¢(z,t) is the position at time ¢ of the fluid
0

particle whose Lagrangian coordinate is . Therefore we have, by deﬁnit.iori:,
g=u. or t(z.t) = ultz.tht],

We can then write:

fat) |
- RO b Azl )] - o)l e(0).t]

¢z.t)
+ [ B0ty ar
(0x) Ot
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Hxt)
u)ete.)] - GulgDL)+ [ e ag

&z.2)
= [p: + (pu)el(€t) d¢ = 0,
(0.t)
whence:
Hz.t) ( ) ¢(z.0) ( )
¢.t) d¢ = p(¢,0) d&¢ = =,
o foo

which is exactly (2.7).
Diflerentiating (2.7) with respect to z gives:

1

_ 8 _ .
1=ptz . or 3o 8E0) = TR eT

We then have in matrix form (writing simply u(z,t) for u[¢(z.t).¢ D:

tE: & ] _ [p" u
o

Tz T

which implies:

:I:e Ty - P —u] ’
te t,]-[o pu | (2.8)

REMARK 2.1: The mass balance equation (2.3.a) has been crucial for introducing
the new variable z. This amounts to noticing that a variable X satisfying

Xe=p, X = —pu [ie (2.8)] could have been introduced directly, since (2.3.a)

. 3 8 .
insures that Py (Xe) = T (X.) .

We can now derive the Lagrangian form of the flame propagation equations.
For any quantity F we have F, = Fy — puF, , F¢ = pF, . and the system (2.3)-
(2.4) becomes:
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pr +p%u, =0,
‘Ut""P:z:O.

- Qw 1
Tt - Cp p + cp ()\PTz)z ’ (2-9)

n=-m§+@%n».

mPo
R

pT =

To nondimensionalize these equations, we refer the mass fraction to

Y, mbP
Yo=Y, , the temperature to Tg=T, -~ Ty = L O , the density to pg = 2.
CP m RTO
Denoting (A\p), the constant value of A\p = —Rﬁ% , we relate the time unit {5 and
. . ,
the "Lagrangian unit" zo by: z§ = L:P_)_g_ . The velocity is then referred to
¢

Ug =

and the pressure variation to pg = poud .
Poto

Setting 8 = T — T, and denoting by ) , 14 ,P .4 ,p the nondimensionalized
variables, we obtain the following expressions for the Lagrangian equations (2.9)
and boundary conditions (2.5)~(2.6):

8, = 6., + Q(Y.8),
-~ 1~ ~ (2.10)
Ty = Ve - O(F.8);
(6+a)p=1,
G, =8, , : (2.11)
Uy +ﬁz =0 ’

8(-w,t)=0 ,8(+=t)=1,
Y(-wt)=1, F(+=t)=0, (2.12)
G(-=,t)=10° ,p(-=t)=0. 4

where z and { now represent the nondimensionalized Lagrangian coordinates,

T, . .
a= F_ii'— is a nondimensional heat release parameter, and
b~ fu
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Q(? 6) = Q R t(,-‘;i is the normalized reaction rate. In the sequcl, we will
' C’ mPo p

assume using (2.2) that 01 is given by:

n(?.é) =y f(a) .

where f is a positive continuous function satisfying f(0) =0 .

REMARK 2.2: The assumption f (0) = 0 is not fulfilled in view of the expression
=£

(2.2) of the reaction rate w since e®™ x 0. This is the well known "cold boun-

dary difficulty”, on which a lot has already been said (see [5]). Let us just point

out that this hypothesis is necessary for the mathematical problem (2.10)-(2.12)

to be well-posed. =

1t should be emphasized here that the use of the Lagrangian coordinale

- (2.7) uncouples the equations (2.10) for the combustion field (8.Y) (which take
the form of a purely diffusive reactive system) from the equations (2.11) for the
hydrodynamical variables (,%2,p). Moreover, the form of these hydrodynarmical
equations leads to think that no initial data for the density, velocity or pressurc
is needed to determine the profiles of these variables at positive time values:
these hydrodynamical profiles 2(..t), #(..t), p(..t) for t > 0 only depend of the
temperature profiles @(t) for t' 2 0 ; we first have to study the nonlinear para-

bolic system (2.10), and {2.11) will be investigated in a second step.

REMARK 2.3: The assumption Ap = Constant , or % = Constant only aflects the
expression of the diffusive terms in the temperature and mass fraction equa-

tions: these terms take the form ®,, and 21;)7,, instead of [(A\p)T:]. and

T}e—[()\p))’,], where, in complete generality, Ap is a function of T and Y.

Nevertheless, it can be noticed that this hypothesis (which is rather classical in
combustion theory; see [11]) does not change the preceding remarks about the

nature of the Lagrangian system (2.10)-(2.11). We hope to extend our mathemat-

ical analysis to the case of a non constant —;3, ratio in a forthcoming paper. =
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'REMARK 2.4: In the classical nondimensionalization of the Eulerian equations

(2.3)-(2.4) (see [5].[7]). the length and time scales ¢ and 7y = ¢, are related to

~ the thermal diffusion coefficient (——A—)o = (?;p)o and to the velocity unit u, by
PCp PoCp ,
the identities:
¢§ _ (Wodo _ &0
— = 8. and Ug = —.
To Pocp To

In our case, the units used above to nondimensionalize the equations (2.9) have
essentially been chosen in order to simplify the Lagrangian system (2.10)-(2.11),
which will play a crucial role in the sequel. Therefore, these units are not quite

usual, and the above relations are replaced by:

(N’)o

f 5(¢.0) d¢ and u ‘°f p(¢.0) d¢.

& t
since z¢ = jo' p(£.0) d¢ = poto { 5(¢.0) d¢ .=
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3. ASSUMPTIONS AND MAIN RESULTS

3.1. Statement of the problem

The aim of this paper is to investigate the following version of (2.10)-(2.12):

®t - ®zz = Q(Y'Q) = Y"f(@) '

Yer _
Yt"‘i?- a(y.e) .
B+a)=1, (3.1)
u, =9, , forreR,t €R;;

6(z.0) = 8o(z), Y(z.0) = Yo(z):

8(-w,t)=0, B(+=t) =1,
Y(-=t)=1, Y(+=,t)=0, (3.2)
u(~=t) =u?;

u +p, =0,

p(—oo't) =0. (3'3)

We will also study the corresponding normalized Eulerian formulation in

conservative form:

Prt (P'U-)£=0,
(ou)r + (pu®)+ pe =0,

(£0). + (pud); - () = 0V 0)

LY (3.4)
1)+ (our ) - 2(-4) = - p0(Y.0)
@+a)p=1, forz e R,t € R,

8(z.0) = 8,(z) . Y(z.,0) = Yo(z) .

B(—=,t) =0, O(+=,t) =1, .
Y(~2,t)=1, Y({+,t) =0, (3.5)
u(=wt)=u’, p(-=t)=0.

It can be noticed here that initial data are prescribed only for the tempera-

ture and mass fraction (8,Y) and not for the hydrodynamical unknowns (psu,p).



-11-

For the investigation of these two problems, we will mainly focus on two

types of solutions, which we define precisely below:

DEFINITION 3.1:

(8.Y,p,u,p) is a weak solution of problem (3.1)-(3.3) if the three following
properties hold:

(1) (8,Y.p.u,p) €[L5(RxR,)]® and (8,Y,p,u,p) is a solution of (3.1)-

(3.3.a) in the sense of the distributions:

‘I: [~ 8n, +8n, — O] = [ 8gn(.0),
R, R
Lo T Tmt ge¥nm 0] = [ Yon(.0),
{ [(8 + a)on - 7] = 0,

xR,

4 [un, — ne] = [ 8m(.0).
xR, R

{m —(un +pn:] = ‘4 u(.,0)n(.,0), for any n € D (IRxIR,).

(2) The boundary conditions (3.2) hold in the classical sense for ¢ > 0 and
(3.3.b) holds in the following weak sense:

Vi¢>o0, 3p e L¥R), lim [p(z.t) - ps@)] = 0, (3.6)

(3) The following inequalities (which are necessary from a physical stand-

point) hold:

8(z.t)20, 0=2Y(z,t)<1 ae.onRxIR,.

Moreover, 8 € L;5.(R,,L*(R)) .=

DEFINITION 3.2:

A weak solution (8,Y,p,u,p) of problem (3.1)-(3.3) is a smooth solution if
and only if: ‘ '

(1) All the functions and all the partial derivatives appearing in the equa-

tions (3.1) and (3.3.a) are continuous with respect to both variables z

and ¢ on R x IR, .
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(2) The boundary conditions (3.2) and (3.3.b) are fulfilled in the classical

sense fort 20.»

Similar definitions hold for the solutions of (3.4)-(3.5).

3.2. Assumptions and notations

Before stating the main hypotheses which will be used for investigating the

two above problems, we need to introduce two functions y and 7, of C*(RR) satis-
fying:

l-y:ﬂ on{-w,-1], 0sys1 on[-11], y=1 on[1,+=);

Nn=1-7. (3.7)

We will set:

l vo(z) = Bp(z) — 7(z) .
(3.8)

Yo(z) = Yolz) - 7i(z) .
The following assumptions will be used in the theorems stated below:
po€ L¥R), Yo€ L¥(R):

[ 8y € L=(R), @9(z) 20 ae.,
Yo(z) € [0,1] a.e.;

Le >0 and n € IN* are given; (3.9)

{ f€CR.R,), F(0)=0,
V¥ >0, f is Lipschitz—continuous on [0,3] .

Moreover we will sometimes need some of the following more technical

hypotheses:
3¢, 50, Voem,, [f@®)sC19]; ' (3.10)
vo € H3(R) , ¥o € H¥(R); (3.11)

| f € CHRLRY)

1 e, (3.12)
Fo> 5 P < e
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3u> fgﬁg@o(x)lzl“<+w. ' (3.13)

8
28 '
vo € HYR), ¥o€ H{R): (3.14)

f € C¥R,.R,).

V¥ >0, fz is Lipschitz—continuous on [0,9] ; (3.15)

From now on, we will denote L? = L?(R) , for p € [1,+=), and |lgll, = ll¢l|,,
or li(g.¥)li, = max (lgll;» . I¥ll,,) . Furthermore, for m € IN* , we set

H™ = H™(R) = W™ *(IR) .

3.3. Results coﬁcerning the Lagrangian formulation

The first of our theorems deals with the problem (3.1)-(3.2) without the

pressure variable:

THEOREM 3.3:
Assume that the hypotheses (3.9) and (3.10) hold. Then there exisls a
unique weak solution (©.,Y.p,u) of (3.1)-(3.2) in IR x IR, satisfying:

8-v,. Y-y, € C(R,.L?). ' (3.186)

Furlhermore, this solulion salisfies:

8,Y,p € C(R,,L”) N C(R;,.CY(R)),
8-7, Y-, € CY(R;.L?) , (3.17)
u € C(Ry,C(R)NL™). =

Concerning the complete system (3.1)-(3.3), we have the two following

results:

THEOREM 3.4: Assume thal the hypotheses (3.9)-(3.13) hold. Then Ltherc exisls a
unique weak solution (8,Y,p,u,p) of (3.1)-(3.3) in R x IR, salisfying (3.16). Morc-

over this solution satisfies (3.17). =
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THEOREM 3.5: Assume that all the hypotheses (3.9) to (3.15) hold. Then there

exists a unique smooth solution of (3.1)-(3.3) in Ik x IR, . This solution salisfics:

8,Y.p € C(R.CYR) N C{R.CHR).

u € C(R..C¥R)) N CYR.C(R)). = (3.18)

These three theorems will be proved in Sections 5 and 6 below.

3.4. Results concerning the Eulerian formulation
Analogous results hold for the Eulerian problem (3.4)-(3.5):

THEOREM 3.6: Assume that the hypotheses (3.9)-(3.13) hold. Then there exists a
unique weak solution (8.Y.pu,p) of (3.4)-(3.5) in R x R, satisfying (3.18) and:

u,p € C(RxR,.,R).

Moreover, this solution satisfies (3.17). =
THEOREM 3.7: Assume that all the hypotheses (3.9) to (3.15) hold. Then there
exists a unique smooth solution of (3.4)-(3.5) in R x R, . This solution satisfies

(3.18).

The proof of these two last results is detailed in Section 7.
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4. RECALLING SOME BASIC RESULTS FROM SEMI-GROUP THEORY.

In this section, we briefly recall some classical results from functional
analysis which will be needed in the following sections. We refer the reader to

[3).[4].[10].[15] for more details and for the proofs of these results.

4.1. Semigroups of linear operators

Let us first recall some basic definitions and results about maximal mono-
tone linear operators:

Let H be a real Hilbert space and A be an unbounded linear operator
defined on the subspace D(4) ¢ H . The operator 4 is said to be maximal mono-
tone if and only if: .

VueD(@A), (Auu)20;
VveH, SueD{A), v=u+Au .= (4.1)

The basic property is the theorem of Hille-Yosida:

THEOREM 4.1: (Hille-Yosida)
Let H be a real Hilbert space and 4 be a maximal monolone lincar operalor
defined on the subspace D{(A) C H. Foruge D(A), the problem:
du

— = P
=t +Au =0 fort 20,

u(0) = ug . (4.2)

has a unique solution in C{IR,,D{4)) N C(R,, /1) .

Let u(t) be the solution of (4.2) for £ 20 ; we sct w(t) = R(l)ug . where
R(t) is a linear operalor from D(A) into /1. Since it follows from (4.1) that D(4)
is a densc subspace of /1, we can extend R{t) to the whole space //; the result-
ing operator, which we still denote by R(t) , is (by definition) the linear semi-
group gencrated by —A. '

Let us finally rccall that a maximal monotonc operator A is sclf-adjoint if

and only if: V (w,u) ¢ D(A)?, (Auv)=(uAv). =
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4.2. Nonlinear equations

We are going to consider some problems of the form:

%1-:-+Au = F(u) fort 20,
u(0) = up: (4.3)

where 4 is a linear self-adjoint maximal monotone operator, ug€ H and
F € C(H ,H). Before stating results about the existence of solution of this prob-

lem, we precise which type of solution will be considered:

DEFINITION 4.2:

u is a classical solution of (4.3) on an interval [0,T) if and only if u satisfies

{4.3) in the classical sense, i.e. with:

u € CY[0,T).H) N C([0.T).D(4)).

w is a weak solution of (4.3) on [0,T) if and only if w € C([0.T).H ) and:

t
VteloT), u(t) =R(t)uo+{R(t—s)F‘[u(s)] ds .= (4.4)

We can then state the two following theorems:

THEOREM 4.3:

Let H be a real Hilbert space and A be a linear self-adjoint maximal mono-
tone operator defined on the subspace D{A) c H. Assume that F is a Lipschitz-
continuous mapping from H into itself. Then for any ugp € H, there exists a

unique weak solution of (4.3) in IR, and this solution u is classical on R, .

Moreover, if ug € D(4), then u is a classical solution on IR, .=

THEOREM 4.4:

Let /7 be a reai Hilbert space and A be a linear self-adjoint maximal monoe-
tone operator defined on the subspace D(A) € H. Assume that F is a Lipschitz-

continuous mapping from any bounded subset of A into H.Then for any ug € H,
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there exists Tmey > 0 such that a unigque weak solution of (4.3) exists on
[0,Tmas) ; this solution u is classical on (0,7 may) and the following alternative

holds:

Either: T =+ =,
Or: lim |lu(@)ly =+ .
=T e

Moreover, if ug € D{4), then u is a classical solution on [0,Tmex) - *

4.3. Application to the heat equation

We now consider the case H = L% and the operator:

D(A)=H? » L%,

A: Y 2 T Pxr

Problem (4.3) then becomes a non linear heat equation; Theorems 4.3 and

4.4 apply to this case because of the following lemma:

LEMMA 4.5:

A is a self-adjoint maximal monotone operator. s

Let S(t) be the semigroup generated by —A; the following properties of this

sem.igroup will be useful in the sequel:

LEMMA 4.6:
The following properties hold for the semigroup S (t):

Vpel[lw), VopeL2nNL?, VieR:, [IS(t)ell,, s llell:

Vecl?nL>, VteR,, S{t)pe C(Ry.L™). =
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LEMMA 4.7:
Let ug € L? . The following explicit expression holds for S(t)ug:

1 dz=ut®
[S(t)uol(z) = /e 4 ugly)e * dy .= (4.5)
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5. EXISTENCE AND UNIQUENESS FOR THE COMBUSTION VARIABLES

5.1. Statement of the problem and main results
The aim of this section is to study the subsystem of the reaction-diffusion

equations for the temperature and mass fraction:

8, -8, =((Y,8) =Y"f(8),
Yg-%=—ﬂ(}’.8). forz e R,t € R;;

8(2:.0) = 80(2:) N Y(x,O) = Yo(z) . v (5,1)

O(-oo,t)=0,8(+=t)=1,

Y(-ewot)=1,Y(+=t)=0; (5.2)

Before stating the results concerning the existence and uniqueness of a
solution of problem (5.1)-(5.2) we introduce a new formulation of this problem.
In order to apply some of the results recalled in the preceding section, we define
new unknowns {p,¥) satisfying zero boundary condition:. we therefore use the

functions 7 and 7, introduced in (3.7), define (pq,¥p) as in (3.8) and set:

{ p(z.t) = 8(z.t) ~ ¥(z), - (5.3)

Y(z.t) =Y(z.t) - nlz);
Finally we extend the domain of definition of f by setting: f =0onIR_, and we
define g by:

0 if¢<0,

The system (5.1)-(5.2) can now be rewrillen as:

ot~ Pz =S+ g(W +71) + Y2z

v:—%’g—=—f(¢+7)y(¢+n)-yi: (5.5)

Le
v(z.0) = po(z) . ¥(x.0) = Yo(z) ;

Bt} = p(+ol) = Yl=wo.b) = Y(+m,L) = 0. (5.6)
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The next lemma shows that problem (5.5) does belong to the general frame-

work of the preceding section. Consider the linear operator:
D(A) = H3xH? - L®xL%,

(p¥) » (-fazz-"_[;‘e—' .

We then have:

LEMMA 5.1:

A is a maximal monotone self-adjoint operator. =
PROOF: 1t is obvious from Lemma 4.5. =

REMARK 5.2: Let S? be the continuous linear semigroup generated by -A. The

two following properties follow easily from Lemma 4.6:
Vp elLw), V{py) € L3xLE N LPxLP , Vi € R, [IS3t)(p¥lp S o W)llp

V (p.9) € L3xL2 N L=xL=, S*()(p.¥) € C(IRy,L=XL") .
We can now make precise what the solutions of (5.5) may be, in view of
Definitions 3.2 and 4.2. For the more general problem:

¥t — Pz = he(p¥.2) .
Yt — %’:— = ha(p.¥.2) . (5.7)
o(z,0) = po(z) , ¥(z.0) = Yo(z) :

we state:
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DEFINITION 5.3:
(p.¥) is a weak solution of (5.7) on R x [0,T) if and only if:

e.¥ € C([0.T).L%) . H(p.¥) € C([0.T).L3xL?),

VieloT), (py)t) = 5%t )povo) + { S%t-s) H(p.¥)(s)] ds .

where H(p,¥) = [h1(p.¥.2).ha(p.¥.7) ]

A weak solution (p,9) of (5.7) is a classical solution on the interval X of R,
if and only if: ’

A classical solution (@,¥) of (5.7) is a smooth solution if and only if (p,¢) and
all the partial derivatives appearing in the equations (5.7) are continuous with

respect to both variables z and {. =

DEFINITION 5.4:

(8,Y) is a weak (resp: classical, smooth) solution of (5.1) on R x [0,T) if
and only if (8,Y) is related to a weak (resp: classical, smooth) solution (p,¥) of
(5.5) on R x [0,T) by (5.3), and satisfies:

8 € Ljge(R+.L7);
O(z,t)20, 0sY(z,t)<1 ae.onRx[0,T).»

REMARK 5.5: It is easily checked that a weak solution of (5.5) is a solution in the
sense of the distributions: let (¢,¥) be a weak solution of (5.5) on R x R, , and
let 7 € D(RxR,). Assuming that Supp(n)c (-M.M)x[0,T) . we set:
K=(-MM)x[0,T)and K, = (-M.M) x (¢,T) . Since (p,¥) is a classical solution
onR x K, , , ¥ and 7 are in H'(K,). We can then apply Green’'s formula to get:

M

‘5[ [~ent (@ + MM = Fp+ V) gl¥+7)n] = L p(z,e)n(z.e) dz .

As ¢ € C([0,T),L?), we can take the limit € - O in the last relation to get:

M
4[ —om —(p+ PNz — Flp+ N g@+ 7] = L oz )n(z.0) dz ,
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which (together with the analogous relation for ) shows that (¢.¥) is a solution
of (5.5) in the sense of D'(RxR,).
. In the same way, a weak solution (8,Y) of (5.1) is a solution in the sense of

distributions. s

We are now ready to state the main results about problems (5.1)-(5.2) and
(5.5)-(5.8). For the sake of simplicity, we are using both the new unknowns (p,¥)
and the old ones (8,Y) .

THEOREM 5.6:

Under the hypotheses (3.9) and (3.10), there exists a unique solution (8,Y)
of problem (5.1)-(5.2) on R x R, . The corresponding solution (¢.¥) of (5.5)-(5.6)

satisfies:

0.9 € C(Ry.L2 N L™) A CYRLLE) N C(RLH?)

COROLLARY 5.7:
Under the hypotheses (3.9), (3.10) and (3.15), the solution (8,Y) of (5.1)-

(5.2) is a smooth solution on R x IR;.

Moreover, if pg. 90 € H*, (8.Y) is a smooth solution on R X Ry.=

5.2. A lemma for systems of type (5.5)

We begin the proof of the above theorems with the next result, which will be

used several times in the sequel:

LEMMA 5.8:

Let fo and go be two bounded Lipschitz-continuous functions on R, with

fo(0) = 0, go{0) = 0 ; consider the problem:

@ — oz =fole+7)gol¥ + 71) + Y2z »

Y- Y= et ) gty + ) - T (5.8)

o(z,0) = po(z) . Y(=.0) = Yo(z) .
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For any (po%o) € L2xL? , the problem (5.8) has a unique solution (p.¥) in

C(R,.L 2x1, z); this solution is a classical solution on R, :

oy € C(RLH?) N CYRLH?) . »

PROQF: Define the mapping Fq by:
Folp)=[fole +7) gol¥ + 7)) + 7z . — fole +7) go(¥ + 71) - % ]

for p,¢ € L? . In view of Theorem 4.3, it suffices to show that Fy is a Lipschitz-

continuous mapping from L2xL? into itself.

Let h = fole + 7) go(¥ + 71) . It is classical to show that h € L? when
@.¥ € L2 Let us simply check that h is Lipschitz-continuous from L2xL? into L?.
Let M, , M, ,L; , L, be real constants such that:

VeéeR, [Folé)l =My, lgo(€) s M,
V(em) € B2, |fol®) - fom| SLyl6=nl. |go(8) = golm)] S Lyl¢ - nl .
For ¢1.%1 € L?, pay2 € L?, we have:
hy = ha= folp1+y) go(¥1+71) — folpaty) golvetr1)

= folp1+7) [9o¥1+71) — go(¥2+71)] + go(¥at+71) [f olps+7) = folpa+7)]:

whence:

A

lhy — hella S My Ly |9y — 2l + My Ly oy - allz

A

thLy +MyL;] ll(p1 = 92, %1 — “ﬁz)“a '

and the proof is complete. =

5.3. Uniquenéss

The uniqueness of the solution (8,Y) of problem (5.1)-(5.2) is a consequence

of the following Proposition:
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PROPOSITION 5.9:

Let T > 0. Under the hypotheses (3.9), there exists at most one solution of
problem (5.5) in C ([0.T).L3xL?) N L=([0,T),L=xL"). =

PROOF: Let T >0, and let (p1.¥3) and (p2.¥2) be two solutions of (5.5), with
vi.¥; € L=([0,T),L*") for i = 1,2. Choosing U € R such that ||(@s, % )¢l = U for

i =1,2and ¢ € [0,T), we can consider two functions fy and gy satisfying:

fu is positive, bounded and Lipschitz—continuous on R,

fol®)=F(8) it 1¢ISU. (5.9)
gy is positive, bounded and Lipschitz—continuous on R,
[ gu(§)=g(8) it ¢S U, (5.10)
(¢1.%,) and (pa.¥2) are then solutions of the following problem:
0t — @az = fulp + V) gu(¥ + 71) * Yz
W - "L’: = fulp+ N ou+ ) - = (5.11)

#(z,0) = polz) . ¥(2.0) = Yolz) .

Applying Lemma 5.8, we get (¢1.%1) = (p2,%2), which ends the proof. =

5.4. Global existence

We show in this section the local existence of a solution (8,Y) of problem
(5.1)-(5.2):

PROPOSITION 5.10:

Assume that the hypotheses (3.9) hold. Then there exists Tmex € Ry U {4}
such that a solution (8,Y) of problem (5.1)-(5.2) exists on IR x [0,Tmax). More-
over, (8,Y) is a classical solution on (0,Tmey) . and the following alternative

holds:

Bither: Tmpex =+ =,
Or: llirm 1Bt =+ .=

max

(5.12)
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The proof of this proposition is divided into two lemmas:

LEMMA 5.11:

Under the hypotheses (3.9), there exists Tyax € R; U {+=} such that a solu-
tion (p,¥) of problem (5.5) exists on IR X [0,Tmay). Moreover, the following pro-
perties hold:

9 € C([0.Tmax).L?) M CU(O.Tmex).H?) N CH(0.Tmax).L?) ; (5.13)

VT < Toue. o9 € L7[OT)LY) : (5.14)

Either: Thpax =+ =,

or:  lim [lp9)(t)e =+ .= (5.15)

PROOF: a) Let us first show the existence of a solution on R x [0,T) for small
positive T. For U 2 |[{(go.¥0)ll. + 2 , we define fy and gy as in (5.9)-(5.10) above
and consider again the problem (5.11). Lemma 5.8 applies again and gives a solu-

tion (¢y,¥y). Denoting:

7
Fulowu) = fuleu +9) gu@u + 71 + 7z . = fulew + Ngulyu + ) - - 1.
and using Remark 5.2, we get:

H
(puYu)(t) = St ) (po¥o) + { S%(t-s) Fy[(pu.vu)(s)l ds , (5.18)

t
ey ¥u) (e 5 povollle + [IFul(er ¥u)(s)]lls ds .
(V]
Since fy » gv and 7., are bounded, we can obviously find a constant Cy such
that: V (¢1.91) € L=xL™, IFy(¢1.91)lle £ Cy . This implies:

ey o X)ll= S (wo¥all= + Cu ¢

Let ty = —C—la— .Fort € [0,ty), we have:

I(eo ¥u) (Ol < ll{@ovodlle + 1,



-28 -

whence:
llew(£) + 7l S {wo.¥olll= + 25 U .

llvu (2) + il < I {eo¥ollle + 25U .

This implies that (py.¥y) is a solution of (5.5) on Rx[0,¢y) ; this solution
satisfies: py.¥y € C([0.8y).L% N L=([0.ty).L") . and
oy by € C((0.ty).H?) N CH{(0.t0).L7) .

b) Since a solution of problem (5.5) exists locally in the neighbourhood
[0,ty) of O, it is classical to show the existence of a solution (p,¥) satisfying
(5.13),(5.14) and (5.15) on a maximal interval [0,Tmax). For sake of complete-
ness we briefly recall the proof of (5.15): let us assume that Tpax < + © and that
there exists a sequence (t,;, ) men such that:

im ¢ = Tmax
m -oe

dvs>0, VmeN, p9)tn)las V. (5.17)

Let U =V + 2. For m € N, we can argue as in a) above to show the existence of
a solution of (5.5) on the interval [ty . t,, + ty). Since ¢y does not depend on m
we can choose the latter so that: £, + ¢y > Tmax » which contradicts the assump-
tion that [0,Tmay) is 2 maximal interval for the existence of a solution of (5.5).

(5.17) is therefore wrong and the alternative (5.15) holds. =

The solution (p,¥) of (5.5) defined in Lemma 5.11 satisfies the boundary con-
ditions (5.8) on {0,Tmay) - For ¢ € (0,Tmey) . we have indeed p(t=,t) = Y(z=,t) =0
since p,¢ € H! (see [3]).

We can now end the proof of Proposition 5.10 by using the maximum princi-

ple for parabolic partial differential equations:

LEMMA 5.12:

Let (p.¥) be the solution of (5.5) defined in Lemma 5.11. For
(z.t) € R x[0,Tnay) . define:

8(z.t) = p(z.t) + 7(z) .
Y(z.t) = Ylz.t) + ni(z).

Then the following inequalities hold:
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6(z,t)20, 0sY(z,t)=1 ae.onRx [0, ey .= (5.18)

PROOF: a) Let us first show that Y 2 0. This is essentially the maximum princi-
ple.. For any function Z of LZ(R) we define as usuak
Z-=max(0,-Z),Z* =max (0,Z). For t €(0,Trey) ., it is known that
Y (t) e HY, (9(t) + 1)~ € H) (R) (see [12]). It follows easily from the proper-
ties (3.7) of 7 and 7, that (y(t)+7) =Y €H! . Since (p.9) is a

classical solution of (5.5) on (0, T pmay), We can write:

Yoo Y™
Yo Y™ - —S—— = - f(8)g(Y) Y.
Le
But g(Y)Y™ = 0 from (5.4); integrating by parts the last relation, we get.:
dr1 -2 1 -y 18 =
LU LI0P) + LT = o,
whence:

diit—[ 4()")2] S0 fort € (0. max). | (5.19)

On the other hand, it can be checked easily that the mapping ¥ » (¥ + 7;)” is
continuous from L2 into itself. Thus Y~ € C([0,Tmex)L?). Since é'()")2 is

decreasing on (0, T ny) from (5.19) and {[Y'(t=0) 2 = 0 from (3.9), we obtain:
Y (t) =0 fort € [0,Tmay) .

or equivalently:

Y(t)20 fort € [0,T oy -

b) Using (Y — 1)* and @~ instead of Y~ gives the other inequalities (5.18) as

in a) above. =
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5.5. Regularity of the solution

Before showing that a global solution does exist (i.e. Tmex = + =), we can
investigate the smoothness of the solution (8,Y) defined in Proposition 5.10; this
is the aim of this section.

A first result concerning the regularity of the solution is the next Lemma,

which is an obvious consequence of Theorem 4.3 and Lemma 5.11:

LEMMA 5.13:
If (po.¥o) € H?xH? , the solution (8,Y) defined in Proposition 5.10 is a

classical solution on [0,Tpey) . ®
Without any further assumption on f, we also have:

LEMMA 5.14: .
The solution (8,Y) defined in Proposition 5.10 satisfies:

(@.Y) € C([O'Tmax)-Lw)- - (5.20)

PROOF: Since the imbedding H?c L™ is continuous, we already have:
(8.Y) € C{(0,T max).L ™) from (5.13). Therefore we only have to show that:

l(e.¥)(¢) - (v0.¥0)ll- » O whent 0. (5.21)

We use again the notations of the proof of Lemma 5.11. Let U > (@0 ¥olllo + 2.
For ¢ > 0 small enough, (p.¥) is a solution of (5.11) and (5.16) implies:

e ) (t) = (po¥ollle S 1ISHeo¥o) — (po¥ollle + Cu .

(5.21) follows now immediately from Remark 5.2. =

The next proposition shows that, with the additional assumptions (3.15) on
f. there exists a stnooth solution of (5.1)-(5.2):

PROPOSITION 5.15:
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Under the hypotheses (3.15) on f, the solution (8,Y) of problem (5.1)-(5.2)
defined in Proposition 5.10 is a smooth solution on IR x IR;. The corresponding

solution (g¢,v¥) of (5.5)-(5.8) satisfies:

@Y € C(0,T max). H*) M C1(0.Tmax)-H?) N C3((0, Trmex).L?) . =

REMARK 5.16: This regularity result holds without any assumption on the regu-
larity of the initial data (pg.%o) - only (3.9) is assumed. This is of course related

to the strong regularizing effect of the heat equation. =

COROLLARY 5.17:

Assume that the hypotheses (3.15) hold, and that pg.%, € H* . Then the
solution (8,Y) of problem (5.1)-(5.2) defined in Proposition 5.10 is a
smooth solution on R xIR,. The corresponding solution (p,¥) of (5.5)-(5.6)

satisfies:

09 € C(0, Tona) H*) (1 CHI0. Trmae) H?) () CE([0. Tongs).H?) .

We begin the proof of Proposition 5.15 with two lemmas. Assurning (3.15), we

first introduce two functions f and g satisfying:

f € C¥R,R) .
Veso, fu is Lipschitz~continuous on [-¢.£] .
Ve>0.7(8) = £(8); |

ge)y=¢;
and a mapping F defined by:

Fon=[Ffe+NiW+m+1m. ~Flo+Niw+m) - 7= 1.

for p.¥ € ) A

LEMMA 5.18:
Under the hypotheses (3.9) and (3.15), the mapping F is Lipschitz-

continuous from any bounded subset of H*xH? into H2xH? =
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PROOF: a) Let us first show that ﬁ(;o.'dl) € H%xH® when ¢,¢ € H®. For ¢4 € H?,

let R=Fp+NiWw+n) . M=lpl. . We define: My = max f .
= q = f. ' = g. . Th ’: € Lz i
M, [_m”a}‘:lc] g . L [_r_r‘llz-.x‘)l(] fz o Lg [ir}&)l(] [ us as in the proof of

Lemma 5.8. Furthermore, we have:
by = Felp + e +7)5@ +71) + Flo + NG + 7)W= + 7).
\hy| S Ly My lpe + 721 + My Ly |92 + 71|
which yields that i:,_ € L? . It can also be shown that ;z.;z € L%, using the Sobolev

continuous imbedding:

H:c Wi=(R),
35 >0, VepeH?, lgllgies S lleliye-

b) It is long but easy to check that, for any ¥ > 0, h is Lipschitz-continuous from
§ (p.¥) € H2xH?, [[(p. )|l y2ugy2 S ¥ } into HZ?; the details are left to the reader. =

For ¢1.% € L?, we now consider the problem:

¢t_¢zz=f(¢+7)§('¢’+7l)+7zz-

"I’:"%=-f(¢+7)§('¢+71)'?: ;

¢(z.0) = ps(z) , ¥(z.0) = ¥1(z) .

(5.22)

LEMMA 5.19:

Assume that (3.9) and (3.15) hold. Then there exists T max € Ry U {+=} such
that a unique solution (?.9) of problem (5.22) exists on R x [0, T neg)- This solu-

tion satisfies:
39 € CU(0. Trmex).HY) N CH(O. T rex).H?)

and the following alternative holds:

Either: fmu =+ o,
| I =+ =

maex
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PROOF: From Lemma 5.18, it suffices to apply Theorem 4.4 with H = H?*xH? ,
D(A)=H*H* and F = F . e

We can now complete the proof of Proposition 5.15 and Corollary 5.17:

PROOF: a) Let (p,%) be the solution of (5.5) defined in Lemma 5.11; for
€ € (0,T mey) » We set (p1.%) = (p.¥)(t=¢) € H2xH? . Applying Lemma 5.19, we get
a solution ($.9) of (5.22), which is unique in C({0,Tnax) H?xH?) . But it is
straightforward to see that (p,y)(t+e) is also a solution of (5.22) in

C([0,Tmax—¢).H2xH?) . These two solutions coincide, and we get:
(p9)(t) = (P.¥)(t—¢) fort € [e.Tmax) -

b) Lemma 5.19 and a) above obviously imply that the solution (p,¥) defined

in Lemma 5.11 satisfies:
@Y € C((0.Tmex).H*) N CH(0.Trmax). H?) .

It suffices now to use the Sobolev continuous imbeddings H2c CY(R) ,
H* ¢ C4(IR) to show that (p,¥) is a smooth solution of (5.5)-(5.8) on (0,T may). To
end the proof of Proposition 5.15, it remains to show that p,¥ € C%((0,T mex).L?) .
or equivalently that F(p.9) € CH(0,T max).L3%L?) ; this is straightforward and is

left to the reader. =

5.6. Existence for all time
We now end this fifth section by showing that Tpay = + =

PROPOSITION 5.20:

Under the hypothesis (3.10), the solution {8,Y) of {(5.1)-(5.2) defined in Pro-
position 5.10 exists on R x IR, :

Theax =+ ™. @ (523)

PROOF: For p €[1,4=) and t € (0,Th.y) . we can write, since (8,Y) is a

classical solution on (0,T pey):
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6, 8°! - 8, 6271 = Y™ f(8) &P,
Integrating by parts as in the proof of Lemma 5.12, we obtain:

;.g?({ev) s {mmw-*].

(3.10) and {5.18) now imply:
d
dt(é@?) < c,;»{ev.

Let tg € (0,7 max)- Applying Gronwall’s Lemma to the last inequality, we can write:

{e(t)r’ < 4900)? PCr -t

or.

18(t)l, s 118(tolllp e .

We can then take the limit p » = to get:

18(t)ll. = (o)l e7¢7*0,

which together with (5.12) implies Tmax =+ = . ®

Of course, from a physical standpoint, it can be thought that (5.23) holds
even if (3.10) is not assumed, because of (5.12), since one may expect that the
increase of the temperature is limited by the consumption of the reactant.
Nevertheless, we have been able to prove rigorously the global existence of the

solution only with the assumption (3.10), or in the following case:

LEMMA 5.21:

Assume that the hypotheses (3.9) hold. If moreover Le = 1, then the solu-
tion (8,Y) of (5.1)-(5.2) exists on R x R, . »

PROOF: If Le = 1, we can add the two equations (5.1) to get:

(Y +8), - (Y +8), = 0.
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A straightforward application of the maximum principle for parabolic partial

differential equations yields:

(Y + 8)(t)ll. s [I(Y + 8)(0)ll. .

and (5.23) follows again from (5.12). «

REMARK 5.22: With the same hypothesis Le = 1, it can be shown that (Y + 8)

converges towards 1 uniformly on IR as ¢ tends to + e:

lim|[Y +0-1]. = 0.=
t 400
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6. EXISTENCE AND UNIQUENESS FOR THE HYDRODYNAMICAL VARIABLES

6.1. Statement of the problem and main results

We now want to consider the subsystem (2.11) for the hydrodynamical vari-

ables - density, velocity and pressure:

®+a)p=1; (6.1)
=8,,
[ uuz(-w.t‘) =uf; (8.2)
u +p; =0,
[ p(-=t)=0; (6.3)

Throughout this section, it will be assumed that the hypotheses (3.9)-
(3.10) hold. The solution (8,Y) of (5.1)-(5.2) in R x IR, and the corresponding
solution (p,¥) of (5.5)-(5.6) are now considered given. We Ilet
O(y.¢) = QY (y.£).8(y.£)].

We recall that the weak or smooth solutions of (6.1)-(6.3) are defined at the
beginning of Section 3 (in particular, the boundary condition (6;3.b) is fulfilled in
the sense of (3.8) for weak solutions). About problem (6.1)-(6.3), we are going

to prove:

THEOREM 6.1:

Assume that the hypotheses (3.9)-(3.13) hold. Then there exists a unique
weak solution (p,u,p)of (6.1)-(6.3) in R xR, .

If moreover (3.14) and (3.15) hold, (pu.p) is a smooth solution on
RxIR,. =

In order to prove this result, we now solve the two problems (6.2) and (6.3)
in sequence [solving (8.1) for the density p is an obvious task since

6(z.t)+a2a>0forall(z,t)e RxR, ]
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6.2. Velocity

PROPOSITION 6.2:

There exists a unique weak solution of (6.2) in R x IR,:

u(z.t)=u°+®,,(z,t)+fn(y.t)dy for (z,t) e Rx R, . (8.4)

and u is a smooth solution of (8.2) in R x R;.

Moreover, if po, %o € H?, u is a smooth solution of (6.2)in Rx IR,. =

PROOF: a) Let ¢ > 0. Since (8,Y) is a classical solution of (5.1) in the neighbour-
hood of £, we have from (6.2):

uU; =0 =0, +01 € ngc(m) ’

whence:
. x
u(z.t) = u(08) + 8,(z.t) - 8, (0.t) + [ Qy.t) dy .
0
Since we want a finite limit w(—,#) to exist, we only need to show that:
0
S y.t)dy < + . (8.5)

But (3.10) and (5.18) imply: ((y.t) < C; 8(y.t) and (6.5) follows from the rela-
tion ©(¢t) € H2c L' . We then obtain (8.4) for t > 0 [we have 8;(—=,t) = 0 since
et)e H?].

b) It is clear that the solution u defined by (6.4) for ¢ > 0 satisfies (6.2.a) in
the sense of D' (IRxIR,). When pq. ¥ € H? , we can argue as in a) above for ¢ = 0

" and obtain (6.4) for ¢ 2 0. To show that w is then a smooth solution of (8.2), it
-4
remains to prove that f y.t) dy is continuous with respect to both variables

z and £; this will be a consequence of the next lemma. s
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~ Before studying the pressure problem (8.3), we state s'o:me'resulté‘abo'ut

the regularity of:the velocity u. :

LEMMA 6.3:

~ The solution u of (6.2) satisfies:
u € C(R:,C(R)) N C(RL.L7) .

If moreover g% € H% thenu € C(R.,.C(R) C(R,L%).=

PROOF: For T >0 define M=,§f§"¥] l8(t)Ml. . For t € (0,T], we first have

u(t) € L™, or equivallently () € L' from the estimates:

0(t) < €, 8(t) € C(RLLY(RY)) ,
O(t) s Co MY (t) € C(RLLY(RY)) .

These two inequalities can be written together in the form Q(t) £ C(¢) with
C(t) € C(R:,L"'). The continuity of the integral f 0O(y.t) dy with respect to the
variable ¢ is now a consequence of classical convergence results fro;n integra-
tion theory. For sake of completeness we sketch the arguments: arguing by con-
tradiction, we assume that there exists a sequence (tn) satisfying ¢, » {g> 0

and:

1O(En) ~ Qo)1 2 >0 . (6.6)

Then from the converse of Lebesgue's bounded convergence theorem (see [3], p.

58), there exists G € L' and a subsequence (t,, ) such that Gy .tn) S Goly) a.e.
for all m,. Since (5.20) proves that ()¢, ) converges poinlwise Lowards 0(to),
Lebesgue’s bounded convergence theorem now shows that (¢, ) converges to

0(ty) in L', which contradicts (6.6) and ends the proof. =

LEMMA 6.4:

x
Assume that the hypotheses (3.12) hold and define v(z,t) = f Ny.t)dy .

Then:

v € C{R x R;.R), andv,(a:.t)-—-jfﬂt(y.t)dy ..



-37-

PROOF: The assumptions (3.12) obviously implies:

VM>0, 3Ky>0, Voe[oM], |f(8)] skyo® (67

(with g8 > —;—) Let again T > 0 and M = ‘2{131;] |8(t)|l . For t € [0,T] and y € R

we have:
O =nrlrs(e) + Y8, £'(8)
whence: |0, (t)] S nC,0(¢)|Y,(¢)| + Ky©P()|8,(¢)]
|0,(¢) s K[8%+YE+ 6%+ 687 {t) € C(R,,LY(IRY)),

where K is a positive constant. The proof is then completed in the way similar to

that of the previous lemma. s

The next result is now an obvious consequence of the above lemmas and of

Proposition 5.15.

LEMMA 6.5:
Under the hypotheses (3.12) and (3.15), the solution u of (6.2) satisfies:

u € C(R..CYR)) N CH{R;.C(R)).

If moreover g, %o € H4, then u € C(R,.C3(R)yy CYR,.C(R)).=

8.3. Pressure

We now investigate the problem (86.3) for the pressure. We are going to

prove:

PROPOSITION 6.6:
Assume that the hypotheses (3.11)-(3.13) hold and that go,9¥, € H% . Then

there exists a unique weak solution of (8.3) on R x R,.

If moreover the hypotheses (3.14) and (3.15) hold, there exists a unique

smooth solution of (8.3)on Rx R,.=
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PROOF: a) If p is a solution of (6.3), we get from (6.4) and Lemma 6.4:

Pzr=—0n - f 0.

whence:

z y
p=-8:—£[dy:fm].
. z v
or p(z,t)=—8,,(z,t)—Q(z.t)—;f[dy;fﬂ,(z.t)dz]. (8.8)

because of the boundary condition (8.3.b).

Therefore, we need to prove that the last integral does exist when the
assumptions (3.11)-(3.13) hold. This amounts to showing that {1, (y.t) vanishes at
— = at least as fast as some negative power of y. More precisely, we are going to

show that:

v
Je>0, Vy<o, f 10,] 8 I"’" (6.9)

We first need to introduce the functional space:

W,={weL®nL", max [y"w(y)| < +=]},
yeR!

for v > 0, with the norm: llwllyyz lwllz + lwlle + “va”r(m:) ., and to state the
the next lemma, which is proved at the end of this section:

LEMNMNA 86.7:
Let v> Obegiven. If po € W, , then p(t) € W, forany t >0 .=

We now have:
10,] = |Y"f(8)8, + nY"'Y,f(8)] < [ (8)] |8, ] +n|Y,| |F(®).

Let T >0 and M = tre%”r(] I8(¢ )}l . Since (8;,Y;) € C{[0,T].L?xL?) , we can set

M = tlg%g.)T(] [18,{t)llo. Fort €[0,T]and ¥ < 0 we have:

f®f

f l£(8)] 6] s Lff(@)2
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by the Cauchy-Schwarz inequality. Hence, using (6.7):

ot

Jir®iiel s u

As pg € W, with Su > % from (3.13), we can apply Lemma 8.7 to get:
i@ ie s k|f 2= I? K
Jlr@liel s k| ol s T

Yy

Since (8.7) implies f(8) < K'y®%*! we can argue in the same way for

j! |7(8)] |Y;| and (6.9) holds.

b) It is straightforward to check that p defined by (6.8) is a solution of
(8.3.a) in the sense of D' (RxIR,) (it suffices to argue as in Remark 5.5 and to use
Lemma 8.3 for the continuity of » in the neighbourhood of ¢ = 0). (u,p) is the
uniqﬁe weak solution of (B8.3) in the sense of Definition 3.1. Furthermore, if
(3.14) and (8.15) hold, (6.3.a) is fulfilled in the classical sense and p is a

smooth solution of (6.3).=

It remains now to prove Lemma 8.7. We begin the proof with a property of

the linear semigroup S(¢) generated by the heat operator (see the end of Sec-
tion 4): .

LEMMA 6.8:
Let v > 0 . The operator S(t) maps W, into itself : for any T > 0, there exists

a positive constant My such that:

VwgeW,, Vte[0.T], |IS(t)wdlw, s Mr lwollw, . =

PROOF: Letv>0,wpo€ ¥, , T >0, ¢ €[0,T]. Lemma 4.8 implies:

IS (¢ )wollz + 1S (¢)wolls = llwollz + llwoll -

Therefore it remains to study |jy*S (¢ )wOHL-(m:) .
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Let z < 0 ; we have from (4.5):
: lasalt lz=y|®

v 2 _lz=ul® y o _Jz=y
sSywie) = 2 [ owed e * gy + JEL [ waw)eT * gy
|z |vS{t) olz) ant f Y Ant { o\Y Y
)

Let us denote by A(z) and B (z) the two terms in the right-hand side of this rela-
tion. For y € (-w,%] , we have:

“‘wo”w [lwollw
14 v v
ly ¥ |z ¥

|lwe(y)| £
Thus:
le-y|®

2V -1 —
l4(z)| = 74_117”1”"”’"4 e * dy = 2w, .

On the other hand, we also have:

4o jz-y|?

z|” m .
B s Jllwdl. [ ¢ ay
2
Setting z = % and assurning z < -4/T , we obtain:

y 4o
2@ s A e [ et a
n z]

i
40 +o
s 121 oy, [ e s 2L . J e
. z z
v v

o] W7
s 5L W gl = K fhugl..

and the proof is easily achieved. »

PROOF of Lemma 8.7: Let T >0 and M = max |18(t)ll, . For t € [0,T] we can

Ille s Cs liBlla < C; M,
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A

I0(ENE S 100 Zae gy *+ MU Z2cyan) + 1O Fagr.y

A

CAlp(ENIZ + 2 CF M2+ CFMB|ly(t)ll: s K,

A

Iy 0 eey S Cr Ny 8(E M ugey -

whence: [|0(¢)lly, < K (lle(t)llw, + 1) , where K is a positive constant.

From (4.4) and (5.5), we have:
' t
#(t) = S(thpo+ [S(t=5) [Als) + 7] ds .

Applying Lemma 6.8 yields:

¢
My llpdllw, + My [ 110(s) + 7zllw, ds .
0

IA

lle(tliw,

A

3
KDL+ [ llola, ds 1.

It suffices now to apply Gronwall's lemma and the proof is complete. s
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7. BACK TRANSFORMATION TO THE EULERIAN VARIABLES

We now want to show that the results of the preceding sections allow to show
the existence of a solution for the Eulerian system (3.4)-(3.5). Since the
equivalence between smooth solutions of the two systems (3.1)-(3.3) and (3.4)-
(3.5) follows immediately from Section 2, we only have to investigate the

existence and uniqueness of a weak solution of (3.4)-(3.5).

7.1. Coordinate transformation

We first need to study the change of variables between the Lagrangian and

the Eulerian system. This is the aim of the two next lemmas:

LEMMA 7.1:

Assume that the hypotheses (3.12)-(3.14) hold and let (8,Y,p,u) be the
unique weak solution of (3.1)-(3.2). Consider the mapping:

RxR, -» RxR,,
Tig (z,t) » (¢,7) defined as:
t z
= ' ' 1 ,
tz.t) = {u(o.t)dt + { e dz' |
{z.t) = t. (7.1)

T,r is a Dbijection from RxIR, into itself. Furthermore,
Tyr € CY{RxIR}, IRxIR}) and:

1 —
€z(r.t)=m- g(z.t) =u(z,t). = (7.2)

_1
p(z.t)

tions (7.1) define a mapping from R x IR, into itself. Moreover we have {, = %

PROOF: Since u(0,t) and are continuous functions on R x IR, , the rela-

and, for{ > 0:

¢

t(z.t) = jo' w(0,t') dt' + { [8(z'.t) + o] dz’ .
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It is clearly possible to differentiate under the second integral sign in Lhis

expression to get:

t(z.t) = u(0,t) + ~Z.:@t(:c',t)da:' = u(0,t) + { u (z',t)dz = u(z.t).

On the other hand, we can easily define Tg =T;# by setting
Te(¢,7) = (z.t) with: .

¢
z(67) = ‘0{7 | p(g.7) dE',
t(tT) = ¢t. (7.3)

T

where £(7) = f 2(0,7') d7' [= ¢(0,7)] . The end of the proof is now obvious and
A .

is omitted. =

We can use this lemma to define the following transformation: for any

n € LS. (RxIR,) we define 7 € L5 (RxR,) by:
nt7) = nlTe(67)] = nlz(&7).7]. | (7.4)

We can then state:

LEMMA 7.2:

Assume that the hypotheses (3.12)-(3.14) hold and consider the transforma-
tion 7 » 7 defined by (7.4). The following properties hold for p € [1,4] and
to € 1R+ .

If n € C(Ry.L?), then 7 € C(R,.LP);
If n € C(R,,C(R)) , then? € C(R+.C(R));
If 7(+e,t0) = Mo, then 7(z.to) =70
Moreover similar properties hold for the derivatives:
IfneC(R,.H?, then?n € C(R,.H?) ;
7 € C(R,.C3(R)) , then 7 € C(R,,C¥R));

Ifnge CY(R,,C(R)) . then7 ¢ CY(IR,,C(IR)) . »
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PROOF: These properties are easy to check and their proofs are omitted. We
simply indicate the expressions of the partial derivatives of 7 and 7 which will be

useful in the sequel; (7.2) and (7.4) obviously imply:

+

Ne= PNz »
Ne=—pung + Ny

7.2. Equivalence between the Lagrangian and Eulerian formulations

We can now show the existence of a weak solution to the Eulerian system

(3.4)-(3.5):

PROPOSITION 7.3:

Assume that the assumptions (3.12)-(3.16) hold. Let (®,Y.0,u.,p) be the
unique weak solution of (3.1)-(3.3) and define (8.Y.5.@.p) using (7.2). Then
(8,Y.5.4.p) is a weak solution of (3.4)-(3.5). =

PROOF: We only sketch the proof by studying the temperature equation. The

weak solution satisfies:

{ (- 8n, + 8,7, —(n] = [ 6(.0)m(.0), (7.5)
xR, R

for any n € D(IRxIR,) . This relation also holds for 7 € DY(RxR,) [ € C}{RxR,)
with compact support], since D(RxIR,) is dense in D'(RxRR,) .

let 7€ D(RxRR,) and let 7 be the unique function such that
n{z.t) = 3[Te(z.t)] . Since n € DY(RxR,) , (7.5) holds. Using the change of
coordinates (7.1) in (7.5) gives: '

- p07] = [n 7(..0)8(..0)7(..0) ,

)@
|

{ [- 78(n: + ung) + 5
IR,



- 45 -

where we have used the Jacobian %(é_'f’)l = p . The last relation, which is true for

any 7 € D(RxR,), says that:

~

~s ~nn 0 ~
(08); + (puB), - (f); =p0,
in the sense of the distributionsin R x R,. =

To end the proof of Theorem 3.9, we still need the following lemma:

LEMMA 7.4:
There exists at most one weak solution (8,Y.,5.,4,5) of (3.4)-(3.5) satisfying:

4 € C(RxR,,R), p € C(RxR,,R).= (7.8)

PROOF: Let (8.Y 5.i.p) be a weak solution of (3.4)-(3.5). Thanks to (7.6), the
transformations (7.3) and (7.4) can be used to show (exactly as in the proof of
Proposition 7.3) that (8.Y p.i.p) corresponds to a weak solution (8,Y,p,u,p) of

(3.1)-(8.3); the uniqueness then follows from Lhe Seclions 5 and 6. «

REMARK 7.5: The uniqueness of a weak solution of (3.4)-(3.5) can also be proven
without (7.6). In this case, the equivalence between Lagrangian locally bounded
weak solutions and Eulerian locally bounded weak solutions still holds, but is

less simple to prove (see [13]).
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8. EXTENSION TO CHEMICALLY COMPLEX FLAMES

In this section we extend our analysis to the equations of a chemically com-

plex flame propagating in a dilute premixed gaseous mixture.

8.1. Physical assumptions

We will assume that the mixture is made up of N components 4, , 4z ... Ay .
whose mass fractions are respectively Yy, Yz ... Yy . The last specie Ay is chemi-

cally inert and the reactants and products are highly diluted in a bath of Ay :

N-1

Y Y < Yu. (8.1)

s=1
It makes therefore sense to consider that the specific heat cp, and the thermal
conductivity A of the mixture are those of the inert. Also assuming that the
matrix of the diffusion coefficients is diagonal (the diffusion flux for the s** com-
ponent only depends on VY ), we obtain that all the species have equal

diffusivities (see [5], p. 8), a fairly classical assumption.

Let M be the number of irreversible chemical reactions taking‘ place in the

mixture. From 1 £r £ M , the ¥ reaction can be written as:

N-1 N-1
z Vg As 2 Mys As
s=1 s=1

where the stoechiometric coefficients vs and p,s are positive integers [ vis (
resp: js ) is equal to zero if the specie A; is not a reactant (resp: a product) in
the rt* reaction]. Let w, be the rate at which this reaction proceeds (a relation
analogous Lo (2.2) gives w, as a function of the temperature and the mass [rac-

tions Y, ).

We can now write the governing equations of the propagation of this chemi-

cally complex flame under the form:

Y
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prt (Pu)f =0,
Pur + puug = - pg,
M
pepTr+ pucy Ty — (ATe)e= ), Qror (8.2)
r=1

| A+ Y= @D = S (i = )y for 155 5N,

N
Y Ye=1;
s=1

pT = mﬂg . (8.3)

We have defined v,y = iy = 0 for all 7. The heat released by the 7% reaction,
which is no more assumed to be exothermic, is denoted by Q,, and mn, is the

molecular mass of the s specie; the other notations are defined as in Section 2.

REMARK B.1: The form poT = my—g- of the equation of state follows from the

Y,
assumption (8.1). The perfect gas law gives the value P = RT(ﬁn—i) for the par-
S

N Y
tial pressure of each specie. Using Dalton’s law we get P = pRTY, ° for Lhe
o m

total pressure P, and this last expression reduces to (8.3) in view of (8.1).«

Assuming again that the Lewis number Le = };c}:b_ » Lhe specific heal ¢p and
P

the raltio — are constant, we can write an Eulerian and a Lagrangian normalized

T
form of (8.2)-(8.3) as follows:

pr+(pu)=0, 4
(pu)r + (pu®)e = - p¢.

(3] M
(08): + (pu8); - <—’})‘ =Y, Qrph,

r=1

1 (Ys)e M\ (8'4)
(pYs)r + (PuYs)e - [ 7] =m z, (s = Vs )Py Tor1<s <N,
Le P ¢ r=1
N
3 Y. =1,
s=1
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M
8, - 8, = E Q9. ,
r=1
Y. M
(Ys)t—i-fﬁm—=ms 3 (s — vrs )il for1<s SN,
Le r=1 .
N
Y. =1,
s=1
@®+a)p=1, (8.5)
u, = 8;,
Ug +pz=0.

The following boundary conditions are associated to the above systems:

8(-»)=0, B(+=) =1,
Ys(_"“) =Yeu s Yi(+) = Yep ,
u(-=)=u’, p(-=)=0.

N=1
Let us denote Q, = 11 Y,™ f,(8) . Since we use time-independent boun-
s=1

dary conditions, we have to assume that the two thermo-chemical stales

prescribed at the boundaries — and +« correspond to equilibria, i.e:

N

Vrefr,2.--- M3, f-(0)=0;
and:

N’__l v
Vreeft,2--- M}, J] Yo' =
s=1

(all the reactant concentralions vanish in the burnt stale).

It is then straightforward to extend to Lhe systems (8.4) and (8.5) the
results stated in Section 3 (with a change of unknowns similar Lo {5.3) and
assumptions analogous to (3.9)-(3.19)). Stating in detail the hypolheses and the
theorems would be too long but no new difficulty appears for applying the argu-

ments of Sections 5, 6 and 7 to the systems (8.4) and (8.5).

REMARK 8.2: The global existence and uniqueness results stated in Section 3 are
also easily extended Lo Lhe case of Lhe non adiabalic propagalion of a planar

flame. In this case, the energy balance equation (2.3.b) beecomes:

pepTe+ pucy Te = (NT)e = @ (Y. 7) - x(T),
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where «{T)20 represents the heat losses (see [5]; for instance
k(T) = k(T - Tyey) if only conductive heat losses are considered). In Lagrangian

coordinates, the energy equation (2.10.a) reads as: ;

€, = 8,, + O(Y.8) — 2(8) ,

with £(8) 2 0, ©(0) = 0, and the arguments presented in Sections 5 and 6 apply.
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