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Résumeé

Le systéme de réécriture SUBST de la Logique Combinatoire Catégorique
permet la simulation de la substitution du A-calcul avec couples explicites. Ce
systéme est localement confluent mais les méthodes classiques pour s’assurer
de la terminaison échouent sur ce systéme.

Dans ce rapport, nous indiquons une nouvelle méthode permettant de
démontrer la confluence de SUBST et d'obtenir ainsi la confluence de ce
systéme.

Abstract

The rewriting system SUBST of the Combinatory Categorical Logic allows
the simulation of substitution of the A-calculus with explicit couples. This sys-
tem is locaily confluent but classical methods used to show termination can-
not conclude here.

In this report, we indicate a new method which is able to prove termina-
tion of SUBST and so to get Church-Rosser property for this system.

H!!'Dmnm RECUPERE €T RECYCLE




Proof of Termination of the Rewriting System SUBST on CCL

Thérése Hardin

Université de Reims et LILT.P.

Alain Laville
Université de Reims et 1. N.R.1.A.

In [4], P.L. Curien defines a translation of the Ac-calculus in the Pure
Combinatory Categorical Logic and etablishes an equivalence theorem
between these two theories. The rewriting system SUBST simulates in particu-
lar the substitution of the Ac-calculus. This system is locally confluent. We
show here that it is also noetherian.

1. Introduction, definitions, notations

CCL, the Pure Combinatory Categorical Logic, is the algebra of terms
built over the following signature :

App.F,Sand 1 of arity zero, respectively called application, first projection,
second projection and identity.
A of arity one, called currying.
<,>ando of arity two, which are the operations of pairing
o and of composition (with infix notation).

The rewriting system SUBST, on CCL, is defined by the rules : -

(sot)ou - so(tou) (Ass)
Jot = t ‘ (1dL)
tol » t (IdR)

Fo<st> » s (Fst)
So<st> » t (Snd) -

<st>ou » <sou,tou> (DPair)

<Fot,Sot> -t (SPair)

<F.S> - 1 (FSI)

A(s)ot » A(so<toF,S>) (DA)

The system PROD obtained by removing. from SUBST the rule (DA) can
easily be showed terminating with, for example, a Recursive Path Ordering
[*1 But the classical orderings used to show termination : R.P.O, R.D.O.,,
Knuth-Bendix. multi-set and the polynomial interpretations ([3], [5], [6], [7].
[9], [10]) cannot orientate the rule (DA). As far as we know, the recently
developped methods in [2] and [11] do not seem to be suitable to prove the
termination. The orderings currently implemented in rewriting laboratories
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fail to show termination of the SUBST system.

In order to prove this termination, we define on CCL a fonction Ppy such
that, for any t. and for any derivation D (using the rules of SUBST) of
t, the number of applications of the rule (DA)in Dis bounded by Ppa(t).

2. The terms describing functions
Notations :

A derivation of a term t is a sequence of reductions of t. The graph of t
is the set of terms derived from t. It is noted G(t).

A symbol is said potential in a term t if it appears in one of the elements
of G(t).

2.1. Definition of Ppa

The function Ppa (t) is defined by induction on the structure of t as fol-
lows: _

[1}] Ppa(t)=0 if_tis.VApp. F,Sorl
[2] Poa(A(s)) = Ppa(s)
[3] Ppa(<s.u>) = Ppa(s) + Pps (u)

The principal problem is to define Ppa ( s o u ). To give an upper bound
to the number of (DA)-redexes in a such term, we have to take into account

1) those which are contained in s and in u. Their number are respectively
Poa (s) and Ppa (u). Furthermore, the (DA)-redexes of u can be dupli-
cated by reduction of the (Dpair)-redexes created by the potential pairs
of s with the symbol 0" at the top of s 0 u. So we have to estimate the
maximal number of potential pairs in a term. We shall do that with a
new function Py ( Pp(t) will be the maximal number of potential pairsin t,
increased with 1) .

2) those created by the symbol of composition at the top of term and the
potential A's in s. Therefore, we shall define another function P4 to com-
pute the number of maximal potential A’'s in a term.

3) Moreover reductions of those (DA)-redexes peinted out in 2) give sub-
terms u o F. Thus any potential A in u can create a (DA)-redex with this
context "o F"" and these redexes can also be duplicated by the potential
pairs in s.

How can we estimate the number of duplications owed to the potential
" Pairsin s ? If we are looking only at the pairs, s is like a binary tree. Composi-
tion with u is only lifting down u to the leaves of the tree, distributing u along
every node. Thus the number of duplications by s is equal to the number of
leaves of this tree: it is the number of nodes increased by 1.
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With these two functions Ps and Pp (which we define later), we complete
the definition of Ppa as follows : ‘ '

[4] Ppa(sou) = Ppa(s)
: + Ppa (u) x . Pp(s)
+ Pa(s) . .
+ P (s) x Pp (u) x Pp(s)-

Exgmplé :

Let s, t, u be three terms € CCL. Let A = (A(<t.s>) o u ) o D, where D is A(F)
for example.

A-->(A(<ts>o0<uoF,S> oD-->A((<ts>0<uoF.S>)o<DoFS>)
-->A('<t o (Kuo F,$> 0 <D o F,S>).s0(<uoF,S>0<DoFS>) >)

The reduction of these Dpair-redexes creates four copies of the sub-term D o
F, and so, four DA-redexes.

2.2. Definition of Py

Defining the function Pj is not very difficult : the only way to create a
symbol Ais to duplicate an already present A with the rule (DPair).

Pa is defined by iriduétion on the structure of terms as follows :

[1] Pa(t) =0 if tisApp, F,Sor]l
(2] Pa(A(s)) = 1 +Pa(s)

[3] Pa(<s,u>) = Pa(s) + Pa(u)

[4] Pa(sou) =Pp(s) + Pa(u) x Py(s)

The function Py will be defined later. We study before some properties of
functions P and Ppa. To do that, we will suppose that P, verifies some pro-
perties, exhibited during the proofs.

2.3. Properties of Ppa and Py

A function f on CCL, into an ordered set, is said to be compatible with
the structure of termsif: .

For any t, t', for any context C[], if f(t) = f(t’) then f(C[t]) = f(C[t']).
f has the sub-term property if:
h _ fbr:anyAsub-term_,s of t.,ff(s) < f(t).

The functions Ppa, Pao and P, have the sub-term property but are not

Nl
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compatible with the structure of terms as showing by the following examples.

Examples

Let t = <A(F).A(F)> and s = An(F). s contains no pair and t contains one.
Moreover these terms are in normal form. The term (t o F) contains only one
potential pair but the term (s o F) contains n such pairs.

Let t = A(F)oF and s be the same as above. t contains a (DA)-redex and s con-
tains none. The term (t o F) contains 2 and the term (s o F) containsn
such redexes.

We shall assume in the following that the function Pp verifies conditions,
which we call (P1). (P2), (P3), (P4). These conditions will be stated as they are
needed.

Let (P1) be the following condition:
Pp is a function into N verifying:

1) the sub-term property R
2) If t € G(s) then Pp(s)2Pp(t) (and thus for any context C[],
Pp(C[s])=Pp(C[t])).

Kamin and Lévy [8] pointed out that, in order to verify the monotonicity of
P,, it suffices to test it only on the rewrite rules when this kind of condition is
satisfied (instead of full compatibility with the structure of terms).

Proposition 1 .
Let te G(s). If the property (P1) is verified and furthermore, we have :

Pa(s)=PA(t)  Ppa(s)=Ppa(t) .
then for any context C, we have:
PA(C[s])=PA(C[t]) Ppa(C[s])=Ppa(C[t])

Proof

By induction on the structure of the terms, first for Panext for Ppa.

Proposition 2
For any term t derived from the term s, we have the inequality:
Pa(t) =< Pa(s)

Proof

According to the previous proposition, we only have to compute the
respective values of the left and right members of every redex.

1) (Spair), (Fst), (Snd), (1dL). (IdR), (FSI) .
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Straightforward by using the sub-term property.
2) (DPair)
Thens=<u,v>o0 w’and.t = <. uo w,vow>. Bydefinition of P, we have :
P(s) = Pa(u) + Pa(¥) + Pa(w) x Py(< u , v >)

So we ask Pp to verify the following conaifion :

Pp(<u.v>) = Pp(u) + Py(v) ¢2)
(Pp(t) is intended to be the number of potential pairsin t increased with ‘1‘)
We now compute Pa(t) : |

Pa(t) = Pa(u) + Pa(w) X Pp(u) + Pa(v) + ﬁA(W) x Pp(v)

whence :
Pa(s) = Pa(t)

3) (Asé)

Wehéves=(uov)oWandt=uo(vow). We get :

PA(s) = PA(u) + Pp(u) X PA(v) + Pp(u0v) X PA(w)
Pa(t) = Pa(u) + Pp(u) x Pa(v) + Pp(u) x Pp(v) x Pa(w)

 So we ask Pp to verify the following condition :
Pp (uov) = Pp(u) x Pp(v) (P3)
With (P3), we obtain the resuilt.
4) (DA)
Wehaves=A(u)ovandt=A(uo <voF, S>).

It Pp verifies the condition:
Po(A(s)) = Pp(s) (P4)

we get the equality of PA(S) and of Pa(t). s




Theorem
Let D be a derivation of the terms to the termt . Then :

Ppa (t) = Ppa(s)
Furthermore if D contains one application of the ruie (DA), then this
inequality is stict.

Proof

We prove this proposition rule by rule.

1) (Spair), (TF'st), (Snd). (1dL), (IdR), (FSI)
Straightforward by using proposition 1

2) (DPair)
We use property (P2) to show: Ppa(s) = Ppa(t).

3) (Ass)
Using definitions of Ppa and of PA and the property (P3). we get :

Ppa((sot)ou) =2 Ppa(so(tou))

4) (DA)
We compute the values of Ppa on the two members .

Ppa (A(s) ot) = Ppa( A(s))
+ Ppa (t) X Pp (A(s))
+ Pa(s) + 1
+ (Pa(s)+1) x Pa(t) x Pp(A(s))

PoA(A(so<toF,S>)) = Ppa(s)
+ [Ppoa(t) + Po(t) ] x Pp(s)
+ Pa(s)
+ Pa(s) x Pa(t) x Py(s)

Using property (P4). we deduce:
Poa(A(s)ot) = Ppa(A(saktoF,S>)) + 1

(So tjhis function really computes the maximal number of applications of rule
DA). =

So we still have to define the function Pp, intended to compute the number of

ot orehin . pos . , :
potential pairsin a term and verifying the previcus four properties,
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3. Definition and properties of the function Pp .

The difficulty -is the. definition of Pp (s o u ). If we look at the left
member of the rule (DA), ‘we get the feeling that the left son A(s) of the com-
position should be much more heavy that the right son t. But this right son
becomes a left son in the right member. Moreover we have to take the
simplification rules into account (derive A(F) o t for example). The following
example suggests how symbols A can create pairs.

ampie

Let M = An(F) o AP(F) where Ar denotes a sequence of n A. We construct a
derivation of M. We use n times the rule (DA) and we get :

An(F o <..<AP(F) o F,S> 0 F,S>,..> 0 F,S>)

containing n pairs embedded in each other. After n (Dpair)-reductions. we
get:

An(F o <.'i((,.(AP(F) oF)oF)oF).)o F,(SAo F).)oF>(SoF)oF).oF>.>S>)

where the term AP(F) is topped by n symbols o. After the reductions of
(nxp)(DA)-redexes created in this way, we get:

An(F o <.<(.{AP( (Fo H),...,) o H).(SoF).) o F>,(SoF)oF).oF>.>S>)

where H is a term containing only symbols F, S, o and p pairs. After some
dressing with the rules (Ass) and (Dpai;‘).Awe get a term under AP containing

((1+4p)n — 1) pairs.
This e'x'al;n'ple suggests to build a function Pp looking like:
Pp(s o u) = Pp(s) + (1+Pp(s)) (Pp(u)+Pa(s) + (1+Pa(u))Pas))

But this function can be strictly increased by application of rule (Ass). In
fact, this sort of formula supposes that all pairs in the left son act together
on:the right son. We can see that this is false on the following example:

(<An(F) , Am(F) > o Ar(F) )

where the factor (1+p)n+m is really bigger than the number of potential pairs
and should be replaced by (1+p)» + (1+p)m. S

We are led to introduce an auxiliary function L, defining a list intended to.,
represent the potential pairing structure of the term by the binding depths of
its potential leaves. - e N
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3.1. Definition of the auxiliary function L

This function associates with a term, a list of integers. We define it by
induction on the structure of terms (the lists of integers are noted between
brackets : [1,2,3] or {s1, ..., sn] for example).

[1] L) =[0] iftisApp.F. Sorl

With the notations L(s) = [s1, .., sn] and L(t) = [t . tp])
(2] L(A@) = [1+0, .1+ tp)

[3] L(sw,u2) = [s1. Sp b1, - Lpl

[4] L(sot) isthe list composed with the following elements :
- any s; repeated s; times
- for any possible vaiue of index i and j. si+t; repeated (1+t;)» times.

We shall write |L(t)} the length of the list L(t). We write L(t) € L(t") if every ele-
ment of L appears at least as many times in L' .i.e the lists are representa-
tions of multisets ordered with inclusion.

Example

Let N =(A2(F)oA2(F))oA2(F). We compute L(M) :
L(A%(F)) = (2]

M = L(A2(F)oA2(F)) = [2 .2 .4 repeated (1+2)? times

In the precedent example, we have shown that this term M can be rewritten to
a term containing 10 pairs.

L(N) = [ 2 repeated 2 times, 2 repeated 2 times, 4 repeated (4x9) times,
4 repeated (142)2 times, 4 repeated (1+2)2 times,
6 repeated (142)4x9 times |

Sp, |L(N)| = 787 Effectively, there exists a term in the graph of N, which
possesses 786 pairs !

3.2. Properties of L

Proposition
With respect to the ordering < on lists, L is compatible with the struc-

ture of terms but does not verify the sub-term property. However if t'€ G(t),
L verifies: '

L(t) ¢ L(Y)




hl

Compatibility of L is proved by induction on the structure of the
context. Looking at the term A(t) , we notice that L does not verify the sub-
term property. L being compatible, we only have to look at a reduction at the
top of the term. :

1) (Fst), (Snd), (1dL). (1dR), (Dpair).‘(SPair), (FsI)

Straightforward by using the definition of list.

2) (DA)
We construct the lists associated with the two members of the rule:
Let L(s) = [s1, . . . .sn] L(t) = [t1. ... . tp].

L (A(s) o t) is a list whxch contains exactly, for any possible value of index i
andj :

- the element i+s; repeated 1+s;limes
- the element 1+s;+tj repeated (1+t;)1*s: times

We construct L{(A(so <toF,S >)in several steps.

The list L (t o F) contains exactly the elements tj each of them repeated 1+t;
times.

L(<toF,S>)isdeduced from the previous by adding a 0.

Therefore L (s o < t o F . S >) contains (for any possible i and j) :
- si repeated s; times

- sittjrepeated (14t))s times for any element t; of the previous list. Now tj
is repeated (1+t;) times. Therefore si+tj is repeated (1+t;)!*s' times.

- again a copy of any s;j because of the element 0

We nowget L{A(so<toF,S>)byadding1l to any element of the prevx-

ous list and we obtain exactly L (A(s) o t)

4) (Ass)
We use 3 terms s, t and u such that: L(s) = sy, . .. ,sn], L(t) = [t1, ..., tp] and
L(u) = [uy, ... ,uq). : ,

We compute L ( (é o t)ou) :
L (s o t) contains any.s; repeated s; times and any s;+t; repeated (1+t,)5'l times.
So L( (s o t) o u) contains the following elements :
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- any si repeated sixs; times
- any sitt; repeated (1+t;)3x(s;+t;) times
- any si+ug repeated siX(1+uy)™ times
- any si+tj+ui repeated (1+ug)®*4 x (1+t;)% times.
Now we compute L ( s o (t o u) ). This list contains the following elements:
- any sj repeated s; times
- any sittjrepeated (1+t;)® x t; times
- any si+tj+ug repeated (1+uk)tl‘ x (1+tj+ug)® times.

As (1+tj+uyk) is less than (1+t;) x (1+uy), this list is extracted from the previ-
ous one. *

3.3. Definition and properties of the function P, "
For any termt, we define : Pp(t) = |L(t)]

Proposition .
Pp verifies the properties (P1) to (P4)

Proof

One checks easily that:
Pp(t) =0  if tisApp,F.Soul .

(P2) Pp(<s,t>) = Pp(s) + Pp(t)

(P3) Pp(sot) = Pp(s) x Pp(t)
since this property can be rewritten |[L(sot)|=|L(s)|x|L(t)|]. Now the
number (1+t;)® is strictly positive thus L(sot) contains at least one time
each element s;+t;.

(P4) Pp (A(t)) = Pp (L)

Therefore Pp takes its values in N. Thanks to inclusion of lists, the pro-
perty (P1) is then completely verified. We can remark that P, verifies the
sub-term property but it is not compatible with the structure of terms.
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