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ABSTRACT

The results developped in this paper present a flow-control policy in non
deterministic environment : replenishment levels are computed in order to bound to a
given epsilon ( control - parameter of the model ) the probability of going out of stock,
whereas the demand is supposed to be the accomplishment of a random normal
variable. It is then shown that these replenishments are normal too and that it is
possible to adapt this policy to any flow-shop system so long as it has been previously
modelized as net of "tools" and buffers. In that case, we show that it is possible to |
choose the control-parameters assigned to each "tool" in order to minimise the global
inventory cost.
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INTRODUCTION :

The management of a whole manufacturing system is a complex task for two’
main reasons : the existence of antagonistic evaluation criterions and the enormous
amount of data to compute . '

A solution consists in dividing this task in a multiple level hierarchy so that each
level can be assigned a planning horizon consistent with the "resolution" of the image
of the system that is required to take decisions over this horizon ( e.g. long term
decisions do not require a precise description of the production system : the global
capacity and costs and some forecastings of the market trends are enough to take
strategic decisions ). It is then obvious that the higher levels will have to deal with the
long term and their decisions will induce the control constraints for the optimization at
the lower levels. Each hierarchical level will then be assigned a set of criterions to
optimize, these criterions being chosen in order that the effects of a decision taken at
a given level to improve a criterion could be observed inside the horizon
corresponding to this level.

Five different levels are commonly distinguished in a hierarchical management :
strategy, flow control, planning, scheduling and real time control. This paper proposes
a flow control method based on the replenishment control, in a non deterministic
environment. The results are given for a two-stage system with infinite capacities but
have been applied to a general flow shop system. '



1/ DESCRIPTION OF THE REPLENISHMENT POLICY :

The mathematical models developped in this paper assume that the production
system to be managed has to meet a series of random-normal demands represented
by their estimates ( mean values and standard deviations ).Hence the problem : how to
choose the job orders levels so that the probability of going out of stock in the future be
reduced to a given "epsilon” and, at the same time, keep the minimal inventory level?

1) The kernel model ;

inventory level

replenishments (v; ) manufacturing demand
——eeee time (d.)

N periods production -

level d=04a
TOOL P ) BUFFER = P+
RAW MATERIAL " FINISHED PRODUCTS
iqure 1

- The planification horizon is split in h periods (days, weeks ..)

. The margin &; between the demands estimate for the i " period and the actual
demand d; is supposed to be a random-normal variable of null mean value and given
standard deviation o; ; two different margins a; and a; are supposed to be independent.

.No problems of maximal capacity are taken into account. (Neither is the fact
that demands or replenishments could be negative according to the formulae which
define them : these opportunities are supposed to be seldom enougnh ).

.Each replenishment v, is decided at the beginning of the i " period so that the
corresponding products become available at the beginning of the (i+N)th period
whereas the inventory level is measured at end of each period.

We then have the formulae :

Pi =Vi.N  and Yiq=Y; +Piyq1- iy

The first one means that there is no throw-out or that raw material and finished
product volumes are measured in different unities in order to take into account a mean
throw-out rate. .

The second one will be called "state-equation” and written : -
Yis1 =VYi +VigiN- ( i 41+ 44 )

At the beginning of the first priod, we assume that we know :
.the inventory level registered at the end of previous period : y
the last N replenishments decided : v4_ ... vy ( the corresponding
productions have not been completed yet ).
.the demand estimates : ( 9;) 1<y ( mean values ) and ( 0 ) 1<i<h
( standard deviations ). o T



We have to fix the level of the replenishment v, so that Pr(y, n<0)<€:
The so-called state equation gives us the means to link y, ) and v,: '

Yi4N =YN +Vq-diN

. o N+1 . N+1
=Yy +.Z Vi + V4 ".z 0 ‘.2 q;
i=1-N i=1 =1

The star symbol means that the referenced variables are known at the decision
time ; 2 a; is the sum of N+1 indepent random-normal variables hence a random

normal variable too, of standard deviation £y = v 6,2+0,2+...+0y,42 .Then, once v, is
fixed, y4,n Will be a random normal variable :

N+1 . 0 . N+ .
Pr(Y1+NSO)=Pr(Eai2 V1+{y0 +2Vi'Z(Pi } )
i=1 i=1-N i=1

L 4 0 - N+1 *
=1-F1 (V1+{YO +EV|'E(P|})
i=1- i=1
N+1
where F is the distribution of X &
' A : i=1
Then, Pr(y4,n<0) <€ is equivalent to

1 L0 L N
'V1Z F1- (1'8')'{Y0 +.z Vi',1(Pi}

i=1-N i=
If F designates the distribution of a normal random variable of mean value 0-and

standard deviation 1, then Fy(u) = F(u/ X,) and we will fix the first replenishment at the
value given by the formula :

; 1+N 0
A, R
: Vi =% Flre) + 2 @ EN‘ Y,

The inventory level at the end of the (N+1)t" period will then be :

0 1+N
YieN =Yo+2Z Vi - Z (9;+a;)+v,
BN 1

. 1+N

‘ -1
Y ==t F (1-3) - .§=:1a‘




As these results depend only on the state equation and the hypothesis we have
done concerning the demands, they can straight be extended to the successive
replenishments : at the beginning of the kth period, we can forecast that the inventory
level yy,n Will be :

k+N k+N
YkeN =Yo+2Z Vin -2 d
i=1 i=1
Lok, N K KeN
={y0 _+2 Vi - Z(Pl"z ai }+Vk'2 ai
i=1-N i=1 i=1 i=k

k+N
where 3 a; is a normal random variable of mean value 0 and standard

deviation equal to %y =V 6%+ 6y 1% +..+ Oy 7\ ° -

Then, Pr (y,,n<0) <€ is equivalentto :
k+N . k1 kN k1
Pr(Zaj< v+ {yg +Zv-Z¢ -%a;})21-¢
i=k BN =t =1

Hence the value to giveto v, :

k+N k-1 k-1

v = I F(1-e eyar.y vt
= HF )+|z=:1(p' +uz=:1' 0 i=21;N'

If the previous replenishment v, _; has been determined by means of the same
formula, we remark that this one becomes shorter :

Y= F(e) (BB + O ajm

®

In that case, we notice that the replenishment is the sum of three terms that we
can analyse as :

— one term corresponding to an evolution of the reliability of the estimates with
regard to the previous decision : if the standard deviation of the margin between
demand and estimates is supposed to be constant, then this term is null.

— one term corresponding to the estimate for the period at the beginning of
which the reordered quantity v, will be available for sell.

—and, at last, a term that is, in fact, the margin between demands and estimates
registered during the previous period | That means that the replenishments are equal
to the estimates adjusted of the last difference fed back.




And the inventory level at the end of the (k+N)th period will be :

. §1 . kiN . §1 . kN
y =Yg +2 V; - o;-{Xa; +X a;}+v
keN O TN STt otETh O TET

1 k+N
= F- = - a,
Viun= 2k F(1°€) Ek i

As the margins a; are supposed to have a null mean value ( non biased
estimates ), this inventory level will be statistically equal to 3 F*' ( 1- € ) which depends
only on the quality of the estimates ( measured by the standard deviations ) and the
allowed risk, measured by the parameter € .

2) The two-levels system :

We shall now consider the system consisting of two kernel models in series as
shown on figure 2 : the demands which the upper part of the system has to meet are
the replenishments decided by the lower part whereas the lower part has to meet a
final random normal demand.

It is then obvious that the lower part of the system will work exactly as a single
kernel model system ; that means if we assign it the control parameter €', then the
replenishment levels to be decided will be :

| Lo, 1+N'I "y
) - . v -
Vi = I FTE) e300 2 VoY

V22 v _ F'(1-¢) (3 .5 Ll

: | k+N 2 ‘
where Xy = zci‘
ik




upper manufacturing time
TOOL NY periods

upper \inventory level

BUFFER/ yi“

lower manufacturing time

TOOL N periods
v!=d.u

lower \ inventory level
BUFFER y'

As these formulae show it, the first replenishment is deterministic : once the time
origin is chosen and the initial inventory level yo' measured, v1' is determined ; on the
contrary, the next replenishments are not determined until the period when they are to
be fixed but we observe that, when they are, they will express as the sum of a term
depending only on the estimates and a term that is the value taken by a random
normal variable.

I t . rand rmal_variabl the _demand !




It is then possible to build the demand estimates for the upper part of the
system, as soon.as a time origin is chosen :

1+N
|
¢, = EF(1-e)§l<p EV -y ¢ =0
1 i=1 i=1 t\f ' 0 1
and
Vk22 ¢ - F'(1-e) (& .3 b a | v
(pk= F (1 -e ) (zk - k‘1) + (pk+N‘|+ k-1 Gk = Gk_1
If the upper system is assigned the control parameter €Y , then the

- replenishments will be calculated exactly the same as for the single kernel system :

1+NY

i=1- N

= F'1(1'€‘5 (El:(

0

i=1-NY

vV, = z F(1e)+2(pi ZV-y

- {ZF ") 3 YYghe(s

Yk>2 Vk_ F (1 Su) (Zk Zk1)+ (pk+N

Y

|
)Y

'Z:_1 ) +F-1(1'8|) (Zlk+Nu-

i=1 NI

k1

u
k+ N

-1

P
)+ BN N

| 1+N+N
F(1-€)- ZV y'}+

>

+a

I
k-2

u k+N" 2
where X, = ZU“
i=k

According to the values given to the replenishments, the inventory levels will be
defined by the formulae :

| k+N
vV k21 =
Yo' ZF '(1-¢h Za
.
k+N k+N-1|
and yk”Nu-):kF (1-€Y) Za = S F(1-€Y - §k: ,
i=k-1




2/ DETERMINATION OF THE CONTROL PARAMETERS :

We could have pointed out in the previous paragraph that the absolute
probability of going out of stock for the finished product was kept under an € different
from the control parameters €¥ and €' .In fact, in the kernel model, the replenishment
capacity was supposed to be infinite ; in the two levels system, this hypothesis can be
(and is ) kept for the upper level but not for the lower one : the lower part
replenishment at the beginning of a given period must be less than the inventory level
reached at the end of previous period by the upper part of the system. Hence the
minimal value for the absolute probability of having enough finished product to mest
the demand is equal to the product of the minimal relative probability 1- €' of not going
out of stock at the lower level ( i.e. he minimal probability, provided that the
replenishments decided should not be limited by the intermediate inventory level ) by
the minimal absolute probability 1- €Y of not going out of stock at the upper level ( that
is, the probability for the lower-level replenishments not to be limited ).

Hence the maximal absolute probability of going out of stock for the finished

product :
g=¢g'+¢ -gu¢

This parameter € appears in fact as a constraint for the management ; on the
contrary, € and €' will have_to be chosen by the production manager . We noticed in
the previous paragraph that the statistic value of the inventory depended only on the
estimates (@ and o) and the lParameter €. It is then easy to link the statistic mean
value of the inventory levels yY and y! with the parameters €Y and €', in order to
compute €Y and €' so as to minimize the total cost of the inventory.

The statistic mean value of the inventory is, in fact, for each level and for the

periods that the management can influence : *
[
| %N !
h-N :
- b ) k (-
V=—— (S F(1-e) ) =Fee) e T 2o F(1-e)
hoN' k=t h_N'
I u
h-N -N
_u NG ko
Vel S {ZkF'(1-e%} = FM(1-e) et = o F(1-¢Y
hoN'_N" k=1 h_N'_N

If we assume that the costs are linear, which means in particular we take only
the variable costs into account, then the statistic mean value of the inventory global
cost will express as :

K(1-89,1- € )=KiaUF'(1-g¥) +K o/ F1(1-¢)
=K F1(1-¢")+ K F'(1-¢)




We shali then have to solve the problem :

5 <

y e 10,1[ (x=1-¢',y=1-g¥)
subjectto Xxxy=1-¢€

where € is a given parameter .

The point is that neither F nor F!' have .explicit formulations : the only
formulation for F is :

F(u)=I:f(t)dt where f(t) = (1/V2.nt) .exp (-t2/2) -

And so we shall have to find the solutions with numerical methods.

First of all, we can notice that the constraint implies that x > 1-€ andy > 1-€;
the optimization interval can then be reduced 1o ] 1- €, 1[. In the following lines, we
shall assume that the values given to € do not exceed 0.5 (which means that the
management will not tolerate that more than fifty percent of the demand could not be
met ) . In that case, the global cost will be expressed as a convex function of the
variable x :

infact, {xy=1-€} & {y=a/x} wherea=1-¢ ,

and we can write :
K=Kx) =K. F'(x) + K.F'(a/x) with xe]o1]

F is concave on the interval [0,4+o[ ( F" (t) < 0 ) and takes values ranging from
0.5to 1. Then F1 is convex on the interval [ 0.5, 1 [ and, as dF-' / dx is positive on this
interval, Kis convexon[0.5,1[.

It is then always possnble to find a solution to the problem previously posed, for

example by means of a gradient method : there is only one value for the unknown x
that minimizes the cost K .

. The graphs presented hereafter show the evolution of the global mventory cost
as a function of x=1-¢' for different values of parameter KY - parameter K! remaining
constant and equal to 100 - and for different values of parameter € which is, in fact, a
measure of the reliability of the system facing the demands.

These graphs demonstrate that :
1/ The more demanding the system becomes in terms of service to the client,
the higher global inventory cost ( the curves do not cross one another ).

2/ The optima' zontrol is stricter for the cheaper stock and hence imposes a
higher safety stock at that level.
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CONCLUSION :

This paper did not present the most general formulae developped to deal with
the replenishment control of any flow-shop; it is however obvious that the
generalization is easy . The main further research that can be thought of concerns the
introduction of finite capacities : the policy previously described has already been
adapted to a finite capacity model in the case of the kernel system; this approach
introduces a new control parameter to bound the probability for the future minimal
replenishments given by our formula to exceed the production capacity or lead to an
overstock . The replenishment actually decided is either equal to its theoretical value if
this one is less than the the capacity or equal to the capacity ; then it cannot rightfully
be considered as a random normal variable and the genelazation to mutiple level
systems requires a valuation of the bias introduced.
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