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RESUME

Dans cet article, on propose un algorithime de construction de. méthodes
nodales correspondant a divers éléments finis, non conformes, mixtes, bidimensionnels
ou tridimensionnels. On montre qu'on peut ainsi obtenir plusieurs méthodes classiques
aussi bien que certaines plus récentes, et que cet algorithme produit une
démonstration simple de I'unisolvence pour ces méthodes. Finalement on utilise cet

algorithme pour obtenir une méthode nodale tridimensionnelle de type BDM.

ABSTRACT

In this paper, we propose an algorithm to derive nodal methods
corresponding to various two and three-dimensional non conforming and mixed finite
elements. We show that this algorithm can be used to obtain several classical
schemas as well as some more recently developed schemes, and that it leads to a
siinple proof of unisolvence for these methods. Finally we use our method to obtain

a three dimensional nodal scheme of BDM type.




.?;L._' .

01

I ~ INTRODUCTION

Nodal methods are methods which try to- combine the most favorable
features of the finite element method (f.e.m.) and the finite difference method
(f.d.m.), two discretization methods which, a pr‘ior‘i,b are quite different. From
the f.e.m., théy borrow a piecewise continuous, wusually polynomial,
approximation to the solution of the problem considered., Like the f.d.m., they
usually produce quite regular and well structured algebraic systems of
equations : they are in fact fast solvers, well suited for parallel processing.l
This is true of course for relatively regular meshes, the most typical one being

probably the Munion-of-rectangles" mesh.

Nodal methods were introduced in nuclear engineering during the late
1970's: first references are Refs. [12,19,20,26] while Refs. [9,13,28] are
essentially review papers where many more references can be found. In reactor
analysis, there have been applications in static diffusion and in space-time
dynamics, as well as. in transport, covering, by the way the three classical
types of‘ partial differential equations elliptie, parabolic and hyperbolic, all
of them linear or quasi-linear. In reactor calculations, the sequence is almost
always the following : a preprocessing operation is first per'for'med whereby fine
details of the reactor core are homogenized into a fairly coarse anéi regular
array of homogeneous assemblies, a coarse-mesh or nodal calculation is then
performed and if fine details of neutron flux are wanted, a postprocessing

follows, ylelding the local maxima of the flux where hot spots can be expected.

It is very interesting to note that in many fields of application, which
have nothing to do with reactor calculation, we are confronted with very similar
situations, -except that the pre and/or postprocessing operations are ueually
absent, in other words, situations for which everything boils down to the
coarse—mesh or nodal calculation, This is typically the case for the numerical
simulation of flow in porous media. Traditionally, finite differences are used
here over fairly regular meshes of the union-of‘—'rectangles type.' This is so
because in most cases the boundary of the region to be modelled is not very
well-known, s0 that a regular grid is f‘air'ly'nat;,ur-al.' Moreover, the coefficlents

of the modelled equations, ‘such as the porosity of the medium, its per'mea‘bility,
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ete ., are simply not known with enough accuracy to allow for more than a mean
or average value per coarse cell. This is for instance the case in underground
water hydrology, oil reservoir simulation, nuclear waste disposal, etc.,
applications, where the people involved basically speak "finite differences",
Outside of the porous medium field, we could mention similar applications, for

instance, those in atmospheric pollution modelling.

In refs. [11,17,18] the relationship existing between some early nodal
schemes and nonconforming formulations of the f.e.m. was made explicit : that
these early nodal schemes do not climb correctly in order was shown [11], a
family of nodal schemes which does was proposed [17], and "numerical evidence"
to support that claim was exhibited [18]. By‘a "family of nodal schemes climbing
correctly in order", we mean a family such that if k is a nonnegative integer
index attached to each member of the family, convergence orders in the L2? norm
of O(hk+2) can be expected for the error between the approximation U, and the
solution u, where h is a measure of the size of the cells in the mésh. More
recently the relationship existing between this new family of nodal schemes and
extensions of mixed-hybrid finite elements [1] was demonstrated [16]. At
present, mixed and mixed-hybrid finite elements are particularly fasnionable in
research codes for o0il reservoir simulation [5,6,10]. It 1is therefore
interesting to establish the connection between schemes used in two fields of
apgplication apparently so far away, showing incidentally that our abové remarks
were well founded, Applications to neutron diffusion and transport have also
been presented [8,15].

A characteristic of nodal schemes leading to reduced couplings is that
the "nodes", "cells", "blocks", or "elements" are basically coupled by interface
variables which usually are moments of the unknown function or sometimes its
values at Gauss points. To these variables, we must add some interior variables,
in principle moments of the unknown function over the cell. These edge and cell
moments are linear functionals which will hopefully capture the essential
behavior of the unknown function. This leads us to the concept of finite
elements of nodal type, for which the basic parameters or degrees of freedom are
edge and cell moments. In rectangular an geometry, which is the only geometry we
shall consider in the following, it is always possible to refer to. the reference

n
cell [-1,+1]" by a simple diagonal affine mapping; thus, we shall define the
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edge and cell moments with respect to the reference cell. In 2D for instance,

let u(x,y) be the unknown function. Its edge moments will be defined by :

! o
m(w) = [1 P (y)u(=1,y) ay/N,
i +1
me(u) = [1 PY)u(+1,y) dy/N,
; +1 '
m(u) = L PyORu(x,=1) ax/Ny
and o
mé(u) = f Pi(x)u(x,+1) dx/Ni , (1)

-1

. where .L,R,D, and U stand for "left", "right", "down" and "up" respectively, Pi

is the normalized Legendre polynomial of degree i over [-1,+1], and
Ni = 2/(2i+1) 1is a convenient normalization factor. Cell moments of u are

defined by '
ij = .
‘me(u) = g PL(X) PL(y) ulx,y) dxdy/N,-N,. (2)
In 3D, we shall have to consider face moments instead of edge moments,
s 11 14 11 . ..
méj, mRJ,'mDJ, mUJ, m;J, and m;J, where F and B correspond to "front" and
"back". Similarly the cell moments will then become m. ¥.

c

Such finite elements are clearly ﬁon conforming in H!(Q) as elements uh
of the approximation space are continuous only in' the mean, plus possibly in
some of their higher moments, through the interfaces. If a primal f.e.m. is
considered, the approximation space must pass the "patch test" [27] to some
order : for an L? convergence of order O(hk+2), k e N=1{0,1,2...}, it is
sufficient [7,14] that

(1) é@L+1 be included in the space of polynomials describing u_ within

h
the cell, where

é?k = {x® yb ; 0Sa+bs k]| (37,
(ii) elements of the approximation space have k+1 moments continuous

through each edge.

See Appendix C for more details.

s
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In the following other polynomial spaces will be considered such as

@

={x*y";0s5ask,0sbs2} (4)

and @k‘i @k K In 3D, a trivial modification would lead us to @ with

kK,%,m
again @ks ék,k,k' o

The general issue of wunisolvence can be stated as follows : given a
finite element on the cell C (classical or of nodal type), a set of degrees of
freedom D is defined as well as a space S of polynomials which is the space of
restrictions to the cell C of functions uh in the approximation space. In
classical finite elements, the degrees of freedom usually are values and
possibly derivatives of the functions v, in S at special nodes of the given
element C, including in principle its vertices (which by the way leads to the
strong couplings typical of the classical f.e.m.). With finite elements of nodal
type, these degrees of freedom are edge moments m::(uh), where E stands for L,
R, U, or D, and cell moments mé‘](uh)‘. To say that S is unisolvent with respect
to D means that any member of S is uniquely determined in terms of the linear
functionals in D. A necessary condition for unisolvence is, as we recall,
dim(S)=card(D) but it is not sufficient. The two basic techniques for proving
unisolvence are

(i) to exhibit dual basis functions, i.e. basis functions belonging to S
of the Gij type ("the ith functional of D is one for the ith basis function and
zero for the other basis functions"); then, as dim(S)=card(D), if there is a
solution it is unique, or

(ii) to prove that if all the functionals in D are zero for a function in

S, then that function must be identical to zero.

Our objective in this paper is to consider a variety of situations of the
nodal type where some edge and cell moments are specified, i.e. D is given,
while S is not known a priori. The edge and cell moments often have some
physical meaning so it is quite natural to give them beforehand : the space $ of
basis functions is then to be determined in a way that leads to unisolveance.

Given D, there are many possible choices of the space S and our concern herc is
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to determine in a constructive way an S which‘vﬁés tﬂé right approximation
properties, not only for the inner representation in a cell ( 521+1 c S) but
also for the coupling betw2en neighboring cells (continuity of (k+1) edge
moments).

In section 2, a general constructive.algorithm for such finite elements
of tne nodal type in 2D is proposed; It is applied in section 3 to well known
situations where it is shown to reproduce previous bases. In section 4, we apply
it to derive the (new) nodal extensions of the recent Brezzi-Douglas-Marini
(BDM) mixed finite elements [4]. Section 5 is devoted to 3D situations with
examples given in section 6. Two appendices finally give examples of basis
functions in 2 and 3D, while a third one gives a general theorem leading to

error estimates for nodal finite elements.




II - THE TWO-DIMENSIONAL CASE.

Before presenting our constructive algorithm in 2D, we would 'like to
introduce some notation which will be useful, even later in 3D situations. As we
said Dbefore, P1 will be the norualized Legendre polynomial of degree i over
[-1,+1] with the well known properiies

Pi(+1) = 1 ’

_qyi
Pi(—1) = ( 1) s

+1
[1 Pi(x) PJ(x) dx = cij N,
and

i
Pi( x) (-1) Pi(X)' (5)
Let us introduce moreover

Plj(x,y) = Pi(X) Pj(y).
and . (6)

Pijk(x,y,z) = Pi(X) PJ(y) Pk(z).

For a given set D of degrees of freedom for functions defined on the
reference cell C=[-1,+1]%, our algorithm will define the space S of polynomials,
in which the restriction to C of the unknown function is to be approximated, by
specifying a basis of normalized Legendre polynomials. The choice of the basis
of polynomials Pab instead of the more usual basis of monomials xa yb, with the
normalizations we adopt, yields nice simplifications not only in the unisolvence

proofs but also in the calculation of the dual basis functions in S.

In 2D, a convenient way to describe the spaces S which will be chosen Tor
a given element type (either classical or nodél) is with a Pascal triangle in
which the different polynomials Pab forming the basis of S are presented in a
systematic way. In fig. 1, this representation is sketched for the classizal
choices of spaces S for triangles and for rectangles. In all of the figires, ab
is used to denote P b
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To set the scene for our algor'i'thm,‘ we shall make the following
assumptions, which are not really restrictive and can in fact be dropped 1in
special applications : we shall first assume that on the left and right (or
vertical) edges of a given cell, momeiits of order 0 through k ‘are given while on
the up and down (or horizontal) edgss, moments of order 0 through % are given.
Here k and £ are integers 2 -1, a value of -1 indicating that no momenﬁs are
specified on the corresponding edges. Further we assume that‘, within the cell,

moments with respect to é?}m, @m n or @m nY @ are prescribed. Again m
? ?

is an integer 2 -1, while n when it is specified, i:x'ma nonnegative integer, a
value of -1 for m indicating that no cell moments are prescribed. Clearly, one
at least of k, %, and m should be nonnegative.

In the figures r'epr'esenti"ng the degrees of freedom D, the edge moments
will be represented by small line segments perpendicular to the corresponding
edge, the absence of such segments meaning that the corresponding index k or 2
m,n Y @n,m’ m,n ¢ N, within

the cell will mean that the corresponding interior or cell moments are

is negative. The presence of gj’ﬁ. @m n °r @
’

prescribed, while the absence of any symbol implies that no cell moments are
present. This representation should become clear with the proposed examples.

In 2D, our algorithm can now be stated as follows :
ALGORITHM 1?
(i) All the polynomials Pij belonging to the specified set gm’ @m n°F
’
@m nVY @n m must be first included in the basis for S. In the Pascal
s ]
triangle representation, these polynomials will correspond to the 1ij

positions and we shall say that they constitute the "trunk" o\f the basis.

(ii) OQutside of the area occupiéd in the Pascal triangle by the trﬁnk, Ak
"two-boned legs" must be pulled out to the left and & "two-boned legs" to
the right, a "bone" corresponding to a position in the triangle.

More precisely,. the 2(k+1) vertical edge moments and the 2(8+1)

horizontal edge moments give rise to the basis elements Pa i and Pa . 1
P ) . b4

i=0,...,k, and P, and P 1’ j=0,...,%, where the'ai's and b:js

J’bj J)bj+




08

indicating the points of departure of the left legs and right legs
respectively, are determined as follows .

For 0 is min{k,z}, ai is the léast integer a, a2 i, such that Pé,i is
not included in the trunk. Simi'arly, bi is the least integer b, b2 i
such  that Pi,b is not ir.luded in the trunk. Note that for
0s1i,js min{k,l} the ith left leg and the jth right leg can overlap only

in case i=j and the point of departure of the legs is the same, i.e.

a; = bj =1 = j.

(1ii) If it happens that the point of departure of two legs corresponding
to the ith vertical and the it'h horizontal moments, is common to both legs,
these two legs will now be attached to the corresponding polynomial P

and P

ii’
i,i+1°

the element P1+2,1~Pi,1+2' We shall say that Pi+2,i and Pi,i+2 are also
th X

bones of the ith left and i right legs, respectively, and that Pi i is

and we shall include in the basis, in addition to pii’ Pi+1 i
. ’

the "i-pelvis",

(iv) If k=24, say k > %, the ith left legs, i=2+1,..,k, or rather their

points of departure as still have to be defined. In this case, we permit
a; to be less than i in order to fill in the Pascal triangle as much as

. t
possible from the top but a, still should be chosen so that the i h left

i
leg does not meet one of the right legs and does not lie under one of them.

Thus for %+1 & i £ k, a, is the least integer a, a2 % +1, such that Pai

i
is not included in the trunk.

Then we have :
" LEMMA 1
Given a set D of degrees of freedom conforming to the stated hypotheses,

the space S constructed by the-abové algorithm is unisolvent with respect
to D.
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PROOF

Let us first show that dim(S)=card(D). There are clearly as many elements
in the trunk as cell moments. The edge moments by hypothesis come by pairs
(vertical and horizontal ones): to each pair corresponds a two-boned leg in the
Separated case, while in the nonseparated case we have for two intersecting

th horizontal and vertical moments) a pelvis plus two two—boned

pairs (say the i
legs or five 'elements of which four only are independent, so that clearly

dim(S) = card(D).

Let us now show unisolvence., Assume that all the given moments are zero.
Any member Uy of S is of the form

u =1 C P : (7)

h ab ab " ab
where ab is any allowed position in the Pascal triangle. Clearly in the case of
Joined 1legs, Ci;i+2 ="—Ci+2,i’ We shall show that all the coefficients Cab in

(7) are zero.
First, for all the cell moments, using (2), (5) and (1), we have

I P |
Cyy = mltu) <0, o | (8)

where 1j 1s any allowed position in the trunk.

‘ n
Consider any pair, say the it , of vertical moments with
0515 min{k,2}, not attached to a right leg. From (1), (5), (7), and (8), we

obtain

|
o

Cai Pa(-” * Ca+1,i Pa+1(-1)

i
,mL(uh)

and

i

1
(@]

: i
Cag PaltD) * Cpy 4 Poyy (41 = ma(u) (9)

ai

where al and a+1,i are the two positions in the Paseal triangle outside of the
. .th '

trunk corresponding to the_lt left leg, assumed to be alone. Using (5), (9)

becomes

‘ai 7 Cavt, 1 T Gy *Cauy,p =0 Lo
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implying that both Cai and Ca+1,i are zero. The same is true for all the
th

solitary right legs corresponding to i horizontal moments for
0s i sminfk,2}. _
Let us now look at the case of joined legs with pelvis at 1ii. The

equations for mé, m;, mé, and mé together with (8) and (10) yield.

€11 " Cia1,1 * Ciup,y = O
i1 * Crea,1 * Cpap,g = 0
Cig “Ci, 101 *Cy qup =0
and
Cit *Ci,101 *Ci,042°0
so that clearly Ci+1,1 = Ci,1+1 = 0., We are left witﬁ
Cig *Ciag, g =0
and
i *Cipe2 70
implying
Cig " Cy, 002 " Chup, 1 = 0 | (1)
since C1,1+2 = -Ci+2,i'

Finally we consider a pair of 1?“ edge moments for i > min{k,z}, say
k > %, so that 2+1 Si S k. From (1), (5), and (7) we have :

mi(uh) =ycCc,. P, (-1) ,

JiJ
and o _
i
mp(u ) =} Cyy Py (41D .
J
However from (8), (10), and (11), we deduce that CiJ = 0 for j < a where P,j and
th i

Pa+1,i are the two bones of the i leg. Thus we obtain the equations (9) and

(10) for i+i $i sk and consequently that Cai and Ca+1,i

an
are zere

QED,



Remark 1

Remark 2

Renark_3

1

It should be clear from the above demonstration that when edge
moments are present there are infinitely many spaces § that could
be chosen, D being fixed. Given the cell moments, the trunk is
fixed once and for all. but the legs could have holes provided -
their bones retained the correc; parities. . The 1 left leg for
instance could perfectly well combiné:P;i and Pa+3.1 instead of
P_. and P

ai a+1,i’
triangle from the top, our choice is the most natural one.

However since we want to -fill in the Pascal

Our chojice of normaiization (1) and (2) leads to particularly

‘elegant equations. Looking at the left hand sides of (8), (10) and

(11), we see that all the coefficients take as values -1,0 or +1.
In the determination of the dual basis functions corresponding to
each of the moments of D, the second members have zero components
in all positions, as above, except one of them where the value is
one. In simple situétions, i.e. when dim(S)=N is not too high,
these equations can usually be solved py simple inspection. For

more compleéx cases, the computer,could‘be used,

With our anatomical analogies, our nodal finite elements are
clearly potential monsters, witan or without a trunk.'several legs

on each éide, and eventually one or more pelvises.
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III - SOME EXAMPLES

Example 1 : The Langenbuch-Maurer-Werner I or sum nodal schemes [19,20].

For this example :
0 0 0 0
D, = { mp, (), mp (), myCu), mlu),

mio(u )

C h » i=0,...,l( »

0j . . .
meo(u) o =tk } , card (D) = 2k+5 ,

S ~ é;?k+2.o” Dora + dim (8,) = 2k+5

¥keN . (12)

These schemes are illustrated in Fig. 2. Clearly only zeroth order edge moments

will be continuous while é?ﬁ

nodal schemes do not climb correctly in order. As shown earlier (111, they
exhibit L? convergence of 0(h?) ¥ k. ‘

C Sk and ég; ¢ Sk ¥ k. Correspondingly, these

Example 2. The Hennart nodal schemes [17,18].A

These nodal scheme have been built from the nodal schemes of Example 1,
with the idea of forcing them to climb correctly in order.

o
!

e = mé(uh). m;(uh), mé(uH), mﬁ(uH) » 1=0,...,k
midw) , 1,3-0 k|, card(d.) = (ke1) (k+5)
C h s ’ "' LA | ’ k ?
s = @ v @ ;o dIm(S) = (k+1) (ke5)

k k+2,k K, k+2

¥ke N . _ (13)
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Dual basis functions are given in Ref.[17]. These schemes are illustrated in
Fig. 3. Clearly, they climb correctly in order.

Example 3. The Raviart-Thomas mixed finite elements [25].

In the mixed formulation of the f.e.m., a second order elliptic problem
1like
-4 = f ’ in @ , (14)

is written as a couple of first order equations

<y <+

>
oy =f ,inQ . (15)

A weak form of (15) is then obtained by multiplication by test functions and
integration by parts. As a result v and u. are 1ooked for (iqdependently) in
H(div Q) and L%(Q), respectively, the Raviart Thomas mixed finite elements
constitutlng a qpnfbrming finite element approximation of H(div;Q)xL?*(Q)
‘(clihbihg carrectly in order),
| For the scalar yariablévu_

p, = | ngd (W) . L0,k ), card(p,) = (k+1)? ,

s, = @, aim(S,) = (k+1)?

’
as shown in Fig. 4.
For the vector variable v = (vi. vz); we shall have

k2 * Sk = Sk1*Ske

with
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i -
Dy = { m, (v,) o 1=0,,..,k ,
md(v ) ) 1m0, kst g0,k ),
D, = { ot (v..) 1=0 K
k2 v h2 9 ey »
1
med(v, ) 4 120,..00,k v 3=0,..u k-1 ),
card Dk = 2(k+1)(k+2) .
s = @ s .= @ dim S, = 2(k+1)(k+2)
K1 k+1,k’ k2 kokel K ,

¥ ke N , 17)

where 1 (resp. m; ) stands for mé an@ m; (resp. mé and mé). For u as well
as for v, dual basis functions have been given [16]. In the same reference, the
nodal schemes of Example 2 were shown to be extensions i la Arnold~Brezzi [1] of
the Raviart-Thomas mixed finite elements, under appropriate nypotheses. These
mixed finite elements have been extehded by Nédélec to 3D [23]. Accordingly, we
shall call the nodal schemes of example 2 modal finite elements of the RTN type.

Fig.5 illustrates (17) for the first component vy of V.

Before moving Lo example 4, we would like to offer some comments. In all
the previous examplés. as we have seen, our algorithm gave us exactly the spaces
S (or Sk) which have been obtained independently by quite different
approaches [17,19,20,25]. This confirms a posteriori its validity. The fact that
the corresponding elements (here in H!(Q) or H(div;2)) do or do not climb
correctly in order is then derived by direct inspection of‘S and D eacn case, In
example 4, as in the previous example, we are concerned with a space of scalars
and a space of vectors; However, in this example, the two components of tne
vectors are not independently determined. Thus our algorithm and proof of
unisolvence cannot be directly applied, but we would like to show how our

-~ L enm 2 Voo imm -~ o~ moemen Yo o &
vachn Lo unisolvence can oe exploited to

-~ < -~ —~ ~ o~ - - -~ < 4
rovide a clean and airect

]

cr
[ d

demonstration.
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Example Y4 : The Brezzi-Douglas—-Marini mixed finite elements [ul. .

' These.recent mixed finite elements are conforming in H(div;ﬂ)#bz(ﬂ), like
the RTN mixed finite elements. The basic idea behind‘their'geveiopment was to
achieve the same convergence orders as with their RTN counterparts.but with
(asymptétically) only fifty percent of the unknowns..;_Assuang that
k € N _(i.e. k21), the scalar variable is taken to be in é?k;1_1nstead.of C?k.

namely
1j : '
D, = { mCJ(uh) , 0 i+ Sk-1}, card (D) = k(k+1)/2,
o)
s, 2 . dim (S) = k(ks1)/2
¥keN : . . | (18)

as shown 'in Fig. 6..

-> » .
.For the vector variable v = (v1,v2)

D, = { my (V) s a1=0,.k
(v, ,) . Osirjsk-2
i
m, (vha) y . s1=0,...,k
w3y, ) 051+35k¥2 }
C ' 'n2 ’ ' e
card Dk = k2 + 3k + 4,
= P & : Pret,o ~(2k+1) P )
Sk = 2w X Py } @ span |
C(2k+1)P, Po'k+1

dim S, = K* + 3k + 4,
¥ke N , ) (19)




16 ;

The fact that to o?ikE cgix @2{ is added a space of dimension two of particular
vector polynomials of degree (k+1) has to do with the following : if T,, (resp,
S,)) denotes the finite dimensional subspace approximating H(div;Q) (resp,
L2(2)), the numerical analysis of the resulting methods depends on the fact that

div T, ¢ 'Sh'
the extra two terms have been chosen so that the divergences of the monomials of

Clearly this is satisfied here since div Q@k C 09?'(_1 and since

degree k+1 cancel out. In the previous example, the two components of ;; were

determined independently : here this is no longer the case as v, and v. are

1 2
dependent on each other, a situation we have attempted to illustrate in Fig. 7.

Basically, the two—dimensional vector space added tocﬁgz K adds four extra
terms to the Pascal triangles which are coupled two by two as follows : a term
in position (k+1,0) (resp. (1,k)) for vy coupled to a term in position (k,1)
(resp. (0,k+1)) for Vye These two pairs of terms are coupled in the sense that
if one of them disappears, the other one must also disappear. The unisolvence
proof is now easy : first, we get rid of the two trunks (@62‘(_2). then we look

at the (k+1) left legs of the Pascal triangle corresponding to v,. The leftmost

1
leg has three bones (!) so we can say nothing about it, but the k following ones

have only two bones which must disappear by parity considerations as in the
proof of our basic algorithm, implying in particular that the (1,k) position
must be void, aal also the (0,k+1) one for v2 thanks to the coupling. Looking

now at the (k+1) right legs of the Pascal triangle corresponding to Voo we see

that they are now all with two bones since the third bone of the rightmost leg
has been canceled. Consequently they are all void, in particular in the (k,1)

position, implying that the (k+1,0) position for v, is void and that finally the

1

leftmost leg of v, also disappears QED.

1

We remark that for the construction of the basis for Sk our algorithm

applies up to the point where we take into account the dependance of the two
components of the vector variable.
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IV ~ NODAL FINITE ELEMENTS OF THE BDM TYPE

Examgle 5 : The nodal finite elements of the Brezzi-Douglas-Marini (BDM) type
[4]. ‘
.

In Arnold-Brezzi [1], a mixed-hybrid formulation of the f.e.m. was
presented which has many computétional advantages over the classical mixed one
[25]. In fact in the mixed?hybrid formulation, the c¢onformity conditions in
H(div;g) are dropped (’I‘h ¢ H(div;Q)) and enforced by the. use of Lagrangien
parameters. These parameters are assoclated with moments of the normal component
of ; on the edges of the cells and therefore provide some valuable information
about the corrgsponding moments of the dual variable, i.e. the scalar variable
u. Hence edge information can be combined Qith the cell information'concerning u
in a pbstprocessing operation performed cell by cell, to obtain a better
approximation of u than the original one in L?. This procedure can be called an

"extension" or "enhancement" of u.-

In their original paper [4], Brezzi, Douglas and Marini proposed suéh a
ﬁodal extension for their family of mixed finite elements., However, except in
the case k=1, their extension, does not use all the information available. In
fact, the number of parameters used is (k?*+5k+12)/2 while if all the parameters
were used, namely 4(k+1) edge moments plus k(k+1)/2 cell moments, the total
number of parameters would be (k*+9k+8)/2. Except for k=1, this number is larger
than the previous one. Since this information is available, why not use it
completely. The convergence order will not he modified but the approximation of
1 will in principle be richer.

Our general algorithm can again be applied and we have here (see Fig. 8)

i i i i -
p, = { m (u), meCu), mpCu), myCu) , 1=0,..0k
méJ(uh) , 0si+jsk-1 }, card(Dk) = (k®+9k+8)/2 ,
N @) o - - .
Se T @}kn ® @]Zk ® span (PP oy 1Py, e Pien, 1Ty 102
(k+1)/2 <1 sk |,
where R = span P PP, P ¢ RO1/2 L K o,

{P_.+ TPLoLL 1= k/2 }, k even,

"
Zy 2 1y LV

¥k eN _ . (20)
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Note that we do not restrict k to ]N* but only- to NN, as a nodal finite
element of the BDM type exists per se when k=0 even if it cannot be directly
related by extension to a mixed-hybrid. BDM finite element. Also when k=1, the
spaces S1 we construct is identical to the one Brezzi-Douglas-Marini considered
for their nodal extensions, another positive feature of our algorithm. Finally

as it is easy to check, these finite elements climb correctly in order.

It is tempting to investigate the possibility of constructing other
families of nodal finite elements with the BDM philosophy of minimizing the
number of parameters necessary to ensure the same orders of convergence. To pass
the patch test at order k, we use (k+1) moments on each edge or 4(k+1) such

moments in total. To ensure é? C S, we need a total, edge and cell moments,

of (k+2)(k+3)/2 degrees of free:;; at least. In Table I, we show these numhers
for the first six values of k (k=0,...,5).

We remark that for k £3 the number of edge moments necessary to satisfy
the patch test is greater than the number of edge and cell moments necessary to
satisfy é?k+1c S, and the situation is reversed when k2 4, In the same Table
I, we also give the numbers of degrees of freedom needed by the nodal finite
elements of the RTN and BDM type. At this stage, it is important to mention
that, in real life calculations, high order elements (say k »2 ) are quite

seldom used.

It is clearly possible to improve upon the nodal finite elements of the
BDM type by taking fewer cell moments, for instance moments with respect to
é?k—Z(kZ 1) (family a) or with respect to é?k_B(kz 2) (family b) instead of
with respect to §§;~1(k2 0). If we apply Algorithm 1 to obtain the
corresponding space Sk’ these spaces are Dk—unisolvent but the corresponding
finite elements do not climb correctly in order as é?k+1 is not in general
contained in Sk (see Figs. 9 and 10).

We can however modify Algorithm 1 in order to achieve correct orders, and
we have indicated some of the resulting schemes in Figs. 11. and 12, There does
not seem however to be a general pattern for doing so; see Fig. 13. Still, as
can be seen for these examples, the kind of unisolvence proof used before is

quite helpful.
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Before leaving this section, we illustrate in F“ig. 14 that our algorithm
can also be used in situations where'some'asymmetry is present, as‘for instance
when more horizontal moments are prescribed than vertical ones. Thehé .ajr'e indeed
physical situations where the use of thick or thin reétangleé is clearly
recommendable, as for instance in neutron transport deep penetration problems

[15].
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V - THE THREE-DIMENSIONAL CASE

In three dimensions, the Pascal triangle becomes a Pascal tetrahedron and
it is clearly more difficult to visualize what happens. As before, we shall
first assume that on the left and right (or vertical) faces of a given cell,

moments with respect to éng or é@k ) are prescribed, where kx is an
x’7x '

X
integer 2-1, while lx when it is specified is a nonnegative integer, a value of

(-1) for kx indicating that no moments are considered on the vertical faces. On
the up and down (or horizontal) faces as well as on the front and back (or
frontal) faces, moments are similarly prescribed with respect to é%?k or
é@k L and é?; or é@kz'zz. Finally, cell moments with respect to é?ﬁlor

y vy 2
m. 0. o are also prescribed. Clearly, one at least of kx' ky, kz and m should
9 ?
be nonnegative, The notation used is illustrated in Fig. 15. For the sake of
simplicity we shall consider the case where kx = ky = kZ = k and

In 3D, our algorithm can be stated as follows

Assume that vertical, horizontal, and frontal face moments with respect
to égﬁ( or éZk’z are specified as well as cell moments with respect to égzn or
ézln’n’o. one at least of the integers k and m being nonnegative, The following
algorithm gives a corresponding unisolvent bhasis that we shall represent with

the help of a Pascal tetrahedron. We have :

ALGORITHM 2
(i) A1l the polynomials Pijk belonging to the specified set é?m on
é?m n.o must be first included in the basis of S. In the Pascal
? ’

tetrahedron, these polynomials will correspond to the ijk positions and we

shall say that they constitute the trunk of the basis.

(i1) Outside of the area occupied in the tetrahedron by the trunk, p
two-boned legs must be pulled out in the x—direction, in the y-direction,

and in the z-direction where p iS the dimension of the specified set é?k

or &G .

K, &
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More precisely, the 2p vertical, horizontal, and fbontal-face moments,

. . 9 o)
give rise to the basis elements Paij’ij and Paij+13ij’ Pij € @2k or C;k,z'
P | ' & P..
i'bij’J and Pi’bij+1'j, Pij € &, or K, L' and Pij’cij and lj’cij+1’
P.. ' ' e s
ij € é?k or é@k,z, where the aij S, bij s, and cij s indicating the point of
departure of the x-legs, y-legs, and z-legs respectively are determined as
follows :
For Pij € é?k or é@k 2 2ij is the least integer a, a 2 max [i,Jj}, such
’ .
that Paij is not included in the trunk. The bij's and cij's are defined

analogously. We remark that as in the 2D case, the 1ij x~leg and the i'j' y-leg
can overlap only if i=i', j=j' and the points of departure of the legs is the
same, i.e. aij = bi'j' = i=1', and analogously for x-legs and z-—legs or y-legs
and z—legs.

(iii) Tf it happens that the point of departure of two but nét three
legs, say an x-leg and a y-leg, corresponding to the i1j vertical face moment and
to the ij horizontal face moment respectively, i + j, is common to both legs,
these two legs will now be attached to the iij position, and we shall include in
the basis in addition to Piij’Pi+1,ij and Pi,i+1,j the element Pi+2,ij—Pi,i;2,J"
We shall say that Pi+2,ij and pi,i+2,j are bones of the ij x—-leg and the ij
y-leg respectively and that Piij is the iij-pelvis. The other gombinations of

two joined legs are handled analogously.

(iv) We still have to consider the case that the point of departure of
three legs, an x-leg, a y-leg, and a z-leg corresponding to say the il vertical
face moments, the ii horizontal face moments, and the ii frontal face moments

respectively, is the same. These three legs will now be attached to the iii

position, and we shall include in the basis in addition to P,, ., P s
iii i+1,ii
Pi,i+1,i and ~Pii,i+1 the elements Pi+2,ii’ Pi,i+2,i' and pii,i+2 with the
condition Ci+2,ii + Ci,i+2,i + Cii,i+2 = 0 where Cabc is the coefficient of Pabc
in the expansion of a member u of S, namely
u =1 C P . (21)

h aoc  aoc
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Then we have :
LEMMA 2
Given a set D of degrees of freedom conforming to the stated hypotheses,

the space S constructed by the above algorithm is unisolvent with respect
to D.

PROOF

Quite similar to the proof of Lemma 1.

Remark 1 : As for Algorithm 1, we could have assumed in (i) that Pijk belongs
to a set of the form @ v @ U @ in order to be
m,n,o o,m,n n,o,m

able to construct Langenbuch-Maurer-Werner [19,20] I or sum
nodal schemes in 3D, in analogy with example 1., Again, these
schemes do not climb correctly in order and their interest is
therefore limited.

Remark 2 : In algorithm 2, we could also include asymmetric cases kx*ky*kz
(and possibly lxﬂyaﬂ.z). In such situations an analog to point
(iv) of Algorithm 1 should also be considered. In practice, when
such a situation is encountered, it is trivial to proceed by

analogy with the 2D case.



VI < SOME EXAMPLES IN 3D
Example 6 : The Hennart nodal schemes in 3D [17].
These schemes are obtained from the mixed-hybrid formulation a Ila

Arnold-Brezzl'fIJ of the Nédélec [22] mixed finite elements (see Example 7),

under appropriate nypotheses. See Ref. 6 for the 2D case. We have :

Dy = { méj (u,), m:f' (u,), m;JV(uh), 1,320, .4.,%,
méjk(uh) ¥ . 1)J’k=01-"12 }:

card(Dl) = (4+1)2 (2+7) ’

s = @

% 2+2,8,8Y g,8+2,0"Y ézz,z.z+2

dim(Si) = (2+1)2 (2+47) R

@

¥ L e N . ' (22)

Explicit dual basis functions are given ih [17]. These schemes are illustrated
in Figs. 16 and 17 and clearly climb correctly in order.

Example 7 : The original Nédélec mixed finite elements [22].

The case of the scalar vartable [s as trivial in 3D as it is in 2D and we
> .
shall only consider the vector variables v = (v1. VZ, v3). For ;

b, = | myltv,) S O CL AP 2
méjk(th) , 1=0,...,8-1 ; §,k=0,...,18,
mcf(vhzx , o 1,3=0,...,2,
méjk(vhz) , J=0,cves -1 5 1,k=0,...,%,
m;J (V) 1,350,400,
éjk(vh3) ,  k=0,...,8-1 ; 1,3=0,...,% },

card D, = 3(2+1)2 (2+2)
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) o o
S 1 @hnns @ Gl atns, - 3002 (),
¥ LenN . - S (@23)

See Figs. 18 and 19. As shown by Nédélec [22], these elements climp
correctly in order. ‘
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Example 8 : The new Nédélec mixed finite elements [23].

For the scalar variable in the same as that in example 7, while for the

vector variable ; = (v1, Vor V ), we shall have

3
B ij , - .

Dy = {m (v,)) v L3 = 0,00,
ijk . . .
me (v1h) y 1 =0,...,0-2; j,k =0,...,%,
mtd (V) , 1,j=0,...,%,
1k ) '
mc‘j (v2h) y J=0,...,0-2; i,k = 0,...,%,
b (vg) , 1,5 =0,..., %,
ijk i
mg (v3h) » k=0,.00,2-2; 1, =0,...,0 },

card Dz = 3(2+1)°3
s, = @1 x @1 % @z . dim s, = 3(8+1)%,
¥ 2 em*. (24)

See Fig. 20. As shown by Nédélec [23], these elements climb correctly in order.
If we call N1 the dimension of Sl (or the cardinality of Dl) for the original
'Nédélec mixed finite elements and N_, the corresponding dimension for the new

2
Nédélec mixed finite elements, we have

2. &

N1 w2 (25)

which tends asymptotically to one. Consequently, the lowest order new Nédélec
mixed finite elements with £ = 1 or maybe £ = 2 are the most interesting ones.
‘i We note that if a mixed-hybrid form is considered, the nodal finite elements
obtained by extension would be identical to the Hennart nodal schemes in 3D [17]
as are those obtained from example 7.
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Example 9 : The 3D mixed finite elements "& la BDM" [3].
Lxample

In a recent paper [3], Brezzi et al. proposed mixed finite elements in
3D, which are a natural generalization to 3D of the 2D mixed finite elements of
Ref.[4] (see Example U4).

Assuming that Ze]N*, the scalar variable is taken to be in ??2__10
instead of @2, namely

D, = {m 3%, 0 5 i+j+k 5 2-1}, card D, = +2

[¢] 6 ’
) . _L(a+1)(R+2)
Sz = gh_‘] N dim Sl = m— 6 ’
¥ %€ ]N* . (26)
For the vector variable -\; = (v1 ’ v2, v3)
P ij < ias
D, { my (Vo) , 0 s i+j 54,
ijk _
m (Vm) , 0 S i+j+k S -2,
1
my (v.,) o 05 i+j s g,
ijk .
me (th) , 0 € i+j+k $ 2-2,
ij .
me (vhs) , 0 £ 1+j 59,
ijk _
m, (vh3) , 0 5 i+j+k s g-2 },
card D, = (22 + 622 + 17 2 + 12)/2,
Poet1,00 ~(2L+ 1P, o 0
S = 27 X(g )()@ - 1
0 { = 2} @® span (SL+|)PMO , 0 , PO,1+1,0
0 P -(L+
00,22+1 (2 1)Pom
i+1)p -p
) 11,8~1 i+1,2~1,0 °
+ ® span{[-P . 0 '
i=1,...,8% 0,1+1,2-1 [ DR 4y
0 {41 -
Py i Po-1,0,1+1

s =1, ...,8,



dim S, = (R2+6L2+172+12) / 2 (27)

L

As in Example 4, it 1is possible to use our general technique to prove

unisolvence,
“ Example 10 : The (new) nodal finite elements of BDM type in 3D.

These nodal finite elements are extensions "3 la Arnold-Brezzi" of the 3D

mixed finite elements "a la BDM" of Example 9. We have :

p, = L myd )y mld ), md ), 0s s,
méjk(uh) ’ » 0 s i+j+k § &-1 |,

card D = (2+1)(2+2)(2+18)/6

3 3
s. = & ® & A, & ® B - @ C,
' -1 1=1 =1 1

where A1, A2 and A3 are the spaces generated by the solitary legs corresponding

to the vertical, horizontal, and frontal face moments respectively,

A, = span {Pijk, Plot, g,k ¢ DIk, 1+j+k=2 } ,

with A2 and A3 being defined as was A1 with the obvious rotation of the indices;

B,, and B, are spaces generated by the joined pairs of legs,

By» By 3

B, = span [Pij

., P, . ., P.. . P, . ~ :
1 30 Piaen, 50 Pigyger Piigea,s T Pig,ge2

i>§, 2 s 2i+j s 28~3 |,

again with 82 and B3 being defined as was B1 with the proper index rotationg’

and C is the space generated by the joined triples of legs,



28

C = span | Py, Pien,1,10 P e, 10 Pan terr Preg g, o0

Pi,1+2,1* Pi,1, 1400 With Cien,i1

C + C

1,142, 1 0 :4/3s1s/2}.,

ii,1+2 ~

dim Sg = (2+1)(2+2) (2+18)/6,

¥2 eN : (28)

The first two such elements are illustrated in Figs. 21 and 22, including the
case L = 0 which exists per se. To see that these elements again climb correctly
in order, we need to show that é%+1 c Sz. Consider Pijk with i+j+k = L. We may
assume iz2j,k. Then Pijk is the first bone of the leg corresponding to the Jk
1j€ A 1 =3 > kord=k> gy
Pijke B3 or Pijk € Bz, and if i = j = k, ?ijke C. Next suppose i+j+k = 2 + 1
and again assume i1 2 j,k. If i > Jsk then Pijk is the second bone of the leg
corresponding to the jk vertical moments. Otherwise, say i=j, Pijk is the first

bone for the ik horizontal face moments and for the Jk vertical face moments and

horizontal moments : if { > j,k ; P

f = j = i € C.
Pijk € B3 unless, of course, i J k in which case Pijk

We remark that sinceé%+1 c S2 an expression analagous to that given for
the 2D BDM nodal elements could be wused to define Sz but in 3D such an

expression is quite tedious. (In fact even with the expression given here S2 is

probably more easily constructed using Fig. 21 or Fig. 22 than using the
formula.)
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APPENDIX A

Examples of basis functiéns in 2D

1 - The Hennart nodal schemes im 2D [17,18] .

The basis functions have been given explicitly earlier [17] and will be
‘recalled here for the sake of completeness.

Corresponding to the degrees of freedom mi and mlJvof u (see Eq. (13)),

c
we have :
i 1 K+1
u, =3 (N [Pk+1,i Pk+2’i] , 1=0,.0k
i1
u =3 [Pk+1'i+Pk+2)1] Loi=0,...,k
gl ey -P 1,320,400,k (A1)
¢ 1 kem(1),§  L,kem(y) 0 IO

where m(1) (resp. m(j)) = 1 or 2 is such that i and k+m(1i) (resp. j and j+m(J))
have the same parity. As in the preceeding examples, the basis functliong
corresponding to the vertical degrees of freedom mi can be -obtained by
exchanging x and y and by replacing L and R by D and U respectively. In [17],
asymmetric 2D basis functions are also given.

2 - The Raviart?Thomaa mixed finite elements [25].

These basis functions have also been given explicity earlier [16].
For the degrees of f‘reedom‘méJ of the scalar variable u (see Eq. (16)),

the basis functions are quite simple (they are of the trunk-only type) and
reduce to

‘uéJ(X.y) = uéj= Pij = Rij(x,Y) e oL, =000 0,k (A2)

. i j
For the degrees of freedom m and méJ'of the first component v of the

) - *
vector variable v (see Eq. (17)), we have the corresponding basis functions




A2

i1, ..k
viL =§( 1) [P

k+1.i—Pki] ’ 1=0,...,k,
i1 . .
V‘IR = -2' [Pk1+Pk+1,i] ’ 1=O,.-o,k,
and
vl o op i=0,..,k=1, j=0 K (A3)
1C 13 k=1+m(1),J J ve s K7D, reeesky

where m(1)=1 or 2 is such that i and k-1+m(i) have the same parity. Similar
expressions hold for the corresponding degrees of freedom of \2Y with the roles

of x and y exchanged and L and R replaced by D and U respectively.
3 - The Brezzi-Douglas-Marini mixed finite elements [4].

Here the situation is more complex than in the Raviar£~Thomas case and
for the vector variable, we were unable to find,a general compact expression,
For the scalar variable formula (A2) is again valid.

We can however easily retrieve the basis functions by hand for the
simplest cases or by computer as soon as k grows. For k=1 for instance (the

first such mixed finite element), we have following (19)

> 1
V;‘ = (E (Pxo - Poo)so)

;§= (Jé' (Poo + Pyy),0)

> 1

VL'—' (E (P11 = POI)I g (Poo —POZ))

+ 1 1 '

VR = (E (P01 + P;[), E (Poo - Poz)) . (Au)

+> >
Similar expressions for ;S, v&, VB and 36 are obtained by exchanging the

components as well as x and y and by replacing L and R by D and U respectively.

4 —~ The nodal finite elements of the BDM type in 2D. !

Here agatn, a general pattern was not evident but we have for instance

eorreeponding to the degrees of freedom given by (20) and in the case k=0



- A3

1
u =g (Poo = 2Py + Py = Pyp)

0
L
uﬁ = % (Pog + 2Pyo *+ Pyo = Poy)

with ua and u& being determined similarly.

In the case k=1, we get

(=Pyo * P2o *+ Py,)

|-

1
uw = E (+Plo * Pyo -~ P;z)

1
uL ] (=Py, + 2Py, = Pyy + Py3)
1 = l (+P +
s T 11 2Py, *+ Py — Pya).

and

ul® = Pygq "on - Po2

(AS)

(A6)

the same remark as above being valid for the vertical edge basis functions.
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Examples of basiaAfunctlpns 1n 3D.

1 - The Hennart nodal schemes in 3D [17,18].

These basis functions were given in [17] and are recalled here,
Corresponding to the degrees of freedom méi and méJk of u'as in (22), we have '

13 1 k1 - R =
I, 5 (-1) [PM’H P“z’ij] 1,350,400 00ty
13 .1 | i
=3 Py P2y . 1,200 000ty
| uUk = 1,J0k=0,00s,%, (B:)

¢ " PukPrem(), 3k P 2em(3) k Pag, em00)

whére'm(l), m(j) and m(k) have the same meaning as before. Again the other face

4 1y

basis functions wcan be retrieved from up and up® by trivial” symmetry

operations.
2 - The Néd8lec mixed finite elements [22].

The case of the scalar variable being again trivial, we shall only pay
attention to the vector variable and more. specifically to its first component

VT' The basis functions for the other two components are obtained as in Appendix

A by trivial exchanges of the arguments and substitutions of the face
identifiers.
For v1 whose degrees of freedom n

i
J and méjk -are described in (23), we
3

have the corresponding basis functions ;

11, \8 ) -
v‘L v 2( 1) [ Pl+‘],1j PEIJ ] ’ i.J-Q,...,Q,
11 N
v‘R - 2 [Pﬁ,ij * P1+1'1‘j ] ’ i)J-o'- no,‘l,
and
ijk -
e ® Pugk T Peetemcn), gk L R0 Lt ke 00 (RD)

where m(i) = 1 or 2 is such that i and 2-1+m(i) have the same parity.
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3. The new Nédélec mixed finite elements [23].

As in the previous example, we shall only consider the first component v1

of the vector variable whose degrees of freedom ml‘j and méJk are described in
(24). T e '
The corresponding basis functions are
1 1 iy - : ~ :
vyl =5 (-1) [Pz'ij 92_1’1J] , o 1,3 =0,...,8,
.1 o,
ViR ° 3 [Pl—l,ij + plij] : ’ 1, = 0,004,%,
and
iJk_ - - A s
Vic Pijk P2.--2+m(1),J'k v 1 =0,00m2y

Jok = 0,000,0 (B3)
where m(i) = 1 or 2 is such that i and £-2+m(1) have the same parity.
N, fhe nodal finite elements of the BDM type in 3D,

As 1in Appendix A -~ Section 4, a general pattern was not evident but we
have for instance corresponding to the degrees of freedom giﬁén:by'(26) and in
the case 2=0

1
Uio 3 (Poogo = 3Pyg0 + 2on.o = Pgoao = Pyyga) ’

1 .
UR 'g (Pooo + 3Pg0 + 2Po0o -~ Poz2o = Pgo2) y (B3)

The other basls functions are obtained as above by symmetry considerations,
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APPENDIX C

Error estimates

B

In this last appendix, we give a general theorem leading to “error
" estimates when nodal finite elements are applied to approximéte the solution of

the second order elliptic equation,

-Au = f in @, ' ) (C1a)
u=0 on T. ' ' (C1b)

Classically this strong form of the equation is first transformed into an

equivalent weak form which reads

_Find u € V such that
a(u,v) = £(v) ¥vev, . - (C2)

‘where V = H}(Q) 1is the standard Sobolev space of functions which have square

integrabie (generalized) derivatives up to and including first order and a zero

trace on ', while

é(u.v) é‘f Vu « Vv ar ,

and 2 .
+

£(v) = [ tv ar.

Q

To obtain a discretized version of (C2), we assume, as in the text, that we have
. L= fag e =1, Eh} of the
union-of-rectangles type on Q with h an upper bound on the diameters of. -the

a family 1indexed by h of regular meshes R

rectangles ge in ﬂh. With classical finite element methods, to obtain “an

algebralc system of finite order N, the primal form (C2) is replaced by

tind uh € Vh such that

alu, v) = £lv) ¥y eV, (C3)
whepe vh is a finite dimensional subspace of V whose elements ‘are polynomials

over each Qe in @ and are continuous on Q.

h
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If nodal finite elements are used instead as in examples 1,2,5,6 ang

10 the elements of the finite dimensional space Vh are polynomiais over each
ne but only some of the moments and not the functions themselves are required to
be continuous through the edges (in 2D) or faces (in 3D) common to two adjacent
rectangles. On the boundary I' moreover, the trace of an element Vp € Vh is not
necessarily zero but again only some of its moments. Consequently V. ¢ V and

h
(C3) must be replaced by

Find uh V., such that

h
a, (uh. vh) = f(vh) ¥ vh € Vh’ (c4)
vhere E
ah(“h’ vh) =1£1 sjz Vu.h . §7vh dr . ' : o (cs)
e

Let us assume in the following that we are in 3D, the 2D case being
trivially deduced from the 3D case, and that the restriction wJQ of an element

'Vh of Vh to the element Qe is defined as in the main text by a set of degrees of
freedom D and a space S of polynomials. Assume moreover that <§?k cS, kK € N,,

and that the restriction uhlpef of u, to the faces T_,

&
L,R,U,D,F, and B have moments with respect to QZ;, £ ¢ WN, continuous through

the corresponding faces, 1i.e. that mi‘j € D, 0si+jsf. With these hypotheses and
£

of ﬂe. where f stands for

assuming that at each step of the following demonstration u has the regularity
required by the context, we can prove :

" THEOREM

A+1 .
"Nall iy (c6)

where A = min {k, £+1} and || 1l is the L? norm of the error

" u—uh”c, $Ch

u"uho

In the demonstration which follows, many steps are classical and we shall refer
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Démonstration -
a. Let us first introduce for each element v, € V, a nonm]fvh“h defined by
_ E A g'
Wvally = LI Iyl g (e
e=1 e :
where ‘ )
f >
'vhl%'ﬂ = I §Vh L4 §Vh dr.
e Q
e .
Il - ll,, is a priori only a semi-norm on V,. However, we have :
LEMMA 1 : l - I, ts a norm on Vh.
PPOOf.ﬂ,:;' ‘" vh”h = 0 implies that vdﬂe = Cor e=1,.00,E, where Co is a

constant depending 1in principle on e. Now with the above hypotheses,

¢ s

= Vv =
e hIQe hlne_f |
‘other words, Ce = C, ¥ e. Finally on I, at least the zgroth order moment of v
is equal to zero so that C=0 QED.

= m;°(vh) for any face f and is thus continous through it. In

h

b. Let us enlarge the domain of definition of a (*,+) and I '"h to V +V:
¥ veV, alv,v) = alv,v) and I vily, = |v|1’9. We remark that "]Ih is a norm on
vh+v and we have

LEMMA 2 :

For the family of spaces Vo ah('.') is uniformly Vh elliptic in

the sense that there exists a > O such that

2
| ol vpll $ 2 Cuo ) ¥ %
where a 1is independent of h. Moreover there exists a positive
constant M independent of h such that
la, Casv)| s M f[ull |fvily, ¥uve VY.

Proof : The proof 1is based on the definitions (C5) and (C7), and is
trivial, '

As a consequence of. this lemma, there is one and only one splution to the

CLTIINOR PUCLLel LU .

1
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c. The next step consists in getting error estimates and it depends on the
second Strang lemma (Ciarlet [7], p. 210), saying that if we consider a family
of discrete problems (Cl4) such that Lemma 2 is satisfied.4 there exists a
constant C independent of h such that
la (uw)=r(w )]

T T

luw=ugl, s ¢ ( in‘r; [ wvp iy, + supv
Yh€'n “n€'n _
To obtain error estimates, it remains to bound the two terms appearing in (C8),

the second one coming from the nonformity V, ¢ V. We have

h
(i) For the first term, we clearly have
inf lwvy s I wufl s
Vo€ Vn
where ﬁh is the interpolation of u in Vh’ distinet in prineiple from its
approximation U, e If u is any member of é?L € S, we shall have u = ah and it is

a direct consequence of interpolation theory in Sobolev spaces (Ciarlet [7],
83.1) that under standard assumptions on the regularity of the mesh considered,
there exists a constant C such that

~ k
Iu-ugly s €07 Jul g (C9)
so that -
k
inf ”“"'h”h SCh |

Yh€ 'n

u|k+1,9

(1i) For the second term, we have for any w, € V

h h
N E
fw)=[fw ar =35 [ fu dr,
h h h
- e=1 Qe
and :

f fw dr = —j Ausw, dr = f 3u-§w dr - f (§u~? ) w_ ds,
a h Q h 2 h T e h

e e e e

. :
where re is the boundary of Qe and 1e a unit outward pointing normal on T .

e
Consequently

ah(u,wh) - f(wh) =e

i1 o~

1 I (Frig) W, as. (c10)

e
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Let Hif(ﬁu-? ) denote the interpolation of §u-* ' in %?2, % € N. Clearly,
Ter

the sum appearing in the righthand side of (C10) is identically zero when §u'?e

Is replaced over each face appearing in Pe by this 1nterpolétion.'F1rst of all,
it ree' denotes the common face of two adjacent elements Qe'avd Qe" we have

I Hﬁe' (Vu Q -Te - vu

' 2 -7e,] W, ds = 0, (c11)
Pee, e

e'

since the moments méj(wh), 05i+jsf, are continuous through any internal face.
. Moreover if ref is any external face (Fef.c '), we have

R +
| Mop(Pu-T) w ds = 0 ~(c12)
T
ef
as the moments m J(w ), 0si+jst, are zero on any external face. Consequently
{C10) can be rewritten as

ah(u,wh) - f(wh) =) f {§u-?e—ni(§u-7e)} wds . (c13)

eT
e

Consider one term of the sum appearing in (C13). It. is a linear functional

3 >
S . wh ‘—."—-> J' {§u.1e H (§u 1 )} W ds
‘ r
ef
: > > 2 >
cont inuous on H‘(Qe), of norm less than or equal to || Vu-1e-nef(§u-1e)“

A
O'Fef

identical to zero ¥ wh € .é?% (since §U'Te and its interpolate have at least the

same mean value over each Fef)‘ Employing the Bramble-Hilbert lemma,

(Bramble-Hilbert [2] Th.2), we have

[[ {Fu? —ner Fu-T))) Wp ds| S Chlwl, o, Pu-Te-n* Mo (Fued )| .
r o,r of
ef
Using again the results of interpolation theory in Sobolev spaces we have

. 2 L+1
,f {§U'1e—nef (§U'1e)} "n ds| s Ch ) Jw h,1 Q ” ur ”E.F

T e ef
hence
T » g+1
|{ {ﬁu.1e g (§u-1e)} W ds| sCh 'wh,l.ﬂe ”u”2+2’9e. (C14)
ef



c6

Combining C14 and C13 we obtain

. +1 .
|aCu)=£ G| s € n T Tl

so that
fa (u,u)-f(w )|
h h h L+1 :
sup - sch uly, o (C15)
o€ Vo Iyl '

Finally, from (C8), (C9) and (C15), we get

louglly s €0t Julyyy o0 e

h'h A+1,Q .

where A = min {k,£+1}.
d. To get the L? estimate of (C6), standard Aubin-Nitsche arguments should

be applied. See for instance Nitsche [24] and Lesaint [21], QED.
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Figure 1 : The Pascal triangle and the basic polynomial spaces

4 4
> and

>°




F2

Werner ¢

OV
(521



F3

gur -3 1 The Hennart nodal schemes in 2D.
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Figure 4§ : The Scalar varlable for the Raviart~Thomas mixed schemes.
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Figure 5 : The first Component V., Of the vector variable for the Raviart—Thomas
‘ mixed schemes. . : '
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Figure 5 : The scalar variable for the Brezzi-Douglas-Marin: mixed schemes.
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Figure 7 :

The vector variables for the: Brezzi-Douglas—Marini mixed schemes.
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Figure 10 : Family b s a family of nodal finite elements not climbing
gorrectliy ‘in:order.
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Figure 11 : Nodal finite element schemes resulting from a modification of

Algorithm 1 for family a ~ k-1.
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Figure 12 : Nodal finite element schemes resulting frouw a modification of

Algorithm 1 for families a and b - k=2.
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Figure 13 : Schemes resulting from a mogigiqa;ion of Algorrithm 1 which are not
unisolvent (Family &, k=1).
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Figure 14 : Examples of asymmetric nodal finite elements.
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Figure 15 : Notation for the threé~dimeénsidhal case.
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Figure 16 ¢+ Hennart nodal scheme in 3D - £=0.
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Figure 17 : Hennart nodal scheme in 3D - L=1. . L
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Figure 18 : Original Nédélec mixed finite elements in 3D. First component

of vector variable - =0,
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' Figure 19 : Original Nédélec mixed finite elements in ‘3D. First component
' of vector variable - L=1. '
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Pigure 20 + New Nédélec mixed finite clenents In 3D. First.:cmnl.)@nent of vector
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 Figure 21 : Nodal finite elements of BDM type in 3D ~ L=0.
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Flggre 22 : Nodal finite elements of BDM type in 3D - J!.rsl.. Lo
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