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ABSTRACT

Considered are product form qﬁeueing networks, in which some of the
stations ére of the MSCCC type (stations with muLtipLe servers, in which
two customers of the same group of classes cannot be served s1multaneously).
These networks can modeL parallel architectures with multiple buses.
Usual product form network algorithms do not apply to such networks, due to
the complexity of the function assoc{ated to the MSCCC station. The MULTIBUS
algorithm presented here yields a mean value analysis of such closed networks.

An algorithm for the open case is also given.

RESUME

On considére des réseaux de files d'attente & forme produit, dans
lesquels certaines stations sont du type MSCCC (stations possédant plusieurs
serveurs, dans lesquelles deux clients du méme groupe de classes ne peuvent
étre servis simultanément), Ces réseaux modélisent, entre autres, des archi-
tectures paralléles a bus multiples. Les algorithmes standards pour réseaux
a forme produit ne s'appliquent pas ici, & cause de La complexité de la
fonction associée & ume fonction MScCC. L'algor%thme MULTIBUS, présenté dans
ce rapport, fournit une analyse par valeurs moyennes de tels réseaux fermés.

Le cas ouvert est aussi évoqué.

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE INSTITUT NATIONAL DE RECHERCHE
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1 - INTRODUCTION

Modelling multiple bus multiprocessor systems has been the object of
many studies. K.B. Irani and I.H. Onyuksel obtained in [1—6 84] a clesed form
solution for a symmetrical markovian queueing model. Similarly, Marsan, Balbo,
Chiola and Donatelli develop in [MBCD 84] generalized stochastic Petri nets
models of multiple bus access, for which local baltance hold.

More recently, an extension of the BCMP theorem has been presented in
[Leb 85] : a new type of station (the "MSCCC"™ station) is introduced, that can
model parallel access to shared resources, under exponential holding time and
FIFO disciple assumptions. It is proven that product form is maintained when

such stations are inserted. in.BCMP networks.

Nevertheless, usual product-form network algorithms do not directly
apply to such networks ; this is due to the complexity of the function associa-
ted to MSCCC stations.

In this paper, we present the MULTIBUS algorithm, which yields mean
values for such closed or open networks, thus avoiding the computation of the
associate functions of the MSCCC stations. ’

MULTIBUS provides an exact, efficient analytical tool, which is able to
model architectures with one or several multiple bus systems, such as partiatl
bus multiprocessors. As 1is pointed out in [CMB 86], it can also apply to
many situations where access to a shared resource is Limited to a fixed number

of users, with FIEQO queueing discipline.

A brief description of the MSCCC station is recalled in section 2, and
a new aggregation formula is presented in section 3. Section 4 is devoted to
the MULTIBUS algorithm for closed networks (multiple chain or single chain

case). The version for open networks is presented in section 5.

The paper is followed by an appendix, in which miscellaneous remarks

about local balance, aggregation and equivalent service rates are given.

The following table Lists most of the notation used in the paper. The
“meaning of every symbol that is not explicitly defined in the sequel should
be found there.



Notation
k=¢(m,r) : a class of customers at a MSCCC station ; m is the group number, r is
the chain number.
K : the population size (single chain case)

5=(K1,...,KR) : the population vector (multiple chain case : Kr is the popula-~

tion size of chain r).

er : the mean number of visits to a given station by chain r customer.
6 =0 4g : the mean number of visits to a given MSCCC station by class (m,r)
m,r r m,r
customers.
a, r=qi r : the probability that an arriving chain r customer joins class
r'd ’
(m,r) at a MSCCC station (number 2).
M : the service rate at a MSCCC station.
pk,pm’rk=9m'r/u (at a MSCCC station).
§=(xm r) : an aggregate state of a MSCCC station ; X p is the number of
’ ’
class (m,r) customers.
X
p== T o rxm,r
m,r ’ .
Q=(nm) 1N, is the number of group m customers : nm==§ xm,r .
apb : the minimum of the two values a,b .
nz(n) : the number of non zero entries in n .
= 3 | ]
n(x) =1 [n t/C0 xm'r.)]
m r
¢(n) = if nz(n) <B then 1 else (I ¢(g-—gm))/8
m
&y = (0,0,1,0,...0) where 1 is in the mt--h position.
1m,r : defined by 1m’r(1,]) =0 except 1m'r(m,r) =1 .

“E(X) : the equivalent service rate for class k, given the state y of the

station.
(]O[Q] : the complement of station £ in the network S .
G(E),G[Q](E) : the normalizing constant for S [resp. UVlﬂJ] when the popu=
tation vector is K.

Pl(x2 |5) : the marginal steady=-state probability of Yy » (station L), given

the population vector is K.



k(y,) & the pepulation vector in station &, state yo ; for the MSCCC stations,
K(x) =k , with k. = f; mr * |
A (K2 A(K) : the throughput at a given statjon (for C,hai-rp r

A![‘}] (5>,>.\£9‘J (K) 3 the throughput jn the complement network (for chain r).



2 — THE MScCC STATION o .

2-1 The station

Definition of the MSCCC station

We recall the definition of the MSCCC station ¢[LeB 85]) :
* There are B identical exponential servers (with service rate u) and M groups

of classes of customers.

* Upon arrival, a customer enters the service center if at least one server is
available and if there is no customer of the same group already receiving ser-

vice ; otherwise the customer joins the waiting-room.

In the sequel, we shall say that a group is active if one customer of
.the group is receiving service. '
* Customers in the waiting-room are ordered according to their arrival epochs ;
whenever one or more server becomes available (due to a departure from the sta-
. tion), the first customer belonging to a non-active group enters the service

station.

In other words, the service discipline is on a first come first served
basis, but two customers of the same group cannot be served simultaneously. In
particular, a customer can be kept waiting either because no server is avaijla-

ble, or because its group is already active.

M groups of customer

Arrival
order

iTH

OO O]

Figure 1 : The MSCCC station

In the MSCCC station, a class of customers is noted (m,r), where m is
the number of the group it belongs to ; r is the chain number of the class.

In the single chain case; a class is simply noted m.



Example : a_partial bus multiprocessor_system

Consider a system in which P processors access Mx G memory modules
through 6 iﬂéﬁtical B-uple buses. Each multiple bus gives access to a set of M
memory modules. (Fig. 2). The mtb memory module of the»gth . group is noted
- (g,m). It is assumed that a request jssued by the pt--h processor is directed
to memory module (g,m) according to a Bernoulli trial, with probability 9%,9,m *

q buses . M memory modules

/\E/\ AN O
O

LR 4

= ’ O
v
1st multiple bus 1st set o

memory modules

T -0
O

P processors \/ "V
th

G= multiple bus G- set of
memory modules

Figure 2 ¢ A partial bus multiprocessor architecture




Such a system can be modelled by a network consisting of a P-server station
(the PROCESSOR station) and G MSCCC stations (the BUS stations) with B servers
and M groups of class. There are P chains of customers (one per processor), each
chain containing one customer. On leaving the PROCESSOR station, a class p cus~
tomer joins the BUS(g) station with probability ﬁ qp'g’m , and enters class (m,p)
at the station with probability qp,g,m/ﬁ qp,g,m . (Fig. 3). The amount of time
spent in a processor may have any coxian distribution, with mean 1/\ ; it is
assumed that the total amount of time épent in accessing a memory module is
exponentially distributed, with mean 1/u. By an appropriate choice of qp'g,m ,
it is possible to allow each processor to have one or more favorite memory modules,

which are more often visited.

On the contrary, if g does not depend on processor p, then a single

pP,g,m
chain model with a total population of P customers is preferable.

B servers

M groups of classed

—

BUS(1)
A

©©

-

®e6000|o

o L
BUS(G)
(P server station)
PROCESSOR

Figure 3 : Modelling a partial bus multiprocessor architecture by a

roduct=farm natuork
roguct=Torm ne b

LR AR

&)

2-2 The steady-state probability

Consider a network of L stations that satisfies the hypotheses of the



BCMP theorem, except that some stations may be of the Msccc type. Then :for
every station L there exists a function f such that the steady-state probabi-
Lity of the network is given by :
. L o
2-1) P(z1,...,zL) = G(K) g fg(zg)
2=1 .
where Yy is an appropr1ate description of the state of station 2, and G(K) is a

normal1z1ng constant, depending on the total populat1on vector K.

In the sequel, function fl is called the function associated to station ,
L. For the MSCCC station, a state Yy 1s (AC,c) where AC is the set of all active
classes (classes of customers rece1v1ng serv1ce), and c = (c1,c2,...,c ) is the
List of the waiting customers, 1n arrival order. (Subscr1pt L 1s om1tted) The
associate function fQ is then g1ven by '

S

2-2) f,(AC,e) = T o I (o N (i)
P yeae s & A

where NA (i) is defined as follows :
,C

= A is the set df all active groups of classes A

- if there are only non active class customers waiting in positions 1 through i
of the waiting room, then N (i) is the number of those active groups of classes
(i.e., the number of active éroups of classes that are represented in positions

1 to i of the waiting=-room).

- if there is (at least) one customer of non active class .in pos1t1ons 1 through

i, then Ny (i) =B (the number of servers),
’

(See [LeB 85] for more details).

In the open case, the stability condition is :.

P < B
(m,r)
(5-3) (m,r) ‘Mo

Ym z o, <1
r

m,r)

It expresses that, on one side, the totat intensity factor is less than
the number of servers, and on the other side, that the 1ntens1ty -factor of every
group of classes is less than 1.

Note that it is possible to allow the service rate 1 to depend on the

total number of customers in the station.
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3 - AGGREGATION FORMULAE

3-1 The aggregate MSCCC station

Formula (2-2) refers to much detailed states, which, together with the

complexity of the computation of N, (i), makes it untractable in practice.

A,c
It is thus necessary to obtain the steady-state probability of aggregate states.
A first result is given in [LeB 85], which helped prove the stability condition
(2-3). In this section we give a simpler aggregation formula, which will be used

in the algorithms of section 4.

A state of the aggregate MSCCC station is defined to be x » where Xn ¢ is
. X ’
the number of class (m,r) customers in the station (including those in the
service center). In the sequel, the phrase "micro-state" refers to (AC,c).

Also define :

M (the number of group m customers).

=7 x

- nz(p) =21
m

<nm>°) (the number of_non-zero entries in n)

- n) =1 [n!/m (xm'r!)]
m r

Proposition 1 (aggregate steady-state probability for the MSCCC station)

In a product-form queueing network as considered in section 2-1, the

function associated to an aggregate MSCCC station is given by :
(-1 £ = ¢ ntx) p*
where ¢ is defined by

$C0) =1

(3-2)
(nz(n) AB) o(n) = L ¢tp=-g,)
m

with the convention that ¢(n) = 0 if some entry of n is negative.

(3-3) Besides, if nz(n) «B then ¢(n) = 1}

Note that the factor n is due to the existence of several chains of
customers, wheras ¢ is typical of the MSCCC station. Also note that ¢ is iden-
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tical to the weight function W defined in [I—b].

Proof : The function associated to a station in a product form network is
equal up to a multiplicative constant, to the steady-state probability of the
queue in isolation. Besides, formula (2-1) still holds at'the aggregate level,
with the same normalizing constant, provided some compatibility condition is
satisfied. (See appendix fqr more detail). Roughly speaking, this condition

means that no infeasible state is introduced in the aggregation process.

It is thus sufficient to show the proposition when the network is redu-
ced to a MSCCC station in isolation, j.e., fed in by independant Poisson pro-
cesses, with parameter em r for class (m,r). It is now sufficient to consider

r'd
the case where R=1 ; thus n=x , and em r is simply noted em .
’

For every micro-state e of the MSCCC station, due to local balance,

the following equation holds :

(3-4) P(edute) =L 8 L P(e')
m " e'el)g’m(e)
where P is the steady state probability (for micro-states), u(e) is the output

rate from state e, and dﬁh(e) is the set of all states from which a class m

arrival results in state e. (df;(e) has 0 or 1 element).

Note that if micro-state e aggregates to n, then u(e) =[B/\nz(g)]p ,

hence :

(3-5) P(n)(nz(n) zBXH = Z O

m z P(e")
m Ve cl‘r’n(e),eeg

("een" is short for "micro-state e aggregates to n"; besides , the same nota-

tion is used for the steady~state probability of micro and aggregate states).

Now every micro-state e' in n-g is element of 6#;(e) for one and only
one micro-state e', hence : )

%

P [nzmABlu =20 Pln-g)
m

which proves (3-2).

Now (3-2) is clearly satisfied by any constant, as long as nz(n)<B,

which proves (3-3).
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Examples
. If 8=M, then ¢(n) reduces to 1 ; in that case, the MSCCC station is indeed

equivalent to M separate aggregate FIFO stations, for which formula (3-1) is

the expression of product form.

If B=1, then recursion (3-2) is the recursion of the FIFO station ; it

results in
¢Cn) = (ng +... +nM)!/(n1! ...nM!)
and formula (3-1) gives :

= |
fx) = (I x DNCT (x

X
] -

r.)) o

m,r ’ m,r

r d
as expected.

. In the general case, we have not been able to find a closed form expres-

sion for ¢ ; some values of ¢ are given in itable 1.

3-2 The equivalent service rate

Another way of viewing the aggregation process of the preceeding sec-
tion is to consider that the MSCCC station can be replaced by an eguivalent
multiclass markovian server, whose service rate for each class of customer
depends on the Load of the queue. For classical BCMP stations, the equivalent

service rate for class k has the form :

N
(3-6) %fﬂl-—ﬁi , where N (resp. Nk) is the number of customers (resp. class
k
k customers) in the station. In general, for a quasi-reversible queue, the
equivalent service rate for class k is deduced from the associate function

f by :
(3=7) Wy = fly=12/F(x 8

where y is the aggregate state, and z-—lk the aggregate state with one Lless
class k customer. ([LR 79],[RL 80]). Applying this formula to the MSCCC sta-

tion yields the equivalent service rate for class (m,r) :
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The equivalent service rate for class (m,r)

: *
(3-8) um r(3(_) = U Qm(g) X r/nm

’ ’

(3-9)  where o (n) = dCn-g /o)

Note that O is the equivalent service rate for class m, in the single
chain case, with unit service time : it is typical of the MSCCC station. Some

properties of o, are Listed below ; their proof is easy and is not given.

Properties of Om

(i) reduction to m=1 : o (n) = o,(n'), where pn' is the result of the permu-

tation of ny and M

(ii)  symmetry : 0,(n) = 01(Q*) where Q* is obtained from n by reordering

(nz,...,nM) in decreasing order
M
(ii1) total_service_rate Z o.(n
' m=1

nz(n) AB

[nz(Q)A B] /'™

hence 01(n,n,n,...,n,o,...,o)'

Some values of 01(9) are given intable1. It can easily be seen that

cm(g) does not possess the general form for BCMP stations described in (3-6).

' Viewing the MSCCC as a queue dependant markovian server is a possible
way to obtain algorithms to solve product-form queueing networks with one or
several MSCCC stations, using standard algorithms for this type of stations.
This requires that O be available for the algorithm. This is the boint of view
adopted by Chiola, Marsan and Balbo in [CMB 86], who develop algorithms that
yield ¢ or 9y (or equivateqt quantities). An alternative is to avoid the use
of ¢ and oq ¢ this is possible thanks to the basic recursions of section 4-2,

which concern mean values of the network. They are the kernel of the MULTIBUS

algorithm.
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4 - THE MULTIBUS ALGORITHM FOR CLOSED NETWORKS WITH ONE OR SEVERAL MSCCC STATIONS

4-1 General setting ; presentation of the MULTIBUS algorithm : the networks
to which the algorithms apply

Considered is a closed network of queues that satisfy the hypothesis of
the BCMP theorem, except for one thing : some of the queues are MSCCC stations
as defined in section 2. There are R closed chains of customers :

A customer of chain r proceeds in the network from one station to another,
according to an irreducible Markov chain, with transition probab1l1t1es QZ Qv
There are no changes of chain, and a customer of chain r can beLong to cLass
(m,r) at a MSCCC station with probability qz Lt (where % is the number of the
station). In particular, group m can 1nclude customers belonging to different
chains, and one chain of customers can feed several groups of classes at a given
MSCCC station, ’

queue for
access to 1
module 1 » , chain 1
classes —
chain 1 /’”\\
classes (m,1) 2 \\~//
O
éhain R queue for J//N\\
access to M \\_,/
classes (m,R) module M N _ chain R
classes (r M) 7 i -
I B servers

Figure 4 : MSCCC station in a network

The multiple chain case

The analysis of the network uses a decompos1t1on procedure. Note ch‘]

the "complement™ of station 2 in network ¢#” : in bf , customers arriving at
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station £ instantaneously proceed to another queue according to the routing
policy previously defined. Then the marginal steady-state probability of station
% is related to oS . by the following formula ([R-L 80]) :

- (2] -
4 Py | K> = f ) 657K -kCyy) /6 (KO

The MULTIBUS_algorithm gets as input the array of ﬁormalizing constants for
network MP[& (K'), K' «K. It produces the array of normalizing constant GAQ K"
K'<K, together with some mean values for station £ in network MW(E) ! mean
queue length, distribution of the number of busy servers, utilisation of the
servers and throughputs. The algorithm does not compute the steady-state dis-

tribution of the population of the station, but requires the storage of norma-
Lizing constants. : '

In order to analyze a network with one or more MSCCC statibns, one shoutd
first analyse the complement of the MSCCC stations by means of classical product=

form algorithms, then use the MULTIBUS algorithm to analyze the complete network.

The single chain case

In the single chain case, the MULTIBUS algorithm is able to produce the
throughput A(K) without computing the normalizing constant. The single chain
MULTIBUS algorithm gets as input the array of throughputs ALQ](K'), K'<K, for
the complement network, and produces the array A(K') of throughputs for station
£ in network Ufi together with the same mean vaLueé as in the multiple chain

case.

It is known [CHW], [COU], [REI], that dp[l]can be replaced by a queue

dependant server, the rate of which is equal to A(K') :

tation % A\\\_/
x[K]S t ‘ //i/, /N\\\j

— N
‘Lw )

ISIONG)

|
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equivalent network
Station £

[elelele

throughput ,/"’I/’—\‘/A
(1] . Wl rs
s y &y ////, ::i:
\\_\/" . ]
figure 5

Thus, an alternative definition of the single chain MULTIBUS algorithm
is that it solves the Loop consisting of a MSCCC station and a queue dependant

server.

4-2 The basic recursions

Classical algorithms for product formnetworks use some recursions invol-
ving the network (over population or stations). In the special case of the MSCCC
station it jis necessary to introduce some recursions concerning the station alone,
so as to avoid the use of function ¢ defined in (3-2), or of the equivalent ser-

vice rate.
The following notation is local to this section :
SN (k) = {x/k(x) =k, nz(n) =b}

SR m(_'S) = {§€5Nb(5), nm>0 and nm+1 '—',..':nn =0}

b,

sQ (k) = {xeSsN (k), n =n . =...=n,=0}

’

PICK) = % £(x)

x/k(x)=k
NB1Ck) = 2 f(x) xy
7wk °r
: R
N1 (k) = Z f(x) x NAT, (k) = Z- M1 (k)
bor = xesN (k) - Mer TR gy TR T
Rl (k) = I - f(x)

5e;SRb’m(k)
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a1, (k) = pX f(x)
’ Gl
xc_SQb’m(g)
b(5), NB1 (k) N1b'r(5) and Q1b,M+1 are the quantities of interest, which after

normalization, yield the mean queue length and bus utitization. The following

proposition states the basic

Proposition 2

recursion

(i) for 1<«b«B :

N1y, (k) = Oy

+ pM r

’

o]

RYy (k) = Z

b, r=1

(i19) for 1€«b€¢B and b&mgM

m

(iii) for 1€b&B, bt1&m<M

NMég-gr)

(R, ykme, ) + Q1 (ke )

(R1

,F (kmep) + @1y (ke ))

b,m

Q1b’m(5) = Q1b,m-1(5) + R1b,m-1(5)
B8 R :
(iv) bE1 b N1b,r(5)=k§1 ( ﬁ pm,w) NB1r(g-gr) + OM,r P1(L<_-gr )
Proof :

- Formula (iii) is clear ; recall that :

f(x) = ¢ nex) p*
and .
o(n) =1 if nz(p) B
Now it

( = -
nex) xM,r nex lM,r) g
Hence, using (3~2) :

(k)

N1 )X

b,r pM,r

Changing variable x -1M
- -~ ’r‘

can easily been seen from the explicit expression of n that

x& SNy (k)

)n

! M

fx - v, r

to x yields :
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N1b,r(k) = pM,r 1 + pM,r S2
where ' y
’ s1 = z f(x) ny , S2-= z (0
x/klx)=k-e x/kC)=k-e
nz{n+&)=b ' nz(n+e,)=b
First note that if Xy >0 then n, >0 and thus nz(ptg,)=nz(n) ; hence :
’ . '
s1 = X f(x)ny - N1b’r(5-gr)

X €SNb(_lg-_e_r)

Then note ‘that : ‘
[nz¢nte,)=b] «=> [(nz¢p)=b,ny >0) or (nz(n)=b=1, n, =0)]
hence

s2= I f(x) + z f(x) =R1

X €SR, (k=g ) ggsab_1’m(5-gr)

b Mk + Q1 g ke
b,n¢k"e o -

which proves (i). The proof of (ii) is quite similar, starting with : N1, =L ntx -1,

- The pfaof of (iv) is a consequence of relation (3-5) (local balance) :

(4-2) f(x) u[nztn) pB] = £ flx=1, ) 0,9 o,

m,r
‘multiplying (4=2) by Xo p and summing over all x such that k(x)=k yields :
’
B . .
e ub£1 b Ny () = r mzr'er, qm’r,Na1r§|_<-gr)] +0. oy . Pllkg ).
. ’

4-3 The MULTIBUS algorithm, multiple chain case

The following notation is used in the section :

let @ Xm denote the number .of class (M,r) customers at time ty »
’ - .
"B the number of busy servers at time t  ,
Vn the number of group m customers at time t, .,

. A g
and Llet : Nsr(s) = E(XM,r)
d ey =
Np,r ) = By o Tigapy? » NALKD = I N, (O
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d = = =
Rp,m{) = P> 0r Vpyg = oo = Vg =0r Tigapy)
d' = = =

P = P(BDI=CQ W #Ry D CI=G 0 (K)

where E (resp. IP) denotes the steady-state expectation (resp. probability),
given the total population vector is K .

Thus Py gives the distribution of the number of busy servers, and
B
I N
b=1
are auxiliary variables.

b, = NBr1s the mean number of class (M,r) customers. Rb,m and Qb,m

On top of the server utilization and throughputs, the algorithm yields

the mean number of class (M,ro) customers for all "o

In order to obtain the mean number of class (m,r) customers. for some
other m, it is necessary to change the numbering of groups, and perform the
algorithm after each re-numbering. (A tree permutation of the groups can avoid

performing the whole algorithm).

If mean queue lengths are required for groups only, then a simpler ver-

sion of the algorithm, that requires less storage, can be used.

The recursions of propqsition 2 result in the following proposition :

Proposition 3 (application of the basic recursions)

(i) for 1<b«B-1:
Xr(g)qM r Xr(g)
= —————rl - = -
Nb,r () v NA, (K-e ) +qM,r Y (Rb,M+Qb-1,M)(E e
N , B-1 , R A, A K
(1) NB(K) =g { I (B-DINp (K)+7 I X CKNB(K-g ) + ———F—— }
b=1 r=1
(iii) for 1«b«B-1 and bsmgM :
R Ar(g)qm r
= ————ee Ml - -
Rb,m(g) r§1 " (Rb’m(g gr)+Qb_1’m(§ e.))
Giv) for 1<b<B-1 and b+1 & mg<M+1
Q. K)=4@ _ ,(K)+R. _ ,K)
Oy — O =1 = O =1 =

)
r

.
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Proof :
The proposition is a direct application of proposition (2) and of the
two following relations ([RK 75], [RL 80]) :

16 = (2] -
Pg‘!g'ﬁ) = fo(xp) 6177 (K=k(x)))/GCK)

A (K) = B, (K- )/G(K) .

¥
Note that formula (i) is a generalization of the basic MVA recursion of Reiser

and Lavenberg.

Two additionnal relations :

Proposition 4

B-1
A (K = I bP_(K)
7 " b=t °

M

=11
PgK) =g (3 i

Proof :

It is a direct application of Little's formula to the multiple server,

Proposition 5

P_(K) - 6 o /60

Proof :
It is a well known relation, directly implied by (4-1).

We are now able to give a brief description of the MULTIBUS algorithm :

The algorithm consists in a loop over the population vector k :

= Ny, k) forb in {0...8B-1}, and NA, (k) ,NB (k) are computed thanks to prop. 3,
’
i) and (ii), for all chain ro * At this step, Ar(g) is known only up
to the multiplicative constant 1/G(k).

- Rb m js obtained by means of prop. 3 (iii), for all b and mxb.
’
Qo m(1<_).= Po(g) js obtained from prop. 5, and Qb for b1 from prop. 3,
’
’

m
’
(iv). This allows to compute Pb for all bgB=1 PB results from prop. 4.

-  The normalizing constant is then derived from thenormalizing of the Pb's
0<b<B. |
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1- The computation of the mean number of class (M,ro) customers involves

the values of all kr(K), 1<r<R. This is due to the interference of customers

belonging to different closed chains at the MSCCC station. Because of this fact,

it is necessary to compute (and store) the normalizing constants G L

(K') and

G(K'), for K'<K. Such a problem does not arise if there is only one chain of

customers (see section 4-4), or if the different chains of customers do not

compete in the same group of classes (for instance if, ior every r and m,

%, r

=0 except for one m(r) where g

m(r),r =1,

2- One can allow u to depénd on the total population IEI = K1 *oeotKg in
propositions 3 to 5. This brings no change in the MULTIBUS algorithm, except

that u has to be indexed by IE

Input:

Output:

Local:

Begin

We give now the MULTIBUS algorithm in full detail :

The MULTIBUS algerithm, multiple chaln case

B,M, mu:
qm'r,1.<.msM

1<r<R
theta, 1<r<R

K
Gl k) ksk:

G(K) , ksK:

NBr ( ' l.(.sﬁ
1<r<R

Pb' 0<b<B

U

la, 1srsR

Q:

R:

N:

bmk:

NAp :

{Initialization}

allo) := 1;

number of servers, classes and service rate of the MSCCC station
probability that a chain r arriving customer joins class m

visit ratio for chain r

population vector;
array of normalizing constants for the complement network;

array of normalizing constants for the network
array of the mean numbers of class (M,r) customers

distribution of the ntimber of busy servers, given the population vector is K;

utilization of the servers;

throughput for chain r.given the total population vector is K;
array [0:B,1:M ,-1:K1, ... -1:KR ] of real;

array [1:B,1:M, -1:X1, ... ,-1:KR ] of real;

array [0:B - 1,1:R,-1:K1, ... ,-1:KR] of real;

integer;

real;

. forallrg,rin{1..R},altbin{1..B-1} do Ny g (-ep):=0;

for all bin {0...B-1} do (for ail rin {1,...,R} do

{main loop}

(Pp = 0, forall min{1..M} do Qy m (-&):=0Rpm (&) = o);

for k4 from 0 through Ky, ... , kR from 0 through Kg do

{computation of Nb,r (k) and NB, }

foralirin {1...R} do
lay := G(k-g,) theta,;

forallbin {1..B-1} do

NAp = 5um(Nb’r-(x - g ), for r from 1 through R);
Np,r ()= proposition 3, (i) ;

NB, (k) := proposition 3, (i} ;
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{amputation of Pp}

{computation of Rb,m (K and Qom K }
for b from 1 through B-1, m from b through M do
Rb,m (K):= proposition 3, (i) ;
tor m from 1 through M do QO,m k) := G['](jg);
for b from 1 through B-1 do
Qb,b k) := 0; ‘
for m from b+1 through M do
Qb,m &) = Qp,m-1 &) + Rp,m.1 (k)

{computation of Py}

for b from 1 through B-1 do Py, = Ry, pg (&) + Qp g (K);
Pg = 00_1 (K) ’

Pg = proposition 4 ;

{computation of the normalizing constant}
G(K) := sum( Py, , for b from 0 through B );

. {normalization} :
divide Py, Qp m (k). Rp m (k). Np r (k) , NBy (K) for all b,m,r by G(k);

{end of main loop}

{computation of results}
for all rin {1...R} do la, := theta, G(K-g,) / G(K);
U := sum (b Py, , for b from 0 through B)

End.

Storage requirement

The arrays that have to be stored are G[Q'l(k_), GCk), Ny r(_ls)

’
together with the ‘auxiliary variables Rb m(ls) and Qb m(p « The
r'd ’

/NB_ (k)

total storage requirement to perform once the algorithm is thus of the order

of K(MB‘R+2), when the total population K=K, +...+K, is supposed to be much
1 R

greater than M and B.

Computational effort

The operation count for the first execution of the algorithm is of the -
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order of 2KBMR multiplications and 2KBMR additions. (K is the total population
in the network). If the algorithm isvexecuted several times to obtain results
concerning other groups of classes than group M, then the array of normalizing
constants G(k) need not be computed again, which slightly reduces the operation
count. A tree structured procedure should significantly reduce the total opera-
tion count. ([T-S 85]).

Simpler version of the algorithm

Suppose only the mean rumber of group M customers is required, and

define :
B
N' = I NA
b=1 b
then proposition 3, (i) and (ii) can be replaced by :
(i bis) for 1<« bgB-1

R
=1 - - -
NAL(K) = o r; A KOgy MA (K-e D) + Ry (kg D+ O y(k=g))
. . . [ ] = e - "4 L ' -
(i1 bis) NYK) =g {b£1(B b)NAéE +3‘r§1 A CKYCONTCK gr)i-qm'r)}

which avoids the computation and sto}age of Nb r,(I_<) for all r.
’

4=4 The MULTIBUS algorithm, single chain case

1f there is only one chain of customers, then the computation (and
storage) of the normalizing constants can be replaced by that of the throughputs.
For the complementary networkdr2 . they are related by ([Rei 81]) :

o = 6@ geneaw .

The algorithm is then quite similar to the algorithm for the multiple

chain case ; in a first step, the value of A(k) is set to 1, then the norma-
. B
lizing condition I Pb(k) = 1 yields the exact value of A(k).
b=0



- 25 -

The MULTIBUS algorithm, single @haﬁh:casa

Input: B,M,mu: number of servers, classes and service rate of the Mscce
station '
Qm,1SmsM : probability that an arriving customer joins class m

K population of the network; .
1l (k) ,ksK: array of throughputs for the complement network;

Output: la(k) , ksK: array of throughputs for the network
NB : mean number of class M customers, given the total
population is K;
Py, Osb<B  distribution of the number of busy servers, given the

total population is K;

U utilization of the servers;
Local: Q: array {0:B,1:M] of real;
R: array [1:8,1:M] of reali;
N: array {0:B - 1] of real;
b,mk integer;
Begin

{initialization}

NB :=0;
forailbin {1...B-1} do (Ny, := 0, forall min{1..M} do Ob,m =0 'Rb,m = 0);

forall min{1..M}doQq p:=1;

{main loop}

for k from 1 through K do
{computation of N, and NB }

forailbin {1...B-1} do
- {proposition 3, (i} }
Nb1= qm/ mu (Nb+Rb,M+Qb-1 .M) ;

{proposition 3, (i} }
NB :=((NB+qpm)/ mu + sum((B-b)Ng, for b from 1 through B-1 ))/8;

{computation of Py}

{computation of Rb,m and Qb,m}

for b from 1 through B-1, m from b through M do
‘ {proposition 3, (i) }
Rbm = dm/ MU (R m+Qp-1 m);

tor m from 1 through Mdo Qg 1 = Qg / Ia['](k);
for b from 1 through B-1 do
Qb.b =0;
for m from b+1 through Mdo Qq y '= Qp -1 + Rp m-1 5
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{computation of Py}
for b from 1 through B-1 do Py := Ry \ + Qg M:
Poi=Qp1: :

{ proposition 4 }
Pg = 1/B (1/ mu - sum( bPy, , for b from 1 through B-1));

{computation of the thoughput}
fafk) := 1/ sum( Py, for b from 0 through B ));

{normalization}
muttiply NB and Py, Qp m , Ry m . Np for all b,m by la(k);

{end of main loop}

{computation of the utilization}

Ui=la(K)/mu

End.

Complexity
Nb need not be indexed by k, which reduces the storage requirement to
ca.2K, The operation count for each execution of the algorithm is of the order
of 3KBM multiplications and KBM additions.
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5 - THE OPEN CASE

. Assume now the network to be open (and ergodic). Then, at equilibrium,
all queues behave independently. It is thus sufficient to study the MSCCC sta-
tion in isolation. In that case, the probability that a given customer in group

m belongs to class (m,ro)v1s em;FO/E em,r (where-em'r~ is the mean customers
of class (m,r) customer arrival per time unit), and the customers of class
(m,ro), for all ro? behave identically in the station. Hence we restrict our-

selves to the single chain case, and drop subscript r.

. A first aggregation formula, that slightly differs from (3-1), was given
in [LeB 85] ; it provides the normalizing constant and the generating function,

but it involves a complicate summation.

An alternative is to use the basic recursion of section 4-2. Nevertheless,
no simple closed form solution can be obtained. Similarly to section 4-3,
define :

m

the number of group m customer at time to

B : the number of busy servers at time to

and

d -

Pb = P(B=b)
d

Nb,m = E(vm 1(B=b))

d L B
N =SE(v) = X N o
m m b=1 b,m

where P [resp. E] is the symbol for the steédy-state probability [resp.

expectation].
Also note :

G the normalizing constant ;
om/(1~pm) ;

':p1+|-o+pM -

Ym

Proposition 6

(i) for 0¢b¢B-1 P, = (— z Yi Vi eeeyy
1si1<12<..<ibsM_ 1 "2

s -1 _
(ii) P, = B (p I b Pb)
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Py 1
(iii) for 1<«bgB=-1 , N, = ———=— )
b (1-p0°% & 1¢i, <i<..<i
M 12" 'b-
1 B8-1
Giv) N = E:B'(pm + § (B-b) Nb)
b=1
1 B-1
b=1 1“1<12<"<1b‘M 1 2
Proof :
- befine Rb,m =fP(vm>0, vm+1 S eee =\>n=0), Qb,m = lP(\)m= ea SV

by proposition 2, (ii) :

Rb,m = pm(Rb,m'+Qb-1,m)
thus
(5-1) R

b,m - ’m %b-1,m
The recursion of proposition 2, (iii) now becomes :

% m = %,m=1*Yn=1 Yp-1,m-1

which proves that

Q, =@ z Yi Yi_wee ¥

b,m 0,0 . . . - i, 71
’ 1411<12<...<1bsm 1 1 2

1

M+

Y5

<M-1

Now Pb = Qb,M'+Rb Mo Qb,M+1 , which proves (i). Formula (ii) is a conse-

quence of Little's formula.

- By proposition 2, (i) :

No = Pw Np + PRy m * Qg

applying (5-1) :
Nb(1-pM) = pM(yM+1) Qb-1,M

which proves (iii).

___________

= PlupusiLiun 2, {iv) Yié‘LdS
B

I bN_=pN+op
b=1 ° "

which in turn implies (iv).
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- Formula (v) is a direct application of (i) and (ii).

Proposition 6 yields the following algorithm :

The MULTIBUS algorithm for the MSCCC station in_isolation, single chain

case

——

{computation of 6}

for all m in {1...M} do O o =15
’

for b from 1 through B~1 do (for m from b+1 through M+1 do

Q

bom *% %,m=1* Yn=1%-1,m-1

G := (B +sum ((B-b) Q » for b from 0 through B-1))/(B-p)
b,M+1

{computation of Pb}

for b from 0 through B-1 do Pb = /G ;

O, m+1
PB H [p-sum(b Pb » for b from 1 through B-1)]/B 2
{computation of N}
for b from 1 through B-1 do Nb := Qb-1,M yM/(1-pM)/G H

N := <pM' +sum((B-bIN, , for b from 1 through B-1))/(B-p) .
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6 - A NUMERICAL EXAMPLE

Consider the multiprocessor system of section 2 (fig. 2 and 3). In this
. section, we give numerical results for the single chain case. The parameters

of the example are given below :

* Number of processors : P =64

* Total number of buses B =8, dispatched in G multiple buses with
6 ¢ {1,2,4,8). Hence each multiple bus consists in 8/G buses.

* Number of memory modules : 64. Each multiple bus gives access to 64/G
memory modules.

* Each brocessor selects the first memory module with probability

o éL{z%; 7%? %7 -% } and the rest with uniform probability distribution.

(This imposes the values of the routing probabilities from the PROCESSOR
station to the BUS stations). -
* Mean sojown time at the PROCESSOR station : A .

* Mean service time at each bus : u .

The program was written in FORTRAN, run under VAX/VMS. Figures 6 and 7 plot
the processing power (PRCPOW) Qersus u/A. PRCPOW is defined to be the mean
number of active processors in the PROCESSOR station. Figure 6 shows the
influence of o when the number of multiple buses in G =4 . (Curves for other
values of 6 are quite similar). In figure 7, o is fixed to 1/64 (uniform

memory references), and G varies in {1,2,4,8} .

Heavy Load behaviour

By Little's formula, the throughput THRPUT at the PROCESSOR station
is related to PRCPOW by :

PRCPOW = THRPUT / A

In case of heavy load (small values of u/A), there is a bottleneck at
one or several buses, and the throughput (and hence PRCPOW) are proportional
to u. This yields the Linear parts of the curves in fig. 6 and 7 . In the

case of uniform memory references, all buses are saturated, and then :

THPPUT =~

R
(¢

it
oo
>l

PRCPOW
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In the case of extremely unbalanced memory references (a=3/4), only

one bus is saturated ; then :

1
THRPUT = p+p x 4‘5—:%11
"
L
PRCPOW = 3£ .
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PRCPOW

\
}
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Figure 7 : wuniform memory references,
influence of G, number of multiple buses

u/A




-34—

APPENDIX

MISCELLANEOUS ABOUT LOCAL BALANCE, AGGREGATION AND EQUIVALENT SERVICE RATES

The appendix checks the validity of some aggregation formulas for product-
form networks. It is skown that, under a compatibility assumption (A~5) the equi-
valent. service rates of the station in isolation and in the network are equal ;
different notions related to local balance are examined in detail.

Notation (appendix)

e ¢ a detailed (or micro-) state of station s H

€ : a detailed state of the network ;

@
-

an aggregate state of station s

LX)

(1Y

an aggregate state of the network ;

=)

an aggregate state of station s, defined by : ns(k) =number of class k

customers in station s ;
n ! the corresponding aggregate state of the network ;
fs(es) : the associate function of station s, for detailed states
Fs(as) : the associate function of station s, for aggregate states
(Fs(as) = . z~a fs(es))
s€%
p(e) : the steady-state probability of the detailed state e of the network ;

PCa),P(n) : the steady-state probability of the aggregate state a2 (or n) of the

network ;
* %* . . .
uk's(as), uk,s(ns) : the equivalent service rate H

9 the probability that an arriving customer joins the station with class k
(station in isolation) ;

ek s ¢ the mean number of visits to station s by class k customers .
’
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What is usually called local balance

Consider a network of queues, with numbers 1 to S ; the network is assumed
to be described by an ergodic markovian process ; for every station s and every

state e of the network, define :

(A-1) Tk(g,g) Q the exit rate out of state e resulting from a class k arrival
at station s
Sy A d
(A=2) Tk(e,s) = the entrance rate into state e resuLt1ng from a class k depar-

ture from stat1on S.

The Llocal balance equation at station s is usually defined by :

(A=3) Yk, Ve

G e db

A quasi-reversible queue is a queue at which local balance holds.

Local balance in isolation

Connect station s to.an auxiliary one-class exponential station:(number 0)
with FIFO discipline and A=1 service rate. The loop obtained is called : "station
s in isolation'. In the Loop, a customer leaving station 0 joins station s, in
class k, with probability q : the total number of customers is N. A state of

the loop is a state of station s .

(qk)
> station s O,

station s

in isolation

N

station 0 (:::)

\
Station s is said to be locally balanced in isolation if local balance

holds for this Lloop, for every feasible values of the ay 's and of N. This
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implies the existence of a function f, independent of both a, and'N}‘éuth;thSi
n n ' . co -

pN(e) = cy g(e) q11 ...qKK » where Py is the steady-state probability of the

loop with N customers, N is avnqrmalizing constant, and N is the number of

class k customers when station s is in state e.

Local balance in product-form networks

Assume network N to be made of stations that are locally balanced in
jsolation ; the routing policy is probabilistic, with fixed independant
Bernoulli trials. Then it is known that the steady-state probability P of the
network has product-form, ([Kel],[PeL]...). This remains true under more general
routing policies ([Pe(] [LeN] [PitteL],... . Yet, local balance does not generally
hold at every station of the network. Rather, equations of the follow1ng type ‘hold
at every station s, for every state e of the network :

A Yy
-0 Yo z1d,d =11,
K Tk

These equations can be called "inverted local balance". Note that inverted local
balance generally does not hold by class. ([PeL], [LeB]).

Compatible aggregations

Now consider aggregate states at every station ; note ey a micro-state
of station s, and a, an aggregate state. When two micro-states e and e's result

in the same aggregate state, this is noted e, = €1 "ese_as" means that

micro-state e is part of the aggregate state ag .
Let E [resp. Es] be the set of all feasible micro-state of the network
[resp. station s] » the set of aggregations at the S stations is said to be
compatible with the network iff :
- = t = ' ' :
(A-5) Ve (e1,...,es)e:E, Ye (e1,...,es)e.E1x...xES s 3f e S

for all s then e'eE

Roughly speaking, the set of aggbegations is compatible with the network if no
unfeasible state is introduced. Consider the example of fig 3 : there are two
FIFO stations, and two classes of customers. A micro-state of station 1 or 2

is a sequence of classes, whereas an aggregate state is defined by .the numbers
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of customers in each class. The aggregation is not compatible, since the
order of the customers in the network remains uncﬁanged. A higher level aggre- .
’ d

gation, with ag = the total number of customers in station s would be compa-

tible.

FIFO
2121 2

1 2121

@

FIFO

A

Figure 3

If aggregate state ag is defined by the number of customers in every
class, then a sufficient condition for condition A-5 to be fulfilled is that

there exists a PS or IS station visited by every class of customer.

The compatibility condition allows us to consider the cartesian product
of aggregate states a = 34 X «eax 3¢ aS anN aggregate state of the network, for
which the steady-state probability is given by :

(A-é) P(a) = K F1(a1) X eas sz(as)

where Fs(as) = 3 f (e is the result of the aggregafion process at

s s)
e ca
s&%
station s in isolation.

In other words, if aggregate states are considered at every station, -
then the associate function of every station can be computed at the aggregate

level in isolation, provided the set of aggregations is compatible with the

network.



- 38 -

Equivalent service rates and local balance at aggregate level

For a given aggregate state a of the network, the equivalent service

rate for class k at station s is defined by :

* -
(A7) us'k(g) = eia (p(g)ds’k(es)) /eia p(e)

where ds C(es) is the departure rate for class k, station s, assumed to depend
’

on e, only. In the networks considered in the appendix, and if the aggregations

are compatible with the network, then the equivalent service rate ‘computed in

the network is equal to the equivalent service rate computed in isolation. In

particular, it depends on'aS only ; from now on it is noted u: k(as).
’

Summing local balance in isolation easily results in local balance at
the aggregate level ; an interesting case is when aggregate state ag =ng is
defined by the number N of class k customer, for all k ; in that case, local

balance’in isolation is
(A-8) F_(n)dq, = F_kHen ) u* Y en )
s s’ 9 s 3 l‘ls,k s

. .

where k (ns) is the only aggregate state which after a departure yields state
+

ng and for all ag such that k+(ns) is feasible. Taking k (ns) as a variable

shows that, for all class k :
-9 1 @b - LIRS

(with the same notation T\, at aggregate level as at detailed level).

That is, inverted local balance holds by class in isolation. This still

holds in the network, as is proven below :.

For all state n of the network, the entrance rate resulting from a

class k arrival at station 1 is :

+ - {1,5} - + * +
Tk(Q,*) = k'%s P (Q)F1(k (n1))Fs(k' (ns))qs,k',1,k ”s,k'(k' (ns))
where PA(Q) =P(n)/ 1 Fs(ngd ;
SEA
By A-8 :
¢ ¥ _ {1,s} -
T, (0,1 r P’ ()F, Ck (n1))Fs(ns)6s,k' 9%,k',1,k

s,k
P{1}(Q)F1(k-(n

128 ¢



By A-9 :

¥ *
Tk(gf*) = P(n) u1’k(n1)

which is precisely Tk(a,1).

The following table summarizes which relations hold at aggregate and
de}ailed level , assuming the aggregations to be compatible with the network

- 39 -

Detailed Level

Aggregate Llevel

. I vy 4 O 2 N 2
gueue in Tk(es,s) = Tk(es,s) Tk(:s,:) = Tk(zs,j)
isolation | (| cal balance) 1,(n_,8) = T,(n_,8)

k' s k''s
4+ 4 ¥
queue in PN v Tk(n,s) = tk(n,g)
L 1t.(C,s) =X 1.(e,s)
the network k k k k (inverted local balance)

The omitted relations generally do not hold.
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