N

N
N

HAL

open science

A simple applicative language: Mini-ML

Dominique Clement, Joelle Despeyroux, Thierry Despeyroux, Gilles Kahn

» To cite this version:

Dominique Clement, Joelle Despeyroux, Thierry Despeyroux, Gilles Kahn.

language: Mini-ML. [Research Report] RR-0529, INRIA. 1986. inria-00076025

HAL Id: inria-00076025
https://inria.hal.science/inria-00076025
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

A simple applicative

https://inria.hal.science/inria-00076025
https://hal.archives-ouvertes.fr

43R R AT A A A MR I RS

Rapports de Recherche

N° 529

A SIMPLE
APPLICATIVE LANGUAGE:
MINI - ML

Dominique CLEMENT

Joélle DESPEYROUX

Thierry DESPEYROUX
Gilles KAHN

pandi
(AR

A Simple Applicative Language: Mini-ML

Dominique Clément
SEMA, Sophia-Antipolis
Joélle Despeyroux
Thierry Despeyroux
Gilles Kahn
INRIA, Sophia-Antipolis
Route des Lucioles, 06565 Valbonne Cedex, France

Résumé

Cet article présente une description formelle de la partie essentielle du langage ML en
Sémantique Naturelle. Les sémantiques statique et dynamique sont traitées ainsi que la
traduction vers une machine abstraite. Cette description a fait ’objet de vérifications sur
ordinateur et nous expliquons pourquoi ces vérifications sont possibles. Un certain nombre
de propriétés du langage s’expriment aisément dans le contexte de cette méthode et nous
les démontrons.

Abstract

- This paper presents a formal description of the central part of the ML language in
Natural Semantics. Static semantics, dynamic semantics, and translation to an abstract
machine code are covered. The description has been tested on a computer and we explain
why this is feasible. Several facts that one may want to prove about the language are
expressed and proved within the formalism.

A Simple Applicative Language: Mini-ML

Dominique Clément
SEMA, Sophia-Antipolis
Joélle Despeyroux
Thierry Despeyroux
Gilles Kahn
INRIA, Sophia-Antipolis
Route des Lucioles, 06565 Valbonne Cedex, France

" Abstract.

This paper presents a formal description of the central
part of the ML language in Natural Semantics. Static se-
mantics, dynamic semantics, and translation to an abstract
machine code are covered. The description has been tested
on a computer and we explain why this is feasible. Several
facts that one may want to prove about the language are
expressed and proved within the formalism.

1. Introduction

ML is a programming language with very interesting
characteristics from the standpoint of static and dynamic
semantics.

o ML is a strongly typed language but there is no type
declaration: expressions dre typed implicitly.

e ML exhibits polymorphism: it is possible to define
functions that work uniformly on arguments of many
types.

o ML ailows the definition of higher-order functions: the
value of an ML expression may be a closure.

ML typechecking is the object of numerous discussions
in the literature, e.g. [1]; [4], [6], '13], and the use of an
inference system to describe ML typing is now widely ac-
cepted. On the other hand recent work of Curien and
Cousineau [3] has shown how to compile ML into code
for an abstract machine, the Categorical Abstract Machine

(CAM). Hence we are in a position to describe formally and -

completely three aspects of ML: typechecking, dynamic se-
mantics, and translation into CAM code. Without loss

This work is partially supported under ESPRIT, p. 348

of generality, we restrict ML to a central part christened
Mini-ML, a simple typed A-calculus with constants, prod-
ucts, conditionals, and recursive function definitions.

1.1. Sample programs

To illustrate Mini-ML, we introduce several examples
in concrete syntax. First of course is how to write and use
the factorial function: '

letrec fact= Az.if z = O then lelsez * fact(z — 1)
in fact 4 :

The next example shows the definition of a higher order
function twice: '

let succ = Az.z+1
in let twice = Af.Az.(f (f z))
in ((twice succ)0)

This expression uses block structure:

let i =5
inleti=:1+1in¢

Here we have both simultaneous definitions and block

structure:
let (z,¥y) =(2,3)
in let (z,y) = (y,z) in z

This example has simultaneous recursive definitions:

letrec(even, odd)= (Az.if z = Othen true else odd(z —.l),
Az.if z = Othen false else even(z — 1)
in even(3)

Finally here is a typical example of polymorphism:
let f=Az.zinf f

The examples above, which we use throughout this paper,
are believed to reflect the main intricacies in static and
dynamic semantics of ML,

The remainder of this paper is divided into four parts.
In Section 2, we discuss the static semantics of Mini-ML. -

First, we present the Damas-Milner type inference systcm
for the simple A-calculus part of Mini-ML. Then we show
how this system, which is non-deterministic, can be turned
into a deterministic inference system. The latter system
can be read as an algorithm to type-check Mini-ML expres-
sions. Finally we give complementary rules to deal with
products and letrec. In Section 3, the dynamic semantics
of Mini-ML is also given as an inference system. The nicer
points of this system are recursive function specification
and handling of products. To compile Mini-ML, we use
CAM as the target machine. The CAM is a very simple
abstract machine. The formal system in Section 4 specifies
the transitions of the machine. Finally Section 5 contains
translation rules from Mini-ML to CAM, again in the same
style. |

1.2. Abstract Syntax of Mini-ML -

The abstract syntax given below describes A-calculus
extended with let, letrec, if, and products. Furthérmore,

in an expression AP.e, P may be either an identifier or a

(tree-like) pattern. For example A(z,y).e is a valid expres-

sion and so is Az, ((y,2),t)).¢’. The constructor mlipair

builds products of expressions, while the pairpat construc-
tor serves in building patterns of identifiers. The nullpat
constructor is used for the unit object (), which is both a
pattern and an expression.

sorts EXP, IDENT, PAT, NULLPAT

subsorts EXPD NULLPAT, IDENT
PATS NULLPAT, IDENT

constructors

’Patterns’
pairpat PATXPAT -~ PAT
nullpat — 'NULLPAT

'Ezpressions’
ident - IDENT
number — EXP
false — EXP
true : — EXP
apply ¢ EXPXEXP — EXP
mlpair : EXPXEXP — EXP
lambda : PATXEXP — EXP
let : PATXEXPXEXP — EXP
letrec : PATXEXPXEXP — ‘EXP
if : EXPXEXPXEXP —

EXP
Figure 1. Abstract Syntax of Mini-ML

2. . Static Semantics

Before introducing an inference system that assigns
types in Mini-ML we must define the type language. In
typed A-calculus every object has a type. Thus the type
language must be able to express basic types as well as

Junctional types. For example, the type of the successor
function Az.z + 1 is int — int. In the same way the iden-
tity function Az.z for integers has type int — int, but for
booleans it has type bool — bool. It is clear that the iden-
tity function may be defined without taking into account
the type of its present parameter. To express this abstrac-

- tion on the type of the parameter, the type variable a is

bound by a quantifier: the polymorphic identity function

‘has type Va.aa — o

2.1. The Type Language

The type fanguage contains two syntactic categories,
types and type schemes.

Types: a type.7 is either

i. a basic type int, bool,

il. a type variable a ,

iii. a functional type T — 7/, where r and 7/ are types,
iv. a product type 7 x r’, where 7 and 7/ are types. °
Type schemes: a type-scheme ¢ is either

i. a type 7,

ii. a tYpe-scheme Va.o, where o is a type-scheme.

Remark: quantifiers may occur only at the top level of
type-schemes, they do not occur within type-schemes.

A type expression in this language may have both free
and bound variables. Let us write FV (¢) and BV (o) for
the sets of free and bound variables of a type expression -
o. Following [4], we now define two relations between type
expressions that contain type variables.

Definition 2.1. A type scheme ¢’ is called an instance of
a type scheme o if there exists a substitution S of types for
free type variables such that:

o = So.

Instantiation acts on free variables: if S is written [o; « 7]
with a; € FV (o) then So is obtained by replacing each free
occurrence of a; in o by r; (renaming the bound variables
of o if necessary). The domain of S is written D(S).

Definition 2.2. A type scheme ¢ = Vay---a,,.7 has a

generic instance o’ = VYf3, +-- Bn.7', and we shall write o >
o', if there exists a substitution S such that

' =8r with D(5)C{ar - am}
and the f; are not free in o, i.e.

B: € FV (o) 1<:i<n.

Generic instantiation acts on bound variables. Note that if
o > o’ then for every substitution S, So > S¢’. Note also’

— rules APP, ABS involve only types, not type-schemes.
Likewise, a let-expression has a type 7, not a type-
scheme.

~ rule GEN is the only rule that introduces quantifiers.
If the TAUT rule returns a type-scheme, this type-
scheme was found in the assumptions A. It might come
from a predefined type, or from an earlier use of the
"LET rule since ABS only enters types in assumptions.

- if o is a type-scheme, to derive the premise A, U {z : .

o} b e 7 of the LET rule, we must use INST after
each use of TAUT for z if we want to use any other
rule.

These observations suggest considering the slightly
modified version of the Damas-Milner system in Fig. 3:

TAUT' AlFz:T (z:UEA,gé:T)
APP AH:T'AT—:ef;fH,:TI
ABS A; L: gzz .:er:’i /‘f__j :TT
A

(o =' gen{4,1'))

Figure 3. A variant DM’ of the Damas-Milner system

where gen(A,7) is defined by

VYay - ap.t (FV(r)\FV(A) = {a1 - an}
gen(4,7) = { r EFV(T) \ FV(4) = 0)

7

We can use DM’ instead of DM thanks to the next

result (see proof in appendix A1),

Theorem 2.1. The system DM’ is equi\(alent to DM in
the following sense:

DM’ DM
A b+ eir=A F e:r,

DM DM’
YA,e3dr A F e:o=>A F e:T& gen(A,) = 0.

But DM’ is well adapted to computing types, as we now
see.

2.4. Type Inference

To understand why DM’ allows computing types, we
examine how proof trees can be constructed systemati-
cally on several examples. First, we typecheck the funec-
tion Az.succ z. More precisely, we attempt to construct,

for some 7, a proof of
{succ : int — int} F Az.succz:7

The last step of the proof must use the ABS rule, the only
rule concerning A-abstraction. We must now find a proof

.of

{succ:int - int} U {z:m2}F succz:m

with both 7, and r; unknown. If we find this proof, then
we will have succeeded with r = r; — 71, and’our last proof
step will be an instance of

{succ:int — int} U {z: T} F succz:n
{succ 1int — int} - Az.succz i — 7y

where. 7 and 7; are type metavariables. Now for suce z we
must use APP to obtain an instance of

{succ :int = int}U{z:m}tz:7g
{suce 1 int > int}U{z: 7} succ:73 =7,
{succ:int - int} U {z: 1} succz:n

The first premise must use TAUT’
{succ : int — int} U {z : 1o} I succ :int — int

which gives the only type of suce. As a consequence 73 =
tnt and r; = int. The second premise must be proved with

TAUT’ again

{succiint - int}U{z:m}z:73 To > T3

and since r3 = int we must also have 7o = tnt. In other
words, we have found the following proof tree:

{succ:int - int}U{z:int} -~ z:int

{suce : int — int} U {z : int} F succ : int — int
{suce :int —» int} U {z:int} - succz:int
{succ : int ~ int} F Az.succ z : int — int

If we represent this proof tree as a term, this term has the
structure ABS(APP(TAUT’, TAUT)),

or more precisely ABS (APP(TAUT, .., TAUT.)),

or even Az, succ z. This fact is an instance of the Principal
Type Theorem [8] and it is completely general:

Theorem 2.2. If A+ e : 1 has a proof in DM’ then the
structure of this proof is e.

Proof. The proof is by induction on the structure of e.

0

In the example above, we have reasoned both on construct-
ing the proof tree and on resolving constraints concerning
type metavariables.” We proceed now more systematically
since by Theorem 2.2 constructing the proof tree is triv-
ial. Consider the identity function Az.z. Using ABS and
TAUT’, we obtain the proof tree

{z:}Fz:7

Amr it — 1

that if 7 and 7’ are types rather than type-schemes, then
7 = 7' implies r = 7'.

2.2. The Damas-Milner Inference System

In programming languages the type of an expression
depends on the type of identifiers that occur free in it. In
other words, an expression e has type ¢ under a given set
of assumptions A about the type of its free variables. In
the following A is a list of assumptions {z : o} and A,
stands for the result of removing any assumption about z
from A. The set FV (A) of free variables of 4 is defined by

extension
U Fvie).
{z:0}€A

FV(4) =

We say that the expression e has type o if Al e: 0 can be
derived from the Damas-Milner inference system in Fig. 2.
Observe that the metavariables T and v’ in this system range
over types, while o ranges over type-schemes.

TAUT ArFz:o ({IIG}EA)

INST L:TFE_% (0% o)

- ﬁ% (e g FV(4))

APP A“"’A—;ree/:;u—e':r"

ABS A;if\z.:eili,i_: :T‘r

LET AFe,:UI AIU{'ztﬂ}i-e:T
AFletz=¢line:r

Figure 2. The Damas-Milner Inference system DM

We will use the following lemma, which is proved in

(4]:

Lemma 2.1. If 0 > o’ and A; U{z : o'} - € : 05 then
A:U{z:0} Fe:ao.

Examples

Let us see now how these rules may be uscd to prove
typings. For example, we can show that the identity func-
tion Az.z has type Va.a — a by the following derivation

tree:

{z:a}rz:a [TAUT]
FAz.z:a—a [ABS]
FAz.z:Va.a = a [GEN]

We can use that proof to get a specialized type for the
identity function:

FAz.z:Voa.a— a

S
F Az.z:int — int [NsT]

More directly we have also the following proof tree:

{z:int}F z:int [TAUT]
FAz.z:int —int {ABS]

We can go further now and show a proof tree for the typing
of let f = Az.zin f f.

{f Vaea—a}t f:Yoa—a
{fYaa—a}rf:8-5
{f:Yaa—a}F f:Va.a— «
JYaa—alr [(B—F) =B =7
A{f:Vaa—al-ff:8-8
{z:a}Fz:0
FAT.z:io > o
Flz.z:Ya.a—a

Fletf=MAzzinff:8—-p

Remark: in A-calculus the expression letz = ¢’ ine is con-
sidered equivalent to (Az.e) ¢’. Hence one might wonder
about the need for the LET rule. Indeed, the following
proof tree is obtained without using the LET rule:

A u{z:}re:r
A-dze:r'—r1 Ar-el 7!
AF(Aze)e T

so that the following rule is derivable in DM:

Are:r’ A U{z:7'}Fe:7

LET™
AR (Az.e)e ot

In rule LET, variable z may be assigned a type-scheme.
But in rule LET™, it may only be assigned a type. The
LET rule is the source of polymorphism in ML.

Now to compute the type of an expression with such
an inference system, i.e. given 4 and e derive some ¢ such
that A -~ e : o, we need an algorithm to build a proof of
Al e:o. With the exception of GEN and INST, all rules
are ezclusive: there is only one rule stating how to type
each syntactic construct. But rules GEN and INST may
be invoked at any time, so that the strategy to follow in
constructing a proof tree is not obvious.

2.3. A Deterministic Inference System

In the examples above we notice that:

with the constraint 7/ > 7. But since 7 and 7' are types we
have 7 = 7/ so that all proof trees are instances of

{z:r}bkz:7
FAzz:r—71

without any more constraint on the type metavariable r. In
particular we have F Az.z: @ — a, with a a type variable.
Since types are first order terms, any instance of « is an
instance of 7, and conversely. It is very tempting to identify
type variables with type metavariables.

To understand whether this is possible in general, we
try to find a type for the polymorphic function

leti = Az.zin 1.

First we use the LET’ rule, together with the earlier result
Flz.z:ia— a ’

Flz.zia— o {i:Ya-a—a}rii:r

Fleti:=Az.zintzi: 7

To compute the type of : ¢ under the assumption

{i : Yaa — a} we use APP, and for each occurrence of
1 we use TAUT’. But now, in the assumption, identifier z
is associated to a type-scheme. We must find types 7; and
7 that are generic instances of {¢: Va- @ — a}. Summing
up, we have the following constraints:

Va-a—armn

=
Va-a—a>rm

T To —* T

Solving this yields r, = 73 — 73, then 7 = 14, — 74, and the
third equation yields 73 = 7o = 74 — 14 = 7. The instance
of APP to use is of the form

{i:Vaa—a}Fi:irg— 74
{t:Ya - a—a}Fi:(rg > 74) — (14 — 74)

{i:Vara—alFiiirg 714

and without loss of generality we can take 74 = § resulting
in '
Flett=Azzinzi: 08— 8

To see that A-bound variables and let-bound variables
are treated differently, we conclude with a last example.
Assume that the innocuous axiom INT

AFintx:int
has been added to DM’, and try to find some 7 such that
FAzleti=zinz1:7
We produce mechanically the proof tree

{t:0}Fi:7s Fl:mg
{z:n}Fz:713 S {i:io}tilim
{z:m}Fleti=zinil:n

FArleti=zin2 17

and the constraints:

o> Ty T4 = inl

s Ts =T — Ty
o= gen({z :7},73)
T=17 — T

Each use of an axiom or an inference rule gives rise to pre-
cisely one constraint. Equalities between meta-variables
define an equivalence relation. The remaining constraints
are of the form: 7 = 7, — 712, 0 = gen{A,7), and o > .
Now to solve the constraints at one level, we first solve the
constraints for the above sub-trees (computing the type of
an expression from the types of its sub-expressions), ex-
cept for the LET’ rule. There the constraints are solved in

"mid-order: first solve the constraints for 4 ~ ¢’ : 7/, then

compute o = gen(A,r’), and finally solve the constraints
for A,U{z:0}F e: 7. To compute gen(A4,r’), every type
metavariable of 7/ that does not occur in FV(A) is con-
sidered as a type variable and generalised. Thanks to the
lemma 2.1 {and 2.2 in appendix A.1), this complete gener-
alisation does not restrict the resolution of the constraints
for the second subtree, i.e. for A;u{z:0}Fe:7.

Returning to our example, from 7y > 73 we deduce
71 = 73 so that o = gen({z : 71},n1) = 71 = 73. Now from
o>7s weobtaint) =713 =0 =75, But 7 =174 — 72 =
int — 2 so that 7 = (¢nt — 79) — 2. Hence we obtain

FAzdeti=zinil: (int — o) — «

Regrouping Theorems 2.1, 2.2, and what we have learnt
from the examples above, we have now:

Theorem 2.3. For an expression e of size n, the consiruc-
tion of a proof of A - e : r yields exactly n constraints.
The constraints are solved with the same principle that is
used to build the proof tree, and their most general solution
yields the most general.type for 7.

Remarks:

- Unification is pervasive in this algorithm. It is inher-
ently present in the inference rule formalism, and it is .
used to solve constraints as well.

— In the process of solving constraints, we find a type for
all bound variables. This is why the algorithm .is said
to perform type inference. :

Corollary 2.1. The system DM’ can be understood and
executed as a Prolog program. Given A and e, if some 1
is found, and if v is a finite term, then gen(A,r) is the
principal type of e. ‘

Remark: there is only one way in which we can fail to
find a type for e in DM’: the constraints do not have any
solution that is a finite type (e.g. ¢ = Az.z z). As soon as
we add to DM’ other axioms, such as INT, we can fail for

incompatibility as well (e.g. e = Az.1z). These two cases
of failure are, of course, familiar in first-order unification.

2.5. Executable Specifications

All formal specifications presented in this paper have
been tested on a computer. To that end, we code inference
rules in a computer formalism called Typol |{2]. Transform-
ing the system DM’ inio a Typol program is straightfor-
ward, but except for the gen function and generic instan-
tiation.

2.5.1. Operations on type-schemes

Function gen takes a type 7 and an environment A
and returns a type-scheme. It is built with the help of two
auxiliary functions freevars and setminus. Function free-
vars builds the list of free variables FV(r) that occur in a
term 7. To build FV(A) we use freevars on every assump-
tion in 4. Then with function setminus we build the list
{a1,a2, -+ an} of generic variables FV {7) \ FV(A). The
type—scheme gen(A,) is then obtained from r in iterat-
ing the construction 4ind(V, a, o) for all generic variables
oy, where bind is defined by bind(V, o,0) = Va:o. Func-
tions freevars, setminus and bind are of general interest in
semantics and not particularly tied to the context of type-
checking. They are provided in a generic way in Typol.

For predicate > we remark that the constraints in-
volving it (generated by TAUT’) always have a type 7 on
the right hand side. So we can advantageously replace the
predicate by a function inst, for generic instantiation, that
strips all the quantifiers in a type-scheme and consistently
replaces bound variables by fresh new free variables. Func-
tion inst is written in terms of the Typol generic primitive
unbind, where unbind is defined by:

unbind(q,7’,7) = { njz\7'] (r = qz..n)
T otherwise.

where ¢ denotes a quantifier.

2.

Ul

.2. Environment manipulations

To implement the system DM’ we must express in a
constructive fashion both the set of assumptions 4 and the
two manipulation operations A U{z : ¢} andz:0 € A.
First we implement.the set of assumptions 4 as-a list of
pairs of the form z : 0. Then to add a new assumption,
we use the cons operation on lists, written with an infix
dot. But now our list of assumptions may contain several
assumptions on the same identifier. Thus the condition
z:0 € A of the TAUT' rule has to be viewed as looking for
the first occurrence of z : o in A. This operation is imple-
mented with the following specialized Typol set TYPEOF.

set TYPEOF is
{z:0}-A+z:0 (1)

At z:o
{y:0'}-Arz:0

end TYPEOF

Now we can write in Typol the system DM’ extended
with constants as follows:

set TYPE is :
A |- true: bool _ (1)

A false: bool (2)

A numberN :int (3)

typeof d
A F identx:o . i
At identx: 7 (r = inst(d)) (4)
AFeir' =71 AbRE:r 5
AFEE:T (5)
{xX:7'} . ArE:!7T
AF AX.E:T' — 1
ArE 7 {x:0}-AFE:T
Arletx=°¢Iine:7
(0 = gen(A, "))

end TYPE

2.5.3. Products and Recursion

To complete our specification of Mini-ML, we have
to include products, conditional expressions, and recur-
sive definitions. With products it is possible to bind si-
multaneously several variables in an ML pettern. Consider
for example the expression A(z,y).z + y. Typechecking is
not altered by this last feature, except that we must check
that patterns are well formed, i.e. that they do not con-
tain the same identifier repeated. An expression such as
Mz, z).z + z is not valid. Furthermore we cannot add a
global assumption on a pattern, but we must split it into
components to associate a type to each identifier in the
pattern. So we use the set MKENV to build a local environ-
ment, the exclusive union of {z: 7} for each identifier z in
the pattern.

set MKENY is

b identx,o : {identx : o} (1)

U
Al "Az:/l';
[(Pl,Pg),o’l X g2 : Az

i"P],O'l:Al |"P2,02:A2

end MKENV

The Typol set U specifies “exclusive union” on lists of as-
sumptions. To add a new assumption on an identifier z
into a list of assumptions A we must consider two cases:

1) the list does not contain any assumption upon z. This
corresponds to the union of an empty list with the list
{z:0} (rule 1).

2) else we iterate on ‘the list (rule 2). But the two iden-

tiflers £ and y must be different (to avoid multiple

declarations).

Next the union of two lists is done one element at a time
(rules 3 and 4).

set U is

ot {z:0}: {z:0} (1)
AF{z:o}: 4
{y:0'}-AF{z:0}: {y;.gl},A, (v # z)(2)
AkFg:A _ (3)
AF(zio):d Av A ar

A {z:0}-A;: 4" (4)

end U

In the rules involving binding (ABS and LET’), this
local environment is prefixed to the current environment
{concatenation is denoted by a semicolon).

Product expressions have product types. Recursion is han-
dled by adding the polymorphic fixed-point operator to the
initial environment:

{fiz :Ya.(a = a) — a}

and the rule 10 of Fig. 4. For the conditional expression if
the condition must have type bool and both true and false
part must have the same type (Rule 6).

The static semantics of Mini-ML is described by the
Typol program on Fig. 4. To conclude this section, we

see that to obtain an executable type checker, most of the -

work was done at level of inference rules (use DM’ rather
than DM), rather than in converting inference rules into an
algorithm.

3. Dynamic semantics of Mini-ML

In ML functions can be manipulated as any other ob-
ject in the language. For example a function may be the pa-
rameter of another function: it is possible to define higher-
order functions. Thus the domain of semantic values of
ML is slightly more complicated than for a less expressive
language. ‘)

3.1. Semantic values and environment

Values in Mini-ML are either:

— integers: IN

program ML_TC is

use ML
A A" ENV,
r,r' : TYPE;

o: TYPE_SCHEME;

set TYPE is
A I numberN : int (1)
A+ true: bool (2)
" A\ false : bool 3
mkenv .

Fop, ' A ALAFE:T (4)

AFAPE:T =71 ' v

typeof d
A F identX:o . .
At identx:r (7 = inst(a}) (5)
At E: bool

Are.:r AFg’.r

Al ifethenkelsee” : 1 '

AFE:T AFe 7
AF(E,E):Tx 7

(6)

Are:r'>7r Abg:r
AFEFR T
mkenv
Arw 7 F P A" A AFEe:7T
‘ AFletPp=EinE: T
{0 = gen(4,1"))

Alletp = fizAP.E'inE:7
Al letrecP = E'inE: 7

end TYPE

Figure 4. The static semantics of Mini-ML in TYPOL

- boolean values : true, false

- closures: [AP.E, p]), where £ is an expression and p is an
environment. A closure is just a pair of a A-expression
and an environment.

- opaque closures, i.e. closures whose content cannot be
inspected. These closures are associated to predefined
functions. :

- pairs of semantic values: (a,8) (which may in turn
be pairs, so that trees of semantic values may be con-
structed).

Naturally the value of an expression e depends on the
values of the identifiers that occur free in it. An environ-
ment p is an ordered list of pairs P — « where P is pattern

and a a value. Here is an example of environment:
z 1 (z,y) — (true,s)

We say that expression e evaluates to « in environment p
if the theorem

ple:a '
can be derived from the formal system in Fig. 5. At the
top-level, we assume that expressions are evaluated in an
initial environment associating a few predefined operators
to opaque closures.

program ML_DS is

use ML
oo ENV;
a,f: VALUE;
p - numberN: N (1)
pF true:true (2)
ptfalse: false (3)
p FAr.E:]AP.E,p] (4)
vt
: p}-iée:txli:a (%)

pF E, true P E:@

p b if E, thenE,elseE;: o

p F E, :false pFE

7
ptif E, thenE, elseE;: (M
prE a pFE.:S (8)
P = (B, E2) (e, 8)
eval
g+ E,:opaque OP pPFE.:a - oprP,a:f
pt E E: 3
o~ E:[AP.E, ;1] prEria P—oa-p kB3 (10)
ptE E::f3
pHE P—a-pkE:8 (11)

pkFletP=E,inE, : 3

p1 =P+ [Ea,p1] - p MFE
p - letrecP = E,inE, : «

(12)

end ML_.DS

@

Figure 5. The dynamic semantics of Mini-ML

3.2, Semantic rules

-

In Figure 5, rules' 1 to 3 associate values to integer
or hoolean literals. Rule 4 constructs 2 closure for a M-
expression, pairing it with the environment. The value as-
sociated to an identifier must be looked up in the environ-

ment (rule 3). Given that the environment maps patterns

to values, rather than identifiers to values, we need auxil-
iary rules, the set vAL_oF. Rules 6 and 7 associate values
to conditional expressions. We know from type-checking
that the condition has type boolean, and thus its evalu-
ation must return either true or false. Rule 8 is equally
transparent.

The next rules deal with functional values. Rule 9
concerns opaque closures. When the operator of an ap-
plication evaluates to an opaque closure, we assume thag
there is-some evaluator EVAL that is capable of returning a
value § corresponding to the argument a. Here, we could
be a little more realistic and have opaque closures contain
both the name of an operator and the name of an evaluator,
to be invoked in this rule. Rule 10 is the general case of
the evaluation of an application. Because of type-checking,
the operator of an application can only evaluate to a func-
tional value, i.e. a closure. This closure is taken apart, and
its body is evaluated in its environment, prefixed with the
parameter association P — . Note that the rule is valid
whether p is a pattern or a single variable. From rule 4
and 10 we deduce

P—a-phkE:[4
ok AP.E, E.:8

PFE:x

(9)

This rule can be added, as an optimization, to the seman-
tics of Mini-ML: it saves building a closure that is to be
taken apart immediately thereafter. Comparing it with
tule 11, we see that, at evaluation time, AP.E, B, = (letp =
E: inE,).

The last rule, rule 12, defines in one and the same way
the simple recursive functions and the mutually recursive
ones such as -

letrec (f,(g,h)) = (Az.---f--- heoo,
(Ay.---f heeo,
Az.ooofonn he-))

in E

The environment in which g, is evaluated is prefixed with
a self-referencing closure.

Notice that since p = E3 : « is a premise of rule 10, we have
an ML with call by value.

3.3. Searching the environment

The separate. set vAL_OF (see Fig. 6.) defines rules

. to associate values to identifiers, given some environment.

Since the environment maps patterns to values, the pat-
terns must be traversed to find the relevant identifier. Far-
thermore, block structure is present in- the environment
because in rules 10 to 12 we have merely prefixed the en-

vironment with new associations.

set VAL_OF is
ident1— a-p F ident 1 o (1)

pt identi— «

x#1 (2)

identx — [-p F ident1—
P, — - -Pyr+ F-ptidenti—~
(Py,P2) — {0, B) - pt ident1

(3)

" Pu B, 1] P2 [Baypi] - p - identi— a
(P, P2) = [(B1,E2), 1] - p F ident1—

(4)

" end VAL_OF

Figure 6. The ML environment rules

Rules 1 and 2 scan the environment until the first oc-
currence of an identifier is found, in a left to right scan.
Type-checking guarantees that the identifier will be found.
Rule 3 relies on the fact that, except for the case taken
care of in rule 4, a pair of identifiers is bound to a value
which is a pair. Hence searching is propagated to two new
pattern-value pairs. Rule 4 takes care of the mutually re-
cursive definitions. When a pair of patterns is associated
to a single closure, this closure must come from a pair of
functions. The environment of the closure is distributed
over these functions, and searching is propagated to sim-
pler components. Thanks to this simple idea, the letrec
rule 12 remains transparent, while accessing the environ-
ment is made only slightly more complex.

3.4! Equivalent semantics of Mini-ML

The environment p; for a recursive declaration must
satisfy the equation py = P = [E,p;] - p where E is the
body of the function and p is the environment of defini-

tion. In the rule 12 of Fig. 5, we have tied a knot in the

environment, i.e. we represent recursive environments by
graphs. We can write a rule that does not use that arte-
fact. Instead we introduce a new operator < for recursively
defined closures:

FcﬂEg,p}]mF B, &
p - letrecP = E, inE, 1 a

(12)

If we use rule 12’ instead of rule 12, environments will con-
tain components that are recursive associations. A new rule
_is necessary in the set vaL_oF to unfold such associations:

p— [B, P<{e,m] p1]-pt identi— o
P.<=[B,p1] - pF ident1—

Using rule (12) and the extra rule above in set VAL_OF
on obtains an equivalent semantics. This fact is proved in
Appendix A.2.

4. Dynamic semantics of CAM

The Categorical Abstract Machine [3] has its roots
both in categories and in De Bruijn’s notation for lambda-
calculus. It is a very simple machine where, according to
its inventors, “categorical terms can be considered. as code
acting on a graph of values”. Instructions are few in num-
ber and quite close to real machine instructions. Instruc-
tions car and cdr serve in accessing data in the stack and
the special instruction rplac is used to implement recur-
sion. Predefined operations (such as addition, subtraction,
division, etc.) may be added with the op instruction.

4.1. Machine code and Machine state

The abstract syntax of CAM code is given in Fig. 7.

sorts .
VALUE, COM, PROGRAM, COMS

subsorts
COMZCOMS
constructors
"Program’
program COMS +— PROGRAM
coms : COM”™ — COMS
'Commands’ '
quote : VALUE —+ COM
op : — COM
car -+ COM
cdr — COM
cons — COM
push — COM
swap — COM
«app — COM
rplac : — COM
cur ¢ COMS — COM
branch COMSXCOMS — COM
"Values’
int : -+ VALUE
bool : — VALUE
" — VALUE

null_value

Figure 7. Abstract syntax of CAM code

The state of the CAM machine is a stack, whose top
element may be viewed as a register.The values stored in
this stack are:

' - integers IN
- truth values: true, false

— closures of the form [c, pj, where c is a fragment of
CAM code and p is a value, meant to denote an envi-
ronment ’

- pairs of semantic values (which may in turn be pairs,
so that trees may be constructed)

4.2, Transition rules
Except in the first rule, all sequents have the form
ske:s

where ¢ is CAM-code and s and s’ are states of the CAM
machine. The sequent s - ¢ : s’ may be read as ezecuting
code ¢ when the machine ts in state s takes it to state s'.
The rules describing the transitions of the CAM appear in
Fig. 8.

Rule 1 says that evaluating a program begins with an
initial stack and ends with a value on top of the stack that
is the result of the program. The initial stack contains
closures corresponding to the predefined operators. For
example, we might have

init_stack = (((), [edr;op +, ()]), Jcdr; 0p —, ()ﬂ)

Rule 2. and 3 deal with sequences of commands; rules
4 to 11 are self explanatory axioms. Rule 12 switches to an
external evaluator EVAL for predefined operators.

Rule 13 and 14 define the branch instruction. It takes
its (evaluated) condition from the .top of the stack, and
continues with either the true or the false part. The cur
instruction is described in rule 15: cur(c) builds a closure
with the code ¢ and the current environment (top of the
stack) placing it on top of the stack. Rule 16 says that
the app instruction must find on top of the stack a pair
consisting of a closure and a parameter environment. Then
the code of the closure is evaluated in a new environment:
that of the closure prefixed by the parameter environment.

The last rule is the less intuitive one.” An rplac in-
struction takes a pair consisting of an environment p and a
variable v, followed by an environment p; on the stack. It
identifies v and p; and places the pair (p,p1) on the stack.
Notice that each occurrence of v in p; has been replaced
by p1. The use of this instruction will be explained by the
translation of the letrec instruction (see rule 9 on Fig. 9).

In fact this rule can be written in a simpler, but perhaps

less transparent, fashion:

(pyp1) - p1- st rplaci(p,p1) - s (17)

4.3. Code equivalence

Thanks to the formal definition above, we can now rea-
son about program equivalence for CAM code fragments.

Definition 4.1. Two fragments of code ¢, and ¢, are
equivalent if sequent s &+ c¢;:s' is provable iff sequent
s = ¢2:8' is also provable in CAM_DS. This relation is
written ¢y = c3.

Remark: If ¢ is non-empty and s - ¢:s’ then s and s' are
also non empty.

program CAM_DS is

use CAM
$,81,82 : STACK;
a,f: VALUE;
p,py: ENV,
init_stack - coMs:a-s
F program(coms): a (1)
skg:s (2)
sk comMm:s; s1 - coms:s,
s - coMm;coMs : 52 (3)
a-st quote(x):x-s (wvar(x))(4)
@ -5t quote(intN) :N-s (5)
a- s quote(boolT):T-s (6)
(«,8) sk car:a-s (N
(a,8)-stcdr:8-s ’ (8)
o-f-st cons:(B,a)- s (9)
a-skpush:a-a-s (10
a-B-skswap:8-a-s (11)
etl p .
a-sl-:;;)i.:ﬁ-s (12)
true-s Sb:asél;:cl,, C:) 18y & (13)
false -s }-sb};azz}.lkscx, ,C2)i8y (14)
p-st cur(c):c,pi-s (15)
(p,a) - stcis; (16)
([c,),) -s - app: s,
(pyV) - p1- svi- rﬁllac:(p,pl) s (17)
end CAM_DS

Figure 8: The Categorical Abstract Machine

Definition 4.2. A fragment of code ¢ preserves the stack
iff
VoiaVs: p-skec:dd=s=a-s5

Examples: car and cdr preserve the stack, but push or
swap do not preserve it.

To illustrate equivalence proofs, we establish the fol-
lowing lemma of interest in the next section:

Lemma 4.1. [f ¢, preserves the stack, then for any code
€a.

push; cur(c,); swap;c1; cons; app = push;c,; cons;ca

Proof: Since ¢; preserves the stack, we assume p+s - ¢1.1 s
for all s. Then

p - s push; cur(cz);swap;cy; cons; app: s
<= p-p-st cur{cz);swap;icy;cons;app:s
<= [ez2,0]-p- st swap;jci;cons;app: s
<= p-fe2,p] st cijconsiapp:s

<= oa-{cz,p] st cons;app:s

<> ([ez,p],0)- s+ app:s

< (p,a)-skecz:s

<=> «a-p-shk cons;ca:s

<= p-p-shkecy;consicz:s

<= p-st pushjci;consicy:s

5. Translating Mini-ML to CAM

We are now ready to generate CAM code for Mini-
ML. In Fig. 9 is, in the traditional layout used for assembly
code, what we produce for the factorial example in Section
1. The translation rules from Mini-ML to CAM! are given
in Fig. 10. In these rules, except for rule 1, all sequents
have the form:

pre—c

where p is an environment, ¢ is an ML _expression, and ¢ is
its translation into CAM-code. In words, the sequent may
be read as in environment p, ezpression e is compiled into
code ¢. The notion of environment used in this translation
is exactly the notion of an ML-pattern, i.c. a binary tree
with identifiers at the leaves.

! The proof of correctness of this translation appears in
5 . :

Translation of an ML program is invoked, in rule 1,
with an initial environment init_pat that is merely a list of
predefined functions. The environment builds up whenever
one introduces new names (rules 9 and 10). It is consulted
when one wants to generate code for an identifier (rule 5).
Then an access path is computed in the ACCESS rule set.

-The access path is a sequence of car and cdr instructions (a

coding of the De Bruijn number associated to that occur-

. rence of the identifier) that will access the corresponding

value in the stack of the CAM.

set ACCESS is

.1 ENV;
p—gtX:ec (1)
pHX:c
identx — ¢-p Fidentx : ¢ 2)
whkidentx: ¢

(v #x) (3)

identy = ¢/- @ I identx : ¢
p2 —cyedr-pyercjcar ok x:¢
(Pr.p2)—c-phx:c

(4)

end ACCESS

Figure 11. Generating access p'aths for identifiers

Rules 2, 3, and 4 generate code for literal values. Rule
5 generates an access path for an identifier. Rules 6 and 7
are straightforward once the following inductive assertion
is understood: the code for an ezpression ezpects its eval-
uation environment on top of the stack, and it will over-
write this environment with its result. Thus the environ-
ment must be saved, by a push instruction, when necessary.
The following lemma is proved in [5]. '

" Lemma 5.1. Ifcis the code generated for an ML-expressior

push; quote(p) letrecfact =
cons
push
cur (push . Az if
push; edr (z
swap; quote(0) ,0
cons; op = =
branch (quote(1}, then 1 else
push; edr (z
swap; push; car; dr , {fact
. swap; push; ecdr N
swap; quote(1) ,1
cons; op -)
cons; app Jeall
cons; op *)))*
swap; rplac . in
push; cdr Afact
swap; quote(4) , 4
cons; app Jeall

Figure 9. Cam code for the factorial function

program ML_.CAM is

use ML
use CAM
c,c1,c2,¢3 : CAM;
,p1: ENV;
pror tnit_pat - E— ¢)
+ & — program(c)
p b number N — quote(int N) (2)
p b true — quote(bool “true™) ' (3)
p + false — quote(bool “false”) (4)
access
p F identi—c (5)
pltidenti—c
prE,—¢ pFE.—ca pF B —c3 (6)

p - if E, then E, else E; — push; cy; branch(ez, ¢3)

p}‘E,-i'Cl pl*‘Ez—*Cz

p F (E\,Es) — push; ¢y; swap; ¢a; cons

pHE, —cy (p: P} F Ex —e2
p F let P = E, in E; — push; ¢1; cons; ¢z

{p,P) FE, —c1 (p,P) - E2—c2
p letrec P = B, in E, —{push; quote(p);
cons; push; ¢y; swap; rplacica }

(pyP) FE—c

10
p F AP.E — cur(c) (10)

: trans_const
pEE;—¢2 - E, —C

pF EiLE:— 2501

pimE, ¢y p Ea—rca (1,.))
p = E, E. — push;c,;swap; ca; cons; app -
end ML_.CAM
Figure 10. Translation from Mini-ML to CAM
then ¢ preserves the stack, i.e:
ML_CAM CAM_DS , ,
p ~ e—e¢, a-s s =. §=f-5

Rule 8 shows how a run time environment is built up
in the stack in parallel with the static environment. Rule
9 is a little surprising because it leaves a free variable p; in
the code. This is a technique for leaving a reference to be
resolved at run time. The instruction quote(p;) will leave

(at execution time) a free variable on top of the stack. A

closure will be built using the environment on top of the

stack. Hence this closure will refer to variable p;

Incstruc-
ience tnls variasie pgi. insiruc

tion rplac will tie a knot, freezing the value of p; as the:

appropriate closure. In this way, we build a self-referencing

environment.'

The remaining rules deal with closures. Rule 10 merely
generates the instruction cur that constructs closures. Rule
11 concerns predefined operators. The predefined operators
and their corresponding machine codes appear on Fig. 12,
Of course, the list of predefined operators may be extended
at will. Here we use for example Predefined = {+, —,*}.

set TRANS_CONST is
 ident “fst” — car Fident “snd” —cdr (1)
F identx — op X (x € Predefined)(2)

end TRANS.CONST;

Figure 12. Predefined operators

5.1. Code Optimisation

Rule 12 is the general case for an application. To illus-
trate code optimisation, consider again the situation where
the operator of an application is an explicit A-expression.
From rules (10) and (12) we can deduce the following rule:

(p,P)F B2 —c2

1')
p = AP.E: E, — push; c1; swap; ¢cq; cons; app (13)
Now with the help of Lemma 4.1 from the previous section,
we can obtain the optimised form:

PHE —¢

p"‘El—>61 (p,P)l‘E—;—*Cz

p - AP.E; E, — push;cy;cons;cz

6. Conclusion

We have presented completely the semantic aspects of
a small but non-trivial functional language: static seman-
tics, dynamic semantics, and compilation to an abstract
machine. We believe that the formalism we use can be read
and understood by computer scientists who are not special-
ists in semantics.. Furthermore, the formalism has definite
technical advantages, and in particular it allows us to test
formal definitions on a computer. Finally, many issues,
such as mixing interpreted and compiled code or symbolic
debugging — usually considered of a strictly pragmatic na-
ture — can be understood in a completely formal manner
in this context.

Acknowledgements. We are grateful to J. Incerpi for so
much help in editing and typesetting this paper. G. Berry
suggested the variant of paragraph 3.4. G. Cousineau made
the CAM clear for us. G. Huet provided insights and en-
couragements. '

t The idea of generating code containing free variables

.occurs already in [15]

REFERENCES

(1] CARDELLI L., “Basic Polymorphic Type-checking”,
Polymorphism, January 1985.

(2] CLEMENT D., J. DESPEYROUX, T. DESPEYROUX,

L. HascoeT, G.KAHN, “Natural Semantics on the

- Computer”, INRIA Research Report RR 416, INRIA-
Sophia-Antipolis, June 1985.

(3] CousINEAU G., P.L. CURIEN, M. MAUNY, “The
Categorical Abstract Machine”, in Functional Lan-
guages and Computer Architecture, Lecture Notes in
Computer Science, Vol. 201, September 1985.

[4) Damas L., R. MILNER, “Principal type-schemes

for functional programs”, Proceedings of the ACM
Conference on Principles of Programming Languages
1982, pp.207-212.

[5] DESPEYROUX J., “Proof of Translation in Natural
Semantics”, Symposium on Logic in Computer Sci-
ence, Cambridge, Massachussets, June 1986.

(6] DESPEYROUX T., “Executable Specification of Static

Semantics”, Semantics of Data Types, Lecturc Notes -

in Computer Science, Vol. 173, June 1984.

[7) GorDON M., R. MILNER, C. WADSWORTH, G.
CoOUsSINEAU, G.HUET, L. PAULSON, “The ML
Handbook, Version 5.1”, INRIA, October 1984.

{8 G. HUET ”Computation and Deduction”,” Carnegie
Mellon Course Notes, - CMU, 1986.

[9] MACCRACKEN N. “The type checking of Programs
with implicit type structure”, Semantics of Data Types,
Lecture Notes in Computer Science n.173, Springer-
Verlag 1984. '

[10] MACQUEEN D.B., “Modules for standard ML",
ACM Symposium on LISP and Functional Program-
ming, 1984, pp.198-207.

[11] MILNER R. “A Theory of Type Polymorphism in
Programming”, Journal of Computer and System Sci-
ences, n.17, 1978, pp.348-375.

(12] MYCROFT A. “Polymorphic TYpe Schemes and Re-
cursive Definitions”, Sixth International Symposium
on Programming, LNCS 167, 1984.

[13] PLOTKIN G.D., “A Structural Approach to Op-
erational Semantics”, DAIMI FN-19, .Computer Sci-
ence Department, Aarhus University, Aarhus, Den-
mark, September 1981.

[14] REYNOLDE J.C., “Three Approaches to Type Struc-
ture”, Proceedings TAPSOFT, Lecture Notes in Com-
puter Science, Vol. 185, March 1985.

[15] WARREN D.H.D., “Logic Programming and Com-
piler writing”, Software-Practice and Experience, 10,
1980, pp.97-125.

Appendix A.1.
Equivalence between DM and DM’

Theorem 2.1. The system DM’ is equivalent to DM in
the following sense:

DM’ DM
A F e:r= A4 F e:T

DM : DM’
YA,edr A Fe:io==>A4 + e:r&gen(d,r)>o.
provided ¢ does not contain useless quantifier {i.e. o is of
the form Vo - -+ an.1; with a; occuring in 1).

To prove the equivalence we use induction on the
length of the proof and the lemma 2.1. We need induction
on the length of the proof instead of structural induction,
because of the GEN and INST rules of DM. First we con-
sider the simpler case of the equivalence, i.e. the'soundness
of the system DM'.

(<=} Soundness of the system DM’'. For each"
proof tree in DM’ which satisfy the condition on gen, we
must exhibit a proof tree in DM. The method is the same
for every proof tree, so we illustrate it only for proof trees
ending with the TAUT’ and the LET' rules. '

Rule TAUT'. We have:

DM’
A+ z:7 (x:aEA,azT).
So we can build the following proof tree in DM:

(IZD’EA)
Ablz:r [INST]

A-z:0o

Rule LET’, We have:
DM’ . DM’ .
A b+ e A u{z:io} F oe:T
DM’ _
A F letz=¢ine:r

(0 = gen(A, T’))

So we have in DM:

L AEe 7 (ind)
AFe o {GEN|
Arletz=e'ine:r

Ay U{z:o}Fe:r (ind)

[LET]

(=>)Completeness of the system DM'. For each
proof tree in DM we must exhibit a proof tree in DM’ that
satisfies the condition on gen. We do not give the proof in
full details, but we only indicate its general outline. We
will use the following property of gen:

Lemme 2.2. A, U{z:7'}Fe:ny vyith
gen{A; U{z:7'},71) > 7 then gen(A,71) > 7.

This lemma expresses a kind of monotonicity of the gen
operation. If A, U{z : 7'} e: r; then the generalisation

of the type expression 7| over 4 cannot be more restrictive’

than its géneralisation over Az U {z : 7'}.

Rule TAUT. We have:

AFz:g (z:0€ A)

So we have the following proof tree in DM’

AF z:7 (zx:o€doxr)

where 7 is the generic instance of ¢ obtained as follows:

;= {Sr’ Af o =Vay ---an. 7,
o otherwise.

with S of the form [ey «— 8] (1 < 7 < n), where the
Bi are new type variables. By definition of gen, we have
gen(A,7) > o.

- Rule INST. We have:

Ale:o

ireo (029

So, using the transitivity of >, we can build the following
proof tree in DM':

D
By induction on the numerator, 4 ~

.
FV(4) implies that gen(4,7) = Va.o.’

AFe:r
AFle:r

-gen(A,r) > o (ind)
gen(A,r) = o' (trans)

Rule GEN. We have:

Ale:o
AFe:VYa.o

(a g FV(4))

e : 7 with gen(4,r) >
Now, with the assumption on o, the condition « &

Rule APP. We have:

Are:r 7 Atre 7
Alee:r

. So we can build the ‘following proof tree in DM’:

i

Arle 1)
Ar'e:r{ — 1 (ind) gen(A,r}) > 1 (ind)
gen(A, 7] =) =1 =1 Arle o
gen(A,11) = v’ (unif)
AFlee :ry [APP)
with gen{d4,7,) > 7.
Rule ABS. We have:
A:Q{z:r’}!-e:r w

cU{z: 7} H e:n

At Aze: 1 =7

A i MAAL
Qi vy s

I35
wax

gen(A; U{z:7'},m) > 7(ind)

A dze: 1" — 7. [ABS]

with gen(A,7' — 1) = 7/ — 7 (lemma2.2.).
Rule LET. We have:

Abe:o A u{z:o}re:T
Alletz=¢'ine: r

So we can build the following proof tree:

'Azu{z:a}'i-e:r
AzU{z:gen(A,)} eiT(2.1)
Az U {z: gen(4,r")} F e: 1 (ind)
gen(Az U{z: gen(d, 7')}m) = 7
AF'letz =¢'ine: r [LET')
gen{A,r) =1 (2.2)

At e 7! (ind)
gen(A,r) > o

O Theorem 2.1.

Appendlx A2,
Equivalence between graph and unfoldmg

Theorem 3.1. Fe:t(a) <= He:a

ml_ds :
Where F stands for + with graphs and F stands

mi_ds’ .
for + with the unrolling operator <. The function ¢

goes from environments and values with the <« operator to
environments and values with graphs.

First we define a function t which goes from environ-
ments and values with the <= operator to environments and
values with graphs. :

Definition 3.1. For environments we define:

- H0) = 0 |
CHP—a-p) = P o t(a) - £(o)
- (P <« [E,p1] - p) = P [E, p2] - t(p) with

p2 = P [E, p2] - t(p1)
For values, we define:

-t(N)=N
- #{B) =
- t(xdentOP) identop
- t{(a,8)) = (t(e, B))
(I

- Y[E,pl) = [E,t(p)]
Now we shall prove that:

tlo)Fe:tla) <= pHe:a,

by induction on the length of the proof. We do not give it in
full detail, but we consider only the most 51gn1ﬁcant rules.
Note that we have also p e : & <=> t(p) ' € : t/() where
the function ¢’ goes from environments and values with
graphs to environments and values with the <= operator.

(=) The rules are the same in both systems and the
induction is. quite obvious, except for the “letrec” rule.

Rule ml_ds.12: e = letrec P = E, in E‘l

p1 =P [E:,p1] - t(n) p1+E :t(a)
t(p) F letrec P = E, inE, :t(a)

by definition of ¢t, p; = t(P <= [E3, p] - p), 50 by induction:

P < [Esp]l-pH Bt
p H letrecP = E, InE, ;1 a

Set Val of: The.proof is trivial since all inference
val_of val_of’
rulesof F arealsoin F

(=) Proofs are the same, except for the VAL_OF set
because of the new unfolding rule.
p—[E, P < [E,01] 1] o+ ident1—
<=[E,p1]-pFH ident1—a

So we can build in :

p—iE, P < [E,p1]- 1] -p+ ident1—
P [E, t(p < [E,01] - p1)] - t(p) F identiw,t(a) (ind, t)
t(p <= [E,p1] - p) t ident1— t(c)

because, bﬁr definition of t:
t(p <[5, 0] - p1) = P < [5, p2] - t{p1) =
and finally:
P [E, p2] - t(p) =t(p <= [E,p1] -)

O Theorem 3.1.

R

