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ABSTRACT :

A class of‘implicit upwind schemes for solving Euler equation is presented.
Steady flows with extreme conditions such as high Mach numbers ot/and large
angles of attack on unstructured meshes can be simulated.

Upwind methods are used for the spatial approximation.

Higher rates of convergence are obtained by using an explicit scheme relying

on a linearization of fluxes and a partial resolution of the systems by a Gauss-
Seidel alaorithm. ' .

The scheme that we get is mare efficient and robust than explicit time inte-

gration.

RESUME
Nous présentons dans ce papier une classe de schémas de résolution des équations
d'Euler pouvant simuler des écoulements stationnaires a qrand nombre de Mach et

a forte incidence dans des géométries cohplexes (utilisation de maillages non
structurés).

L 'approximation spatiale est réalisée au moyen de schémas décentrés.
L'accélération de la convergence est obtenue par un schéma implicite reposant sur
une linéarisation des flux et une résolution incompléte des systémes par la
relaxation de Gauss-Seidel.

Le schéma résultant est plus efficace, plus robuste et plus fiable que celui

obtenu avec une intégration explicite en temps.
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1. — INTRODUCTION

This paper follows the works of Dervieux et al. [2], [6], dealing
with Euler flow simulation in complex geometries, such as aircraft, in
transonic and supersonic regimes. For this purpose it is interesting and

important to build schemes not relying too strongly on the redularity of
of the mesh.

Building an approximation scheme on an unstructured grid (of finite
element type) or, possibly, on a distorted (maybe locally refined) grid is
di%ficult since the strong variation in the spacing may disturb the internal
viscosity of the scheme, thus also. affectlng the accuracy and stability of
the scheme. With unstructured meshes, the splitting of matrices along the

x, y directions may be irrelevant, and the fully multidimensional matrices

must then be used.

Using such grids in combination with explicit schemes, leads to strict
limitations on the time-step nence, a large computing time needed to get to
the steady state. Implicit solvers which permit large time-steps and CFL

numbers lead to a significant decrease in computing time.

Many authors have developped the implicit methods.

_ Beam and Warming [7], among the earliest, have given an important

contribution with their implicit difference schemes.

Lerat [147] built a class of centered second-order accurate implicit

difference schemes, containing that of Beam and Warming.
Two 1mp11c1t conservative and non-conservative versions of Harten's
[12] scheme are presented by Yee, Harten and Warming [30], and recently Yee

[31] gave very accurate results with the TVD version.

Al1 these schemes require the solution of block-tridiagonal linear

systems and are extended in two dimensions by an ADI technique,
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The upwind flux-splitting scheme of Steger and Warming [22] leads to

a triangular linear system.

The scheme proposed by Mac Cormack [I5] is non-centered and the linear
systems are bidiagonal. This scheme was also studied by Casier, Deconinck

and Hirsh {8} in a one dimensional context.

Rai and Chakravarthy [20] have presented an implicit version of the
second-order finite difference scheme of Osher [18] where the linear sys-

tems are solved by a relaxation method.

Mulder and Van Leer [17] present an implicit upwind difference scheme
for .the one-dimensional Euler equations. They use upwind spatial differencing

and linearization in time. This method is extended to the two~dimensional

case in generalized coordinates by Van Leer et al. {1}, {25}. Two

implicit solvers are described : a factorization method and a linear

relaxation.

The implicit method proposed by Stoufflet [237 applies to unstructured .

meshes ; it involves a linearization of the first-order upwind scheme of

Vijayasundaram [29] and -a relaxation iteration. This method can be used to

get an implicit version of a scheme, whether it be centered or upwind.

Our purpose is to extend this method to a large class of uypwind fluxes

of first or second-order accuracy, especially adapted to unstructured meshes.

Two basic ingredients are used in the present work.

_ Firstly, for the spatial approximation, a secound-order version of some
" first—order upwind schemes in conservative form is built following the
method introduced by Van Leer [28] . This is done by local interpolation
around nodes and some limitation on the sliopes for the sake of monmotonicity
preservation. This method has been already extended to triangular finite
elements grids ty Vijayasundaram {29} and Fezoui {10} and to fully two-

dimensional finite difference meshes by Montagné {16}.



Secondly, for advancing in time, an implicit integrating step is used.

4
Since 'we are mainly interested by obtaining fast convergence to steady

state solutions, the time integration is only an intermediate stage which

should be performed as efficiently as possible.

The resulting scheme is, regarding . the spatial approximation, a finite
element/finite volume second-order scheme without any artificial viscosity

parameter.,

The time integrator is the first-order implicit linearized scheme of

Stoufflet,

This method was specially successful to compute flows with extreme
limits : large Mach number regimes, large angles of attack and very irregular

meshes .. The usual explicit schemes often fail when applied to such cases,

In the first part of the paper we recall the expressions for some nume-

rical fluxes and study the time integration,

The second part deals with the extension of the scheme to two~dimen-

sional unstructured meshes,

Numerical experiments with different meshes and flux functions are

presented.



2, — THE ONE-DIMENSIONAL STUDY

2.1, - The first-order implicit scheme

We consider a one-dimensional system.of conservation laws :
(D W, + F(W) =0
where W and F are m—-component column vectors.

The system (1) can be rewritten as a quasi-linear system :
(2) W+ A W, =0
where A is the Jacobian matrix Fw.

Let us assume that the system (2) is hyperbolic i.e, : for

each (x,t,W) there exists a similarity transformation T such that :
-1
T AT=A

where A is a real diagonal matrix carrying the eigeunvalues of A.

We can write :

>
L}
>
+
>

where : Ai = diag(xi) 3 A max(\,0)

>
n

min(),0).

Moreover, we assume the system (1) to be homogeneous in the

sense ¢

F(W) = A(W).W, 9W ¢ 1R_m



Applied to system (1), a family of 3-~point explicit comservative

schemes is given by :

n+1 n n n _
(3) Wi =W 2 0y " 05y = O
no =Wl W
Oierzz = O Wiy
n n n
= o) , W
Picisz T 0y WY

n .
o = At/ Ax ; W, o= W(nat, iAx) ;
where At and Ax are respectively, the time~step and the space-step.
Given in the form (3), these schemes differ only by their nume-
rical flux function ¢ which we require to be consistent with the physical

flux in the sense ®(W,W) = F(W).

Let us recall some first-order upwind flux functions, which

will be used in the sequel,

Van Leer's Q-scheme [287] :

(4) ®VL(U,V) = {F(U) + F(V) - |A((U+V)/2)| (V-U)} / 2.

Vijayasundaram's scheme [29]

(5) @VS(U,v) = AT((UV) /2)0 + A C(U+V) /2)V.

Steger and Warming's scheme [22]

(6) ®Sw(U,V) = 2t + A (V)V.

Osher’s scheme [18]

0s v
(7 o (U,V) = {F(U) + F(V) - [ [AG)| dw} / 2.
U
In the cases (4), (5) and (6) the function ® may be rewritten :

(8) o(U,V) = Hl(U,V)U + HZ(U,V)V

where H1 and H2 are m x m matrices.



For all these schemes, except Oshér's, the flux function does

not satisfy the following assumption : y
(9) ®(U,V) is differentiable w.r.t. (U,V).

‘Let us assume that (9) is true, then we can construct the

Newton-like linearized implicit version of the scheme (3) :

n+1 n N N

N - N n n n+1 n+1
®i+|/2 q) (wi’ wi+]’ i ’ Wi'i'l)
N - N(wn Wn ‘wn+| Wn+l)
Qi qy2 T O Wy o Wir Mir

@N(U,v,w,z) = o(U,V) + ¢U(U,v)(w-u) + ¢V(U,V)(Z—V)

For At tending to infinity, scheme (9) becomes Newton's method

for finding the stationary solution of scheme (3).

The derivatives of ® may be very expensive to compute, so we

introduce the simplified linearized version of (10) ¢

n+ 1 n S S
(i) L P o(®54172 = Pi-172) = O»
S _ .85, n _n n+1 e+ |
Oy =@ Wy, Wippr Wy o Wiv)s

n n+1 n+1
i* Ti-17 i

S S, n
(D =q)(wi_1’w

)s
@S(U,v,w,z) = HI(U,V)W + HZ(U,V)Z.

The resulting scheme is in fact a modified Newton's method where

the exact Jacobians arising in (10) are replaced by simpler expressions,.

Proposition (1) : Under the assumption (8), schemes (10) and (11) have the

same equivalent system up to the second-order.

Proposition (2) : In the scalar linear case, schemes (10) and (11) are

identical and unconditionally stable.

The proof of the above propositions can be found in [231.



_Remark (1) : We cannot ensure that scheme (11) will become a quadratically
converging method ("quasi-Newton") for At tending to infinity as Newton's
method in the vicinity of the solution, but we may expect a similar effi-
ciencyfor the two schemes for large At if the unknowns do not vary too

much (as it is the case at convergence to steady-state).

Although schemes (4), (5) and (6) do not satisfy the assumption
of differentiable fluxes (9), we propose to apply the linearization method
to get implicit versions of these schemes. The first—order implicit version
in each case given below, except (7), is then obtained by using in (11)

the corresponding numerical flux function .

Such iterative methods considered as modified Newton's method
have been analyzed by Jespersen and Pulliam [13]. They showed by a rigorous
analysis that the use of incorrect Jacobian matrices can lead to a condi-

tional stability.

Nevertheless, the numerical experiments presented below prove

the efficiency of this simple approximate Newton's method,

One step of scheme (11) leads to a linear system of the form :

n+ |

Mm@ W™ = ™)

The matrix M has the suitable properties (diagonaly dominant in
the scalar case) allowing the use of a relaxation procedure to solve the

linear system, see [221],

2.2. - Second-~order extension

2.2.1. - The -second order fluxes

We derive the second-order fluxes from the first-order
ones by following the procedure given by Van Leer [28], with any numerical

flux function given in (3).

Let us recall briefly that the method consists in a
linear interpolation of W over interval Ji-1/2;i+1/20 which will be called

the cell Ci'



The approximation becomes :

W(x) = W, o+ (x—xi) Pi' for x € C;

P. = (W.

-W .
i i+1 i—l) /2% 5

we compute the values of W at the boundary of the cell by :

+ E Ax

Vi =¥ TR T

- Ax
=W, + P =X,

w'14-1/'.’. i Pi 2

Then the fluxes are computed with the values of W at the interfaces of the

cells.
The full second-order accurate version of (3) is then
given by :
(12) WZH - °<'b2+x/2 ) ¢:—1/2‘)= °
°2+1/: N ¢(”2+1/:" ”:+1/2*)
0% 1ya = YL e Vi)

Remark (2] : Scherne (12) is stable for Courant numbers unduty small.

However. explicit versions which are linearly stable
can be build by using a two-step scheme {Hancock-Van Leer (11)Jor a Runge-
Kutta method (Turkel-Van Leer (26]). :

2.2.2. - Implicit step

An efficient way yielding second-order accurate steady-
state solutions while keeping the interesting properties of the first-order
upwind matrix is to replace the right-hand side of (1.

by a second-order accurate spatial approximation as defined in (12).

We can present the resulting algorirthm as a two-phases

gcheme @



A) Physical/explicit/second-order accurate phase

n n n
(13) Sy = o2 = i)

02*1/2 given by (12).

16 -

B) Mathematical/implicit/first-order accurate phase :

Since we want to get the steady-state, we are not

interested in time accuracy, so we choose in the implicit phase of the

scheme a first-order flux which leads to a simpler system to solve than

the second-order one.

Thus this step is the same as the first-order

scheme; it can be rewvritten in a delta formulation

n S S n
(14) Wy + o(¢i+1/2 °bi-1/2) = W,
S S n n n+1 n+ 1
= w A
irr2 S WL W T W)
S S . n n n+ | n+ 1
= . W. ) W

¢S(U,v,w,z) = H,(U,V)(W-U) + HZ(U,V)(Z—V)

n n+ | n
dwi = W.L - Wi

We can choose in (14) any flux function that

rewritten in a Hl - H2 formulation.

We can use a different numerical flux in each phase ;

can be

however, in the first-order case, it is more convenient from the point of

vue of efficiency to use the same flux in both phases.

The following properties are easy to prove

Proposition (3) : In the scalar case, the scheme defined by (13) and (14)

is unconditionally linearly stable.

Proposition (4) : The steady-state solutions are second-order accurate and

do not depend on the time-step used for their computation.

The previous procedure is rather close to that of Van Leer
et al. (25), although they point out in this paper that the splitted fluxes used

in the explicit phase should be continuously differentiable.
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3. - THE 2-D EXTENSION

3.1. = The equations

. We consider -the two-dimensional Euler equations given in a

conservative form :
(n W, * F(W)x + G(W)y =0 : in a bounded domain
t
W= (p,pu,pv,pe) ;

t
F(W) (pu, DU2+Ps puv, (e+p)u)

G(W) t(pV, puv, pv2+p, (e+p)v) ;

[l

p= (Y=D(e = p(ub+v?)/2) ; y = 1.4

where p, p and e are respectively the density, the pressure and the total

energy per unit of mass, u and v are the components of the velocity.

We derive from (1) the quasi-linear system

(2) W+ A(W) W+ B(W) wy =0

K(W) = F, ; B(W) = Gy

The functions F and G are homogeneous i.e. :

F(W)
G(W)

A(WIW
B{(W)W.

1

The system (2) is hyperbolic.

Boundary conditions

For all the test-problems we solve here, the boundary conditions

are the following :
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A) Far field boundary

At "infinity" the flow is assumed to be uniform.

B) Wall boundary .

At this boundary a slip condition is considered i.e. :
> >
Voo = 0
> . . > .
-where V = (u,v) is the velocity and n is the outward normal vector.

3.2, - The space discretization

3.2.1, - The grid : finite element method (F.E.M)
The triangulation used is of a finite element type one.

More precisely,it consists of a subdivision T, of the

h
domain Q by triangles such that :

Q =UK ; Ke Ty, K triangle.

@ or
K nK' = [avertex or ¥K, K' € Ty,
a side
The nodes of the mesh are the vertices of triangles, the degrees of freedom

are the values of the unknowns at the nodes

ai = l node ; 1 = 1, ns
ns = number of nodes,

3.2,2, ~ Variafional formulation : finite volume method (F.V.,M.)

For any vertex a; of Ty s we divide every triangle having
ai'as a vertex, into six sub-triangles delimited by the medians ; then a
control volume C; (cell) is defined as the union of those sub~triangles

having a; as a vertex,
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7 =
"\”///////4///’

\

FIG.1 : Construction of an integration zone C; around a vertex a;

Integrating equations (1) with Green's formula, the

F.V.M, method leads to :

*

(3) _ area (Ci)wt + ];C (F(W)vx + G(W)vy) do =0
i

-
where 3C; is the boundary of C; and v = (vx,vy) is the unit outer normal

vector of aCi.

The numerical integration of (5) is the purpose of

the next section.

For more details about the F.E.M. and F.V.M. methods,

applied to this context we refer to [9].

3.3, ~ First—order fluxes

* *
Let F and G be the approximate flux functions along the cell
boundary 3C; ; we denote by Qij the flux on the cell Ci in direction of j,

neighbor of 1 ; then :

* %
(4) [ (F \)X + G v ) do' = z Q)l.
3, 7 jeNj

where N; is the set of neighbors of the node i.



- 14 -

The computation of ¢ij is done as follows :

(i) The boundary 3C; of cell Cc; is decomposed in bi-segments

G]IG2 where I is the middle of the side  joining vertex i to a neighboring j,

G, and G, are the centroids of the triangles having ij as a common side,

* %* . .
and (F v+ G vy) is taken constant on the bi-segment ;

(ii) The value of Qij is given by :

: (U+v) 1 5, U+ o
(5.1 05 = H-m—= - 5 P|==—{(v-0)
H(U) = nF(U) + n,G(U)

n1=/ vx do ;n2=f vy do
G116, G168y

(5.2) U=W., V=W
Remark (3) : The numerical flux written in (5.1) is the first-order flux

of Vijayasundaram. Other fluxes can be used : it suffices to replace in

(5.1) the functions H and P by the corresponding flux functions.

3.4, = The first-order scheme

The formulation is the same as in the 1-D case.
The algorithm is :

A) Explicit phase

(6) ‘ swh At n

i* area(C;) ¢ij’

@?j is given by (5.1) with U = WS ; v = W%,

=
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B) Implicit phase

: 1 n . 1 S
7 ZE'GWi = area(Ci5 % <I)ij
S _.§, n n _n+tl _n+l
®ij ® (wi, wj, wi ’ wj )

®S(U,v,w,z) = H(U,V)(W-U) + H,(U,V)(2-V)

In all above, just the linearization of the interior upwind
fluxes is considered;forboundaryfluxes (inflow, outflow, wall boundaries)
the same fluxes are applied to get a compatible system of boundary condi-
tions : the same linearization holds,

&®
For wall boundaries, the pressure integral is evaluated in the

explicit phase,
We compute :

/ ®(p".V) do
1)

where @

n
p’ = p(W) and V = (o,vx,vy,o).

[ 2
In the implicit phase we compute

[ op(u™ sw™t! 4o
39

+ . . A
where W' and 6Wn l are evaluated in a such way that the slip conditions :

n n
W =
Wy ve * 3 Vy °
6Wn+1 + 6Wn+l 0
2 x 3 y
are satisfied.
W, and W3 are the two components of the velocity,

The solution of the linear system arising in (7) is achieved

by a Gauss-Seidel relaxation method,
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3.5. - Second-order fluxes

The construction of the second-order fluxes is done in the sameway

as in the one-dimensional case.

The main idea is to introduce in a "compact" or "Hermitian" way,
the gradients of the unknowns functions ; this is done by means of the
Galerkin interpolation,

For the x-derivative it is written :

for each vertex i

/ W dx dy
v (i) = Lsupp®) ¥
X /' ix dy

supp(i) ©

where supp(i) is the support of the basis function related to vertex i i.e, :

the union of the triangles having i as a vertex.

We get then the second-order fluxes by replacing in (5), (5.2)

by :
- ——
n VW ..
U = wi o ij
—r ——p
vV =ul s w . Jji
j 2

W= (i), WH(1)).

3.,6. — The second-order scheme

An efficient way to get the second-order accurate steady-state
solutions is to use a second-order flux in the explicit phase of the scheme

defined by (6) and (7) ; the implicit phase not being changed.

Thus in the discrete context, the implicit phase no longer includes
the full linearization of the explicit flux, so that we cannot hope for as

fast a convergence as in the case of the first-order scheme.

But our purpose is to compare this method with the explicit ver—
sion of the scheme at the same order of accuracy and to show how much

cozputing time is gained when we use the implicit method.



3.7. - Numerical experiments

A) Steady flow in a channel

We choose a test problem proposed at the GAMM workshop held
in 1979 in Stockholm [21],

The bump is a 4.2 7 thick circular arc with length 1, in a
2,073 high channel, Free-stream values correspond to a Mach number of .85,

for which the flow is transonic.

For consistency with the GAMM test, we use a 72X21 triangular

mesh,

The problem is solved with the 2-D extension of the first-order

upwind scheme of Vijayasundaram,

We present in Fig, A and Table 1 the convergence histories

and tables of efficiency.

For other numerical results (iso-values, ...) we refer to

[231.

The results show a very good efficiency with an acceleration
ratio of approximatively 8/1 between the implicit and the explicit version

of the first-order scheme.

B) Steady flow around a NACAOO12

This test problem was also proposed at the GAMM workshop [21],

We present four numerical experiments which differ by the

Mach number M_, the incidence angle 0 and the quality of the mesh.

For the three first experiments, we used a 60x10 O-mesh

(1680 triangles) with the followingconditions. 3

o = 0° (GAMM test problem)

B1) M, = .80 ;

B2) M_= .30 ; o = 20°
B3) M, = .50 ; @ = 30°
B4) Mo = .85 ; O = (°
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The mesh used in B4 is unstructured and irregular ; it has
been obtained, starting from the above mesh by B, Palmerio's self adaptive

program [19 1

c) High speed flow past a blunt body

The Mach number is 8.

The calculation has been performed with the first—order scheme
which uses in the implicit phase Steger's flux and in the explicit phase

the Osher's flux,



A. Steady flow in 2 channel

LEGRLS TOM

Ma - . BS.a = 0°.,

i e @t @ o e G etial)

!
o

10

convergence history

20
iteraciaon

200 number of points

3

csumwe

1007

PO e TS 2 2 ke

g
¢ 1000 38eg
iteration )
- explicit
----- implicit

-build-up of the number of supersanic points
time unity - cpu time of one explicit iterzrion

average
Mechod cou cTL Number of icerations racio
costc
Explicic 5.75 .8 5 100
Implicit 400 ‘03 A0 7.3
table 1

Method.average cpu cost of one iteracion.
number of iterations nesded to reduce the r

Scheme used :  explicit and implicit versions of the first - order Q-scheme
——_——'—-‘—_—_. . - -
50 relaxations swesps on the linear system per time step.

CFL number.
esidual by 107,

with about



B1.Steady flow around a NACAQQ12

— MACH= 0.80 - INCIOENCE~ 0.00 -

iterationa, a.

e e gt

-20 -

1000 2000 3000
T
© -
1
ot
— ”m )
o
e
n
Li
o
— \
<
e v .
S
-t
«©Q -y
{
@« -
i
average
Mechod cIu Crl Number of iteracions racio
cost
Explicic 10 s .7 1000
aum.
Implicic 22 s iter. 75 5.5
table 2
Schemes usead : . Explicit version of the second-order Q-scheme
. Z—phases schemes. Implicic first-order Vijayasuadaram/

Explicic secand-arder Q-scheme.



-2 -
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4, - CONCLUSION

The numerical results show a very clear gain in efficiency for the im-

plicit scheme compared to its explicit version.

With the first-order scheme we have a nearly quadratic convergénce

without the exact computation of the Jacobian.

The second-order version of the method is no longer quadratically zonver-

ging but still very efficient.

The main quality of these implicit schemes is that they are more reliable
than their explicit version. This is clearly shown in the case of unstructured
meshes or in the case of high Mach number regimes‘and large incidences, revea-

ling the greater robustness of the implicit version of the schemes.

We note however that the method is not yet fit for very heavy industrial
use since for instance, we have to store 2-D matrices, but a study of this
problem is in progress. For the numerical study of spafial ansroxinacions,
it 1s particularly attractive because of its modular structure ; we can
change for instance the numerical flux in the explicit phase of the scheme

without any further program changes.
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