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Résumé:

Le but de la segmentation proposée est la détection d'événements acoustiques
significatifs de changements articulatoires.

L'approche repose sur une modélisation statistique du signal et la détection
séquentielle sur le comportement de statistiques de test. Quatre méthodes sont
étudiées et comparées.

Les résultats indépendant du locuteur ont permis de caractériser les frontieres
et de mettre en évidence trois types de segments infraphonémiques:

- les zones stationnaires des phonemes

- les zones transitoires mais homogeénes

- les segments courts correspondants a des événements courts (explosion de
plosives,...).

Abstract:

~ We discuss a statistical approach for the automatic segmentation of the
continuous speech signal. The purpose is to detect acoustic events which reveal
articulatory changes, such as voice or frications onset and termination, closure,
formantic variations, etc...

The main idea is to model the signal by a statistical model and to ‘use test
statistics to detect sequentially abrupt changes in the parameters of this model.
Four segmentation algorithms are presented here and compared. '

The results, obtained by each procedure, are similar: a detection correspond
actually to an acoustic event. The so defined elementary units are infra-phonemic,
they correspond to stationary parts of the phonemes, to homogeneous transitions
during which the formantic variations are monotonous and to short segments,
such as the bursts of unvoiced plosives. '
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A NEW STATISTICAL APPROACH

FOR THE AUTOMATIC SEGMENTATION OF CONTINUOUS SPEECH SIGNALS

Régine ANDRE-OBRECHT

I.R.I.S.A.
Campus de Beaulieu
F-35042 RENNES Cédex
‘tel:99 36 20 00, telex:UNIRISA 950473 F

EDIC numbers: 2.3.2. and 2.5.3.

ABSTRACT,- We discuss a statistical approach for the automatic segmenta-
tion of the continuous speech signal. The purpose is to detect acoustic
events which reveal articulatory changes, such as voice or frication onset

and termination, closure, release, formantic variations, etc.

The main idea is to model the signal by a statistical model and to
use test statistics to detect sequentially abrupt changes in the para-
meters of this model. The four segmentation algorithms presented here
differ in the nature of the model of the acoustic channel (AR, ARMA}, in
the nature of the excitation of the model (the glottal impulses can be
taken into account or not in the model) and in the nature of the test

statistics (generalizéd likelihood, statistics of cumulative sum type).

After a first experiment to tune each procedure to the speech signal,
the performance of each ome is evaluated using a record of ten phoneti-
cally balanced sentences and sequences of numbers pronounced by ten.
speakers (four male, six female). Except for the pulse method which takes
into account the pitch, the learning of the parameters (threshold, window-

size...) is speaker-independent.
The results, obtained by each procedure, are similar : a detection

correspond actually to an acoustic event. The so defined elementary units

are infra-phonemic, they correspond to stationary parts of the phonemes,
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to homogeneous transitions during which the formantic variations are momo-

tonous and to short segments, such as the bursts of unvoiced plosives.

The experiments show the robustness of the segmentation algorithms
which are used, though the speech signal is not stationary. This study is
completed by a comparison between the experimental results and a hand

made segmentation, it shows the accuracy of the change times estimates.




[, INTRODUCTION

These last years significant advances have been achieved in the field
of word recognition, but the continuous speech recognition still raises

many problems.

A too great computation cost and storage make the isolated and
connected word recognition strategies based on a word reference dictionary
unfeasible. A solution lies in the phonetic recognition on the speech

input. Such a system may be divided into several components (Figure 1).

The objective of the first step, called the acoustico-phonetic pro-
cessor, is to accept the speech signal as input and to produce a string
of discrete units. This transformation from continuous to discrete, is
the only one of this type inside the whole system and requires a segmen-—
tation of the continuous speech; but an accurate segmefitation and labeling
of the signal are an extremely complicated and difficult task. The diffi-
culties are to state which type of units is desired, by which methods
the signal will be segmented‘to find these units and how the identification
will be made. These problems are of course interéonnectéd and their good

solution depends on our knowledge about acoustic and articulatory phonetics.

Because of the size of the vocabulary, the basic recognifion units are
smaller than words; they are usually phonetic in nature, such as phones,
diphones, syllables... Several approaches have been proposed, and they

can be classified in the two following categories :

* Segmentation with recognition : the signal is processed by overlapping
blocks. A first method consists in defining a pattern as a finite sequence
of blocks and in identifying it as the realization of a sequence or a
network of known models (template matching [?3]). An other technique is
based on the extraction of acoustic cues and oﬁ hierarchical identifica-
tion of each block [10], and the segmentation is obtained through this
labelling. '




*Sequential segmentation : after a block preprocessing and an extraction

of acoustic cues, each variation of the parameters involves an increment

of a function. The parameters of the current block canbe also comparedwith
those of the first block of the current segment by some distance. When the value of
the segmentation function [13] or of the distance [-15] crosses a threshold, anew
segment is detected.

Our approach differs from the above techniques : no block preprocessing
is made, and the segmentation we propose is strictly defined with statis--
tical signal processing methods, and consists in detecting non stationa-
rities. The main idea is to consider the signal as a string of statiomary
units and to detect by a statistical test changes in the parameters of
the unit model. The signal preprocessing and the statistical segmentation

are jointly performed on line, a decision is taken after every sample.

Such a statistical segmentation without defining a priori the phonetic
nature of the units, is unusual in speech recognition systems : as we
will see, it results in a more reliable representation of each unit and

in a good segmental informationm.

Four processing procedures are presented in Section II. In section III,
experimental results are reported and the comparison of the performance
of the methods leads us to discuss the nature of the units. The conclusion
is devoted to some remarks about the advantages that such a signal pre-

processing may provide inananalytic speech recognition system.

[I. PRESENTATION OF STATISTICAL METHODS OF SEGMENTATIOM

For the four methods of segmentation which will be presented, the
signal is assumed to be described by a string of homogeneous units, each
of which is characterized&by a statistical model. In order to detect the
jumps in the model parameters and thus to detect a boundary between two

‘units, two (three or four) models are estimated at different time locations

in the signal, and their similarity is evaluated by a test statistics.




The segmentation problem is threefold :

s

. the selection of the model structure : autoregressive model, pulse or

noise excitation...
. the choice of a test statistics : likelihood ratio, Kullback's divergence...

. the practical implementation : choice of the identification method,

learning of the parameters...

The presentation of the four methods follows this organization and’

each method will be illustrated on a small example

1.1 - BRANDT'S GENERALIZED LIKELIHOOD RATIO TEST [6,7]

a. The model

Every homogeneous segment of the signal (yn) is assumed to be described

by an autoregressive model of order p, denoted M(A,0), i.e.

Ya= L 3 Ypi* Cn (1)

var (en) =0

. . . . . 2
where (eh) is a zero mean white noilse with variance o .
n

A= (a1,...,ap) and ¢ are the parameters of the model.

b. The test

To detect a jump in the parameters (A,0), two hypotheses are tested

against each other (Figure 2).




HO : the signal (YO""’yN) is described by the model MO(AO,OO).

Hr : there exists a jump time r, such that the signal (yo,...,yr) is

described by the model M )

(A1,01) and the signal (y

1 r+12 009N

by the model MZ(AZ,UZ).
The test statistic is based upon a generalized likelihood ratio (G.L.R) :

If, for k = 0, 1, 2

P 2
= arg min |} (y. = Y a.y_.)
e A new " i=m PO
At = (a1,...,ap)
p
°12< - min = ] S aiyn-i)z
A Iwkl newW, 1=1

where W denotes one of the three windows shown in the figure 2, and |Wk|

its cardinal, the logarithm of the maximum likelihood of each hypothesis is :

. .
LL (Ho) N Log ¢, 5

LL (H1)

- (N-r) Log o, - %

- r Log o

i 2

Then, the ratio of maximum likelihood gives the statistics

DN(r) = - (N-r) Log 0, — r Log o, + N Log ¢

2 1 0

A jump 1is detected if
max DN(r) > D . 3)

0
r

where Do is a fixed threshold, and the instant r of change is estimated

as the argument of the maximum in (3).




Unfortunately, the simultaneous detection-estimation is of high
computational cost. Hence, in practice a simplified version is used

by separating the change detection from the estimation of the instant r.

c. The practical implementation ‘
It is made in two steps :

Step 1 : change detection

The length of the model M, is forced to be a fixed length L, and

2
the statistics

Dn(n-L)
is computed on-line.

A change detection occurs when

Dn(n-L) > D, (é)

Step 2 : change time estimation
When a detection occured, say at time oy, it is reasonable to expect

that the true change time r* satisfies :
n, - L<r, < N

A new G.L.R. decision variable ADn is monitored for n > n, to compare

 the following hypotheses (Figure 3) :

Hé :  there exists a jump at time r (r < n)
H! : there exists a jump at time n~L (recall L is a fixed lag)

The initial conditions are given by :

2}
]

o, - L
n= o,




1f AD < 0, r is unchanged; otherwise, r is updated to n-L, and
the comparison goes on until n = anLu r* is given by the last value
reached by r.

The different models M M, are identified by a growing memory

0> Moo ¥y
ladder method and the model M2 by a sliding block covariance ladder method.

For more details on the implementation, see [2], [6,71.

d. A first experiment
One sentence, pronounced by a male speaker, is used to 'tune the method
(the same signal will be process by each method). The sampling rate of

these signals 1s equal to 12.800 Hz.

Three parameters must be fixed during this first experimental stage :

. the length of the sliding window L
. the order of the model p
. the threshold DO(A).

The length of the sliding window must be chosen long enough to have a
good identification, but not too long to obtain small units as the plosive
burst : this compromise leads us to set L equal to 100 samples, i.e. appro-

ximately 8ms

Several trials are made with an order equal to 10, 12 and 16; but as
the other methods will show, an under-estimation of the model order is a

cause of some omissions, we prefer to keep p equal to 16.

The most important parameter is the threshold D, ; as we can see on -

0
the figure 4, except for abrupt changes between voiced and unvoiced signals,

the statistics (Dn(n-L)) varies slowly when a jump happens. This results

n
in some difficultieg to fix the threshold. To avoid omissions between two

phonemes as |a| and |n|, it is necessary to reduce D, to 70, with the

0
risk of increasing the amount of over-segmentationms.



I1.2 - THE INSTRUMENTAL METHOD [4]

a. The model

Each unit of the signal (yn) is assumed to be modeled by an auto-
regressive model with moving average excitation, described by the

following equations :
p q
y_ - 2 a,y_ . = 2 b. e . (5)

where (en) is a standard white noise.
n -

The vector A = [a1,.. ,a ] is the vector of the AR parameters and
the vector B = [bo,b1,...,b ] is the vector of the MA parameters. Thls
model allows a better approach of the speech production in a nasal-context:
for nasal sounds, zeros (or anti-resonances) appear in the vocal-tract
transfer function. But we consider that all the information relevant to
the segmentation problem is contained in the vector A, and that the MA

parameters can be considered as nuisance parameters for the test.

b. The test

Here we follow a model validation approach. That is to say we assume
a nominal model A = AO is available (which plays the role of a reference
model), and we want to decide whether or not the current part of the

signal (yn) is still in accordance with this nominal vector.

Thus we assume that a sample (y1,...,yn) is given and we will decide

between the two hypotheses :
H,: A=A (no change)

H, : A+# AO (a change happens)
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Following a local asymptotic approach [41, we suppose that under

change, A is of the form AO + GA/Vn’ where 6A is an unknown direction

of change.

Let us consider the following statistics :

1 2 .
U = — y (yk - .2 a, yk—i) Z, (6)
Vn =1 i=1
where
t _
Z, = [yk—q-1"°°’yk—q—pl |

is the so-called instrumental variable.

Then [16], for n large, we have :

-1/2

. U v N(0,I) wunder HO
n

-1/2

. v - HnSAl ~  N(0,I) under H,

where N(0,I) is the standard vector gaussian distribution zn is the co-

variance matrix of Un and H_ is' the p x p Hankel matrix, given by :

rqup+1(n) rq_p+2(n) - rq(n)
Fq-pr2(™
H = .
n
(n) r (n)
\ r (n) PTERAL)
1 n
r (o) =~ Z Veem Ym
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In other words, the detection of a change in the AR vector reduces
to a detection of a change in the mean value of the allmost gaussian

statistics U .
The likelihood ratio yieldsbthe~x2 test statistics

T =u YU oy (7
n n n n .

c. Thevpractical_imp1ementation

‘On a growing block Yy of signal (Figure 5), the AR reference vector
AO fs identified by the Instrumental Variable method [9], which consists

in solving for A the delayed Yule Walker equations :

y ARk Zk(yk -
k‘eYO 1

%o~ g

1 a; i) =‘0 (8)

where A is a forgetting factor.

The statistics Un' (6) 1is then computed on a delayed block Y. But,

instead of (7), we use a simplified version of it, namely :

Un Un
T = (9)
n .
whé:e
P
n = % ) (e ) aiyk-i)z x ] lec
kEY 1=1 kev,
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~d. The first experiment

The first experiments are performed under the same conditions as

for Brandt's method, but the problems are different.

The test statistics exhibits a poor behaviour in the neighbourhood
of the tramsitions between voiced and unvoiced segments. To detect this

event, the ratio of energy between the two blocks Y, and Y1, is computed

0
simultaneously, denote it Rn' Hence forward, a jump is found when one

of the following conditions is satisfied’ :

a. Rn < %— (transition from a voiced segment to
2 an unvoiced one)
b. Rn > Ay (transition from an unvoiced segment to
a voiced omne)
¢ < r <
A1 n 1
Tn > T0

with 1 <A, A, .

When the signal energy varies slowly (condition c¢) ,the statistics
Tn increases abruptly when a spectral changé happens (Figure 6), therefore
the threshold T, may be chosen large enough without risking omissions.

0

The preliminary experiments leads us to fix T equal to 30 and

0
A1, Az respectively to 2 and 3. The shift between the two windows is chosen

equal to 100 to have a good initialisation of the nominal vector A . For

0°
the same reasons as above, the order of the AR vector is great, p = 16,
whereas it is sufficient to take an order of the MA vector equal to 1.

A greater MA order give the same good results.
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Two other experiments have been performed, identifying the AR

vector AO in (8) without the forgetting factor A()A=1).

The block Yo has become sliding and the two windows have been either
overlopping or disconnected (Figure 7). As the results are the same,

only the first version of the implementation is kept.

11.3 - THE DIVERGENCE TEST [3]

a. The model

Again each homogeneous unit of signal (yﬁ) is assumed to be described
. n . . .
by an autoregressive model of order p, denoted by M(A,0), i.e. :

(10)

var (e ) = 02
n

with the same notations as before (1).

b. The test

Let us denote by go(ynlYn-1) and g1(yn!Yn_1) the conditional densi-
ties corresponding to two AR models MO(AO,UO) and M1(A1,01). The test
statistics W, is a distance measure which involves the cross entropy

between these two probability distributions.

The cumulative sum is given by

n . .
wn = Z W (11)
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where :
g, (y|Y* 1 g (v, [¥*71
k-1 1 17k
w, = g (y[Y ) Log ————— dy - Log —————
k 0 k-1 k-1
g Y ) gy [T )

In the AR gaussian case :

eo e1 0'2 eo 2 02
1 kK ko 0 ko _ _ 0
Wk =3 2 (a+ 02 ) -5 (1 -5 )
%4 1 % %
with
. P
i oZ _
®k Yk _Z a1 k-1
1=1
A? = (aJ, ,al) , J = 0,1
3 1 P

Under the hypothesis
HO : M(A,0) = MO(AO, 00),
the statistics (Wn) has a zero drift, and under the hypothesis

H1 : M(A,0) = M1(A1, 01)

the statistcics (Wn) has a negative drift, equal to the opposite of the

Kullback's divergence [14]. The implementation of the test is based on
this behaviour of W),

(12)
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c. The practical implementation

A long time model MO(AO,G ) is sequentlally identified on a growing
window by an approximate least squares algorlthm in lattice form, the
algorithm of Burg [5], and a short time model M1(A1,01) is identified
on a sliding window of fixed length L, by the autocorrelation method

[16]. The two windows are overlapping (Figure 8).

As we indicated above, a spectral jump is detected when the drift
of (W ) becomes negative and so when the statistics crosses a threshold.
In order to reduce the detection delay and to obtain a good estimate of
the change time, Hinkley's cumulative sum test [11] is applied to ctect
this change drift ; it consists in fixing a minimal size of drift 26 > 0

to be detected, and in computing :

g

W = E Gy + 8) (13)

The observation of the deviation of this cumulative sum with respect

to its maximum (Figure 9) gives :

. the detection time n, corresponding to the crossing of -a threshold A
by the quantity

max W -W > A (14)
1$m<n

. the estimated jump time r which is the argument of

max Wm (15)
1¢msny '
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d. A firsf experiment

The length L (Figure 8) required to have a good identification of
the sliding model by the autocorrelation method is 256 (20ms) and the

order p of this model required to avoid omissions is 16.

The first results show that the behavior of the statistics (Wn) is
different for voiced and unvoiced segments (Figure 10). Hence the energy
of the signal is computed and gives coarsely the decision "voiced-unvoiced",

and the statistics (Wn) is updated with :

(Gv, lv) ( 0.2, 40) for voiced segments

(éb, lb) = (0.8, 80) otherwise

Even with these two pairs of drift and threshold, some omissions
may occur. Because of the dissymetry of the test, a soft transition from
a high frequency segment to a low-frequency segmefnt may be missed while
the reverse transition might be detected (Figure 11). Thus if a voiced
segment is judged too long, say longer than Lmin, it is processed
backward with the same statistics. In practice, let us denote by

[yn ,...,ynD] the currently detected segment; if it is voiced and
0

"y T Mo > Lmin
the backward test is fired. Two cases may happen (Figure 12).

1. no jump ic detected and the process goes on from the sample y

2. jump are detected; if 0y is the detection time the nearest to nys

]

the segment‘[yn ,“uo,ynD] is forgotten, the new segment [yn seveyy
0

“Dv
is validated and the process goes on forward again from the sample ynD

]
This resulting procedure will be referred as the forward-backward di-
vergence test.

See a first result on the Figure 13
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I1.4 - THE PULSE METHOD [2]-
As the divergence statistics is sensitive to the glottal pulses (as

can be seen on figure 10).

A new method is examinated to eliminate this influence; it concerns
only the vodiced signals. So a preliminary detection between voiced and

- unvoiced signals is necessary (see the next paragraph).

a. The model

The presence of the glottal impulse is taken into account in the

excitation of the acoustic channel, hence the model M(A,c) is as follows :
p ’ .
y_ = z a,y .+0_ e _ (16)

where (en) is a standard white npoise and the variance o, is periodic,

piecewise constant, with values 02 and 2202 (Figure 14).

We first assume that the values T, 1p and the locations of the pulses

are known.

To derive simple and robust testing and identification procedures,
we proceed as follows : 7
. design a test or identificationm procedure for a given € _
. let € go to zero, and use the resulting limit procedures for the,

implementation.

‘Let P be the whole set of pulse time intervals, the study of the
" maximum likelihood of the observations (y1,,.g,yn) shows that the limit.

result M*{A*, o*) is obtained by minimizing the expression :

P 2
. Fym - izi a; ym-1) 2
L, = Z ' 3 : + (N - 1pitch) Log © “n
m o
mgn
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where :

= ) 1 (m) .1,(x) =11if x €A ; O otherwise.
P J A :

1.
pitch m¢n

b. The test

The same statistics as before, namely the divergence (equation 11-12);

gives the following test after approximation :
2

1 P — ———
w'o= z L |p] 1 > (18)
kgp o}
k¢n

Hence the resulting design methodology follows for the identifica-

tion as well as testing procedures :

When the pulse set P is known, delete the terms corresponding to the
indices belonging to P in the equations and apply the previous teéting

methods (this does not correspond to consider the signal (y_)
n n.¢.P

as the new signa1‘t0 be monitored).

c. The practical implementation

Three tasks have to be performed :

1. identification of the pulse set P
2, identification of the models

3. computation of the test

t.1dentification of the pulse set P : the problem of the locatjons of the
-pulse is also a jump detection problem ; we consider the length 1p of every
pulse as constant, and we detect on line a jump in the variance of the

excitation,
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Assuming that the AR parameters are known, a standard Page-Hinkley

stopping rule gives the classical decision statistics [12] :

)2

(yk - a

II.M o

Lyt Yi-i
P = y 5
ngk$n+1p o]

19

The maxima of (Pn) give the locatioms of the beginning of the pulse

intervals.

To initialize this search, the AR parameters are computed on a short
window with P = § ; then two maxima of (Pn) separated by a minimum length
T . are searched inside a large window of length T (Figure 15). A

min max n
‘estimate of the pitch T is given by difference.

To take into account the fact that the pitch period varies slowly in
practice, the statistics P is then monitored only inside a "search '
window", the position of which is determined from the estimate T and the
last de;ected pulse (Figure 15)f
2.1dentification of the models : The models Mg '(Ag,og) and MT(A:,O:) are
located as in the divergence test (Figure 8). As soon as a mnew pulse and
therefore a new "search window" are located, the growing window model ..and
the sliding window model are updated by sol%ing the equations (16).
3°Cqmputation of the test : A simplified version of the test statistics

is computed with Hinkley's stopping rule, i.e.

wo= L G+ ®) N ¢11))
k&n ’ . : .

lcgp

The identification and testing procedures are monitored in parallél.
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d. A first experiment

Exact least-squares algorithms used for the identification allow to
reduce the length of the sliding window to 150 samples, for a model of

order 16 and a pulse length 1p equal to 8 samples.

The same remarks as for the divergence test hold for the behavior
of this statistics : the drift and the threshold are fixed respectively

to 0.5 and 40 for voiced segments.

Long voiced segments are also processed by a backward procedure which
uses only the divergence test without pulses. This resulting procedure

is named the forward-backward pulse test (Figure 16).

The parameters ?niﬂ Tmax’ clearly depend on the speaker and are the
most difficult to tune :if the choice is poor, the estimate T can be equal
to a multiple of the pitch period and the interest of the method is last.
As we can see on the figure 16, the estimate T is the double of the pitch
period during the first segment of |E| and is good during the second.

If we want to implement this procedure in a speech recognition system,
this problem might be solved by coupling the segmentation procedure to
a pitch detector, a good estimation of T would be found and allowsto tune

T. and T .
min max

ITT. EXPERIMENTAL RESULTS

Three different databases are used to evaluate the four methods. They
consist of three different vocabularies. The first database is generated
by one male speaker and is composed of two lists of ten phonetically
balanced sentences. For the second, sequences of digits are promounced by
ten speakers {four male and six female). The sampling rate of these signals

is equal to 12 800 Hz. The third database whose sampling rate is equal to
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10KHz is composed of "logatomes', words of two.syllables without significa-

tion but extracted from a carrier sentence.

I11.1 - NATURE OF THE OBTAINED UNITS

All the results are compared to a hand-made segmentation which is

performed on the corresponding sonagrams (Figure 17).

The segments which are obtained correspond to homogeneous parts of

the signal, but it is more interesting to define them by characterizing

" the type of the boundaries. A jump time always corresponds to an articula- -

tory or an acoustic change : it can be a voice or fricatiop onset or ter-—
mination, a release, a closure which we call an "event" [11 or a change of
the formantic structure. So most. segments are indeed stationary parts of
phonemes, but sometimes segments can also be either slow transitions during

which the formantic variations are monotonous or short Yevents'.

We can see on the figure 13, the phoneme |i| decomposed into three
units
. the first one is the onset of the new formantic structure of an |i| under
a nasal context, it is a slow tranmsitionm,
. ‘the second one is the stable part of the phoneme
. the third one starts with the begimning of noise and ends with the loss

of the formantic structure (a characterization via "ayents').

An other example is exhibited in the unvoiced plosive lt] on the
figure 17 : '
. the first unit begins with the 1loss of the formantic structure and ends
with the voice termination
. the second one is a silence
. the third one is the burst : frication onset, release and expiration
are gathered in this unit. These events are toc cloge each other to be

distinguished.
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The next paragraph gives indications about the results of each method

in comparison with this notion of acoustic or articulatory changes.

I11.2 - COMPARATIVE STUDY

The four methods give comparable results but each one have ad-

vantages and drawbacks.

The forward-backward pulse test does not exhibit the best perfor-
mances. Even though the locations of the pulses are exact (Figure 18) the
learning of some parameters depends on the speaker (Figure 16); formantic’
changes between two vowelssuch as |yi| or transitionms in a nasal context

e -
such as |3 n‘ are missed.

The instrumental method provides in unvoiced areas over—segmentations
which we cannot explain with our notion of unit. Moreover some boundaries
are not well located. However, the behavior of this test is excellent

in a nasal context (Figure 6 |Zny|).

 The two best procedures are certainly Brandf's tect and the forward-
backward divergence test (Figure & and 13). Each detection correspond to
a real phonetic change, except some ones of Brandt's test which may be con~
sidered as over—segmentations. Of course, all the "events" or formantic
changes we can find by hand are not detected; but these omissions are
rare and not dramatic for an phoremic identification : for example, the
burst of a plosive may form a single segment with an unvoiced fricative
Iksl. A comparison betweeri the results of these twe last methods (Figure 4
and 13) shows that the divergence test has a more regular behavior than
Brandt's test and a change is detected without ambiguity : we can see
during the unit |a| and |i| (Figure 4) some troubles of Branmt's test
statistics. For these reasons and due to its lower compntational cost,
the divergence test appears as the best method to preprocess on line
the speech signal in a recognition system (its computational cost is
mainly due to the parallel processing of the sliding autocorrelation

method and the szquential Burg method).
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Let us emphasize that each of the three last methods is speaker

independent.

IV. CONCLUSION

A new approach has been presented for speech automatic segmentatioh:

and four algorithms based on statistical techniques are compared.

The main conclusion is that the four methods lead to the some kind
of units : these segments are characterized by their boundaries, articula-

tory or acoustic events or formantic changes.

One of the procedures, the forward-backward divergence test, is robust
and precise enought to be chosen as a preprocessing of the speech signal, It
results in a more releable representation of each unit, and in some segmen-—

tal information.

An interesting extension of this approach would be the simultaneous
detection and labelling of the changes in terms of acoustico-phonetic

features : work is in progress towards this goal.




24

Control process (sequential or global)

linguistic
analysis

ti .
acoutico lexical
honetic
P decoder
processor

databases

Figure 1 : An analytic recognition system
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- Figure 4 : Results of Brandt's test (D) on the sentence "annie s'ennuie..."
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Figure 5: Locations of the signal blocks for the

Instrumental method.

Yo
N
74 N. L
,,.__.._,,.., —— . e e —— - ._....._......__..._....__.4
0 N-L

Figure 7: Locations of the models in an experiment

of the Instrumentl Method.
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Figure 15: " Search window" of the next pulse.
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Figure 10 : Different behavio rs of the divergence test

Figure 11 : A forgotten jump between |3] and |m|, because of the
dissymmetry of the test (Wq)

Net™ )

Figure 12 : The forward-backward divergence test

(a) no new jump
(b) a new jump is detected
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Figure 16 : Results of the pulse method forward-backward on the
sequence "25" pronounced by a female speaker
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Figure 17

. Results of the divergence test
the sentence "un loup s'est jeté immédiatement sur la

petite chévre".
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Figure 18 : Behavior of the test (Py) on the strings |iral and |@n|



37

REFERENCES

Y C. ABRY : "Organisation segmentale et temporelle du signal de parole
en fonction de sa production”. Rapport Institut de Phonétique de Grenoble. 1884,

12 'R. ANDRE-OBRECHT : "Segmentation automatique du signal de parate'.
_ These 3eéme cycle. Université de Rennes |. Mai. 1985.

|3| M. BASSEVILLE. A. BENVENISTE : "Sequential Detection of abrupt changes
in spectral characteristics of digital signals". |EEE Trans. on information
Theory. vol.29. n°5 : 703-723. September 1883.

[H| M. BASSEVILLE. A. BENVENISTE, G. MOUSTAKIDES : *Detection and
diagnosis of abrupt changes in modal characteristics of non stationary digital
signals". To appear in |EEE Trans. on Information Theory. May, 1886.

|5| A. BENVENISTE : "Algorithmes simples d'estimation en treillis pour les
séries longues”. Outils et modéles mathématiques pour I'automatique. l'ana-
lyse des systémes et le traitement de signal. vol.2. Editions du CNRS. 1882.

|6| A. VON BRANDT : "Detecting and estimating parameters jumps using ladder
algorithms and likelihood ratio test". ICASSP Boston, 1983.

|7| A.V. BRANDT : "Modellierung von signalen mit sprunghaft veranderlichem
leistungsspektrum durch adaptative segmentierung"”. Dissertation.
Minchen, 1884,

|B| R.J. FONTANA, R.M. GRAY, J.C. KREFFER: "A symptotically mean
stationary chunnels”. IEEE Trans. on information Theory. vol.lT 27, n°3,
May, 1981.

|9| B. FRIEDLANDER : "The over determinated recursive instrumental variable

method". IEEE Trans. on Autom:atic control, vol.29. n°4, April. 1884.

|10] J.P. HATON, M. LAZREK : "Segmentation et identification des phonémes |
dans un systéme de reconnaissance automatigue de |la parole continue". tieme
congrés AFCET "Reconnaissance des formes et intelligence artificielle.
January, 1984, Paris.

|H| O.V. HINKLEY : “inference about the change point from cumulative sum
tests". Biometrika, vol.58, n°3: 509-523. 1971.




12|

13|
4]
|15)
16|
7]

|'8|

38

R.H. JONES. D.H. CROWELL. L.E. KAPUNIAI : "Change detection model
for serially correlated multivariate data". Biometrics. vol.26, n°2: 269-280,
June 1970.

O.H. KLATT : "Scriber and lafs : two new approaches to speech analysis".
Trends in speech recogntion, Wayne A. Lea, Prentice Hall.

S. KULLBACK, A. LEIBLER : "On information and sufficiency". A.M.5..
vol.22: 73-86, 1951.

B. LOWERRE : "The harpy speech understanding system". Trends in speech
recognition, Wayne A. Lea, Prentice Hall.

J.0. MARKEL. A.H. GRAY : "Linear prediction of speech". Springer-Verlag.
N.Y.. 197B. :

G. MOUSTAKIDES, A. BENVENISTE : "Detecting changes in the AR parameters
of a non stationary ARMA processes". To appear in Stochastics.

N. VIGOUROUX : "Décodage acoustique phonétique de la parole continue
muiltilocuteur : élaboration d'une base de connaissance". Thése de 3éme cycle.
Toulouse., Janvier 1984,

Imprimé en France

par
P Institut National de Recherche en Informatique et en Automatique






