N

N

A survey on attibute grammars.Part II review of
existing systems

Pierre Deransart, Martin Jourdan, Bernard Lorho

» To cite this version:

Pierre Deransart, Martin Jourdan, Bernard Lorho. A survey on attibute grammars.Part II review of
existing systems. [Research Report] RR-0510, INRIA. 1986. inria-00076044

HAL 1d: inria-00076044
https://inria.hal.science/inria-00076044
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076044
https://hal.archives-ouvertes.fr

Rapports de Recherche

A SURVEY ON
ATTRIBUTE GRAMMARS

PART I
REVIEW OF EXISTING SYSTEMS

Pierre DERANSART
Martin JOURDAN
Bernard LORHO

Mars 1986

A SURVEY ON ATTRIBUTE GRAMMARS
PART II
‘REVIEW OF EXISTING SYSTEMS

Pierre DERANSART, Martin JOURDAN, Bernard LORHO(*)
INRIA-ROCQUENCOURT
BP 105
78153 LE CHESNAY Cedex
FRANCE

(*)

Also at : Université d'Orléans, Laboratoire d'Informatique,
45046 ORLEANS Ceédex, FRANCE

M D PAPIER RECUPERE ET RECYCLE

Abstract : This review is the second part of a Survey on Attribute

Grammars consisting of three parts :
- Main Results on Attribute Grammars
- Review of Existing Systems
- Classified Bibliography

Keywords : Attribute Grammars, Evaluation, Semantics, Systems

Résumé : Cette revue est la seconde partie d'une Etude sur les

Grammaires Attribuées qui en comporte trois :
- Principaux Résultats sur les Grammaires Attribuées
- Revue des Systémes Existants
- Bibliographie Classée.
Mots-Clés : Grammaires Attribuées, Evaluation, Sémantique, Systémes.

Preliminary Notice : all the references quoted in this paper are listed in
the third part of the whole survey, the Classified

Bibliography.

INTRODUCTION
APARSE

ATHEN'S SYSTEM
Cis

COPS and COPS-2
CWS

DELFT'S SYSTEM
DELTA

ELMA

FNC/ERN

FOLDS

GAG

HLP78

HLP/SZ

LILA

LINGUA
LINGUIST-86
MUGI

MUG2

NEATS

PARSLEY

SAGET

SSAGS

SUPER
SYNTHESIZER GENERATOR
TALLINN'S SYSTEM
TOKYO'S SYSTEM
VATS

YACC

OTHER SYSTEMS
CONCLUSION

CONTENTS

01
04
07
10
14
19
24
27
33
36
u4
48
54
59
62
66
70
75
79
88
93
96
99
103
106
113
117
123
129
133
137

- 0l -

INTRODUCTION

1) Aims of this review

Attribute Grammars (AGs) have proved to be a pleasant and
efficient tool to describe syntax-directed computations, in particular
compilers and translators (see the Classified Bibliography, sections
"applications" and "languages"). However a specificatién with no
corresponding implementation is rather useless. Much work has thus been
done to supply programs (attributes evaluators) which could execute the
computations described by AGs.

The theoretical part of this work is presented in the first part of
this survey (Main Results on Attribute Grammars). In this second part we
present the practical part of this work, i.e. the existing AG systems.

We intended to give as much practical information as possible, e.g.
the size and speed of the generated -evaluators, the implementation
language, etc. Sometimes this kind of information was not available. We

hope that the reader will not hold us reponsible for this situation.

The information we present here was gathered mostly from public
communications (reports, conferences, etc..). We also sent a questionnaire to
the authors of a number of systems ; most of them have answered, bringing

interesting information.

We want this survey to be used as a catalogue of products by
people who intend to use AGs (e.g. compiler writers), but we included
as few specific comparisons between systems as possible. A general

classification appears in the conclusion of this paper.

The information gathering for this paper spreaded over nearly two
years ; it is thus possible that some information is not quite up-to-date.

- 02 -

2) What is in this paper

This paper is composed of the description of more than 20 systems

"which can be considered as attributes evaluators, plus a couple of others

which are more loosely related to AGs. For the formers, each chapter is

divided into the following parts :

a header, indicating the name of the system, the head(s) of the

project, and the address where one can get more information ;

the list of the members of the project ; we apologize in advance

to those we have forgotten ;
the birthdate and deadline of the project ;

the general features of the system ; since a very large majority
of them are oriented towards compiler construction, the selected
features are the lexical and syntactic analysis, the evaluation
method, the class of AGs accepted by the system, the language
used to describe AGs and the special features provided for code
generation ; ' ‘

a more or less detailed schema of the internal organization of
system, together with its implementation language and the

machine(s) on which it runs ;

the general comments : this part, which is generally the biggest,
presents all the specific information about the system ; it has no

really fixed organization ;

- 03 -

the optimizations implemented in the system ;

the applications and performances (when available) of the system ;

the future projects;
- and the references.

The systems are classified in alphabetical order.

- 04 ~

APARSE
Donn R. MILTON, Bruce R. ROWLAND
Bell Laboratories
Naperville, IL 60540
(U.S8.A.)

1) Members of the project

D.R. MILTON , L.W. KIRCHKOFF, B.R. ROWLAND, T.P. BLUMER (im-
plementation), C.N. FISCHER (adviser).

2) Birthdate : 1977. Deadline : ?

3) General Features

Lexical Analysis: unspecified (LEX ?)

Syntactic Analysis: ALL (1) (attributed LL) with error
recovery. }

Attributes Evaluation: '~ during parsing.

AG Class: : ALL (1)

AG Language: based on C.

Code Generation: no special feature provided.

4) Schema

APARSE is written in C, generates compilers written in C and

‘"runs on UNIX.

Grammar

Attribute parser
Grammar Preprocessor proto.type

\

N\ “compiler

L | _ N\
parser error ' -
generator corrector

N/
tables /

compactor

5) General Comments

APARSE uses the strong ALL (l) parsing and attributes eva-
luation algorithm devised in [Mil 77] and [Row 77]. Parsing is
performed in a top-down predictive manner, and attributes are eva-
luated during parsing in a single'left-to-right pass. The parse
tree is not.constructed, instead an attributes stack is maintained
in parallel with the parsing stack.

Already evaluated attributes can inflpence parsing by means
of disambiguating predicates. The system checks that such predicates
aresupplied for each LL(!) conflict, but cannot check (for obvious
reasons) that the set of predicates for each conflict is complete
(i.e, at least one of the predicates will always be true) and non-

ambiguous (i.e,only one of the predicates will ever be verified).

The class of ALT.(I) grammars is much larger than the LL(1)
class. In addition, ALL(1) processing enables some of the synta-
c;icsmxitmatkms, (e.g. the priority of arithmetic operations) to

be handled via attributes, which allows smaller AGs.

- 06 ~

Moreover, ALL(!) grammars can be ambiguous (at the purely syntactic
level). .

The error—corrector used in APARSE is based on an insertion-only
method; howevervattributes values do not influence this correction,
except that the grammar specificdfion supplies the values of the
attributes of a terminal whenever it is inserted; this allows to
"tune " somewhat the correction.

Productions and semantic .rules are written in an input language
very close to the one of YACC, from which many ideas are ‘borrowed.
The body of the semantic rules and the disambiguation predicates

are written in C.Default rules are used for simple productions.,

6) Optimizations

None required.

7) Applications

¥ An extermnal symbol definition preprocessor for C.

* an infix notation desk calculator.

* a syntax aﬁalyzer and type checker for CHILL.

* other experimental applications. J

We have no information about the size and performance of the

system and the generated compilers.
8) Projects

Unknown
9) References

Mil 77, Row 77, MLR 79.

- 07 -

~ George K. PAPAKONSTANTINOU

Athen's system

Computer Center
Greek Atomic Energy Commission
Aghia Paraskevi Attikis
ATHENS
(GREECE)

1) Members of the project

George K. PAPAKONSTANTINOU

; 2) Birthdate : ? Deadline : ?

3) General Features

Lexical Analysis
Syntactic Analysis
Attributes Evaluation
AG Class

AG Language

Code Generation

: unspecified (hand-written ?)

: top-down non-deterministic parser

: in parallel with parsing
: 1L-AGs
: not specified

: no special feature provided

- 08 -

4) Schema

This system is written in FORTRAN and runs on any computer with 3
FORTRAN compiler; the author used an INTEL 8080-based microcomputer.

BNF rules

Attribute |
parser) .
Grammar [FORTKMﬂ interpreter
' | [ForTRAN]
! 4 -
Semantic EVAL , .
Rules /" ~° 777 procedure 1
(hand [FORTRAN] results }
t lation) :
ransla) . N~

5) General Comments

The heart of this system is a top-dewn non-deterministic parser which
interprets the BNF rules and which is able to bhacktrazk to the next alternative of
the current production. The usage of such an interprete: allows the grammar writer
to express his specifications more conveniently; he may even write ambiguous
grammars. However, as opposed to Earley's parser, this sysiem will not construct all
the possible derivation trees.

Attributes are evaluated in parallel with parsing. In consequence they must be
evaluable in a single left to right pass. The grammar writer is responsible of writing
_the FORTRAN subroutire EVAL(G, I, J, M), where I denotes the rule, J the
alternative of the rule, M the serial number of the current non-terminal in the rule,
and G is a pointer to the location of the LHS non-términal in the stack. You can
derive from G the locations of the other non-terminals in the stack. These locations

ran ha sicad +a
N AN LS~ AW S e\

H ndex

index the attributes stacks, in order tc evaluate the attributes

values. The construction of this EVAL subroutine from the AG can be performed in

a mechanical way, e.g. by a preprocessor; however the system does not include such

4) Schema _ i

CIS runs on VAX/VMS v
Source text

) CIS Ipput |
cC1ISs i Y . s
ttribuu:grammar } f‘ Scanner
. ' . f €ETOT

|
—
!
E |
..... \‘“*,,gf’ . Compiler : : l parser hand-
. | - 1.
! tree ling
! | : constructiom
) ‘ Generator
m———— ~\'\ -
el T : j [Pascall

- Parsing C ictgt—3 -
/ g Conflicts é’[PascaL]
i . : }
. Resolution Data 147 ‘ '
. . . -]
File (optional) /// . —_
| . N ‘ ‘ e Parse tree

/CIS KerneI\\\\“_— .
Routines c@NFIGURE
i t
[Pascal] / | : Evaluator
- _ Program]
' | [Pascall .
[Pascall ! bl o { f
- T T + i i
" User-Supplied : ,
// Pascal : |)
Y Routines /’} | - m L.-\.m \
3 . . : Semantic
(Semantic Functions, 7 ! compiler § I)
\ Scanner, etc.)/////) ‘\\X%}?e”
I
\\\\Eiiiif] " generation evalution

. i .
time time

- 12 -

5) General Comments

a) about lexical and syntactic analysis : the scanner must be

written by hand in Pascal ; the CIS Compiler Generator supplies Pascal "include"
files for the interface with the parser. The latter is an SLR(!) parser with an
error recovery scheme based on the method by Pennello and de Remer ; new

"error states'" must be added, which increases the size of the parser, but this

addition is automatic.

b) about attributes evaluation : the input AG is rather an "attribu-

te scheme', with no "interpretation". The implementation of the attributes domain
types and semantic routines must be written in Pascal and supplied separately.
All Pascal consistency checks (type checking, etc) are performed by the Pascal
compiler in module CONFIGURE. However the CIS Compiler Generator performs static

type checking on the input AG. Non-normal AGs ate accepted.

The goal of the attributes evaluator is to compute the "semantic
value" of the source text, i.e. the list of the values of the (synthesized)
attributes of the root of the parse tree (start symbol}). This is done by (vir-
tually) performing a depth—first lazy traversal of the compound dependency graph,
interleaved with attributes evaluation : this eliminates automatically static
dead ends (i.e. attrihutes instances not connected to the "root" of the depen-
dency graph, and thus not contrlbutlng to the computatlon of the semantic walue).

The evaluation method is descendent.

Circularities are checked dynamically by marking each node in the graph
as it is visited (a node corresponds to an attribute instance). When an attribute
value is computed, it is stored in the tree and the subgraph issued from the cor-

responding node is (virtually) deleted to avoid reevaluation.

The compound dependency graph is not constructed. Rather the
traversal uses the full parse tree and the dependency graphs of each production.

The semantic rules are precompiled in an intermediate code.

As a special case, a (part of a) semantic rule can be a conditional

of the form :

- 09 -

a preprocessor. The parser will call the EVAL subroutine at the right moments to

perform attributes evaluation.

Already computed attributes values- can influence the syntactic analysis by
means of a variable called FLAG, common to the parser and the EVAL routine.
‘After each call to EVAL, the parser will check the value of this variable, and if it
is set to zero, the parser will backtrack to the next alternative of the current

production. Of course FLAG is set to non-zero before each call to EVAL.

6) Optimizations
None

7) Applications and performances

The system has been used in problems of sYntactic wave forms analysis.
The interpreter, not including the EVAL subroutine, consists of a few hundred
FORTRAN statements and is thus simple and portable. On the 8080 microcomputer

used by the author, it is stored in about 5 kbytes of ROM,

We have no information on the performances of the system, but using an:

interpreted as the parser cannot lead to tremendous performance.
8) Projects

Unknown.
9) References

On this system : Pap 8l
On an earlier and very different system : Pap 79

- 10 ~

CIS
Compiler Implementation System
Jean H. GALLIER

Dept of Computer and Information Sciences
Moore School of Electrical Engineering D2

University of Pennsylvania

PHILADELPHIA., PA 19104
(U.S.4)

1) Members of the project

Jean H. GALLIER (head, theoretical issues, attributes evaluation,
incremental analysis), Fahimeh JALILI (now departed) (attributes
evaluation, incremental analysis), John M. Mc ENERNEY Jr. (first

implementation), John A. BIRCSAK (second implementation).
2) Birthdate : 06/1983, Deadline : none

3) General Features

Lexical analysis : hand-written

Syntactic analysis : SLR(1) with error recovery

Attributes evaluation: recursive evaluation by need

AG class ; unrestricted (circularities aredetected at
evaluation time)

AG language : resembles ALADIN (see GAG), AG "scheme" with
"interpretation' supplied separately

Code generation : no special feature provided

PRés=104

- 13 -

COND (predicate, truepart, falsepart)

In this case, at evaluation time, and according to the (dynamic) value of
"predicate",only one of "truepart' or "falsepart" is evaluated, along with
"the attributes instances it references : thus dynamic dead ends are also -

eliminated.

6) Optimizations

Storage maﬁagement uses a dynamic allocation techmique.
7) Applications

* Toy languages

* A subset of Pascal

* The CIS Compiler Generator is not bootstrapped, but references

[Gal83] and [Bir84] contain an AG in CIS input format describing the semantic

K

rules and their translation into intermediate code.
8)'Projects
* Incremental compiler : an incremental parser is already available,
3
and the theory for an incremental attributes evaluator derived formthe one of
CIS is already developped [JG83].

9) References

Jal82, 83, JG83, Gal83, McE83, Bir84.

- 14 -

COPS and COPS 2
COmpiler Producing System
Jan BOROWIEC
Institute of Mathematical Machines MERA
Ul. Krzywickiego 34
02-078 WARSZAWA (Poland)

1) Members of the Project

Jan BOROWIEC (head) ‘
R. KRZEMIEN, J. WITASZEK (lexical and syntactic analysis),
K. PIASECKI, D, KUPIECKI (Semantics)

T. PAP@RZYCK’I, M. KRISZWISKI, J. WINIEWSKI.

2) Birthyear : 1974; Deadline : unspecified.

"~ 3) General Methods

Lexical Analysis : left linear grammars (BNF form)
Syntactic Analysis : LR(k) (no error recovery)
Attributes Evaluation ¢ semantic rules (written in the

metalanguage SEM) are structured in passes
and processes. In each pass, processes are
activated when necessary to compute the

relevant attributes.

AG Class : non-circular
AG Language : LEX, SYN, SEM, PRA
Code Generation ¢t "pragmatics" is written in the metalanguage

PRA and .specifies the last traversal of

the decorated tree. Similar to code templates.

4) Schema

COPS is written'in PL/1 (4200
in PL/1. It rums on IBM 370.

e ——

BN

- 15 -

lines) and generates

—
f///syntax and

lexicon

' LEX - constructor

.. [SYN, LEX]

sequential machine

compilers written

scanner

~

tables

LR(k) - parser

cut —down

syntax

SYN ~ constructor

LR (k) tables - -.

-

p
Semantics

/
(‘ [SEM] T
\\\\\v o N i-‘,.”m_“

SEM = constructor

pragmatics

L_ PRA - constructor

|

i

' ! derivation
' tree
'
B | i
_attributes | e Ny
i .
. declarations '. semantic
; i
| and T analyzer :
semantic T '
actions | .
decorated
! derivation
. . ‘ tree
| pragmatic ,J_» " .
: - + code generator !
- actions ,ﬂmw_ '
f
f !
: L.
////ﬂ- RN
i N,
' K?bject code
, e
generation: evaluation

time ;

time

- 16 -

5) General Comments

a) about the metalanguages

The SYN metalanguage is used to describe the syntax and lexicon
of the source language, in a BNF-like form. The lexical part is thus a
subset of the whole grammar, and must be written as a left-linear
grammar. Special directives are used to define comment delimiters,
separators, cross-references tables entries, generic terminals,etc. Each
production alternative (either in the lexical part or the syntactic part) is
named by an identifier, which will be referenced in the semantic and
pragmatic part. .

The semantic rules are written in the metalanguage SEM. The
data types of SEM are roughly those of PL/l. Three kinds of attributes
are defined in the system :

- local attributes are classical attributes, i.e. attached to a node
throughout the whole evaluation process;

- global attributes, which are not attached to any node

- temporary attributes, which are attached to a node only during
a given evaluation pass.

. The direction (inherited or synthesized) of attributes is no}
demanded; it is not used by the SEM-constructor. Three attributes ar:e
defined by the system and attached to generi¢ terminals.

SEM provides three simple _'étatements (assignment, message, and
empty) and three structured.:' statements (conditional, loop,
and selection). (Error) messages are defined separately.

Semantic actions are structured, from coarser to finer, into
passes, semantic rules, and processes. Passes will be performed one after

the other to decorate the tree; temporary attributes are attached to
passes, and vanish after the cori'esponding pass ends. A semantic rule is
a set of processes attached to a given production. A process is an
atomic evaluation action, but it can define several attributes at a time;
temporary attributes retain their values only in a particular execution of
a process.

L= 17 -

Code 'generation ("pragmatics") is described in the metalanguage
PRA. A pragmatic rule is attached to a production, and is a list of units
which may be of three kinds :

- output some text or value,

- evaluate some (global) attribute,

- and visit a son.
.These units can be embedded in compound statements as in SEM.

These metalanguages are completed by a macrolanguage and its

macrogenerator,

b) about the evaluation strategy

The evaluation method used in COPS is similar to the one devised
by Fang [Fan72] and used in FOLDS (q.v.) except that the attribute

grammar is split into passes. No circularity test is performed.
c) COPS 2

We have only fragmentary information about COPS2 [KKWSZ].'
The basic improvement is an enhanced modularization of the generated
compiler. After the construction of original (abstract) syntax tree; performed
by the scanner and ‘parser, and during which some attributes can be
computed in a bottom-up manﬁer, several successive phéses can occur. Each
phasé is composed of a semantic analyzer (an attribute evaluator using
Kastens' OAG method), of optionnally: an optimizer, and of a transformer.
The output of the transformer is a partially- decorated abstract tree to be

input to the next phase, or, for;the last phase, linear object code.

6) Optimizations

None, as far as we know. The authors find that PL/l is a large

memory consumer,

- 18 -

7) Applications

COPS : 10 to 15 small languges, ASPLE, a subset of COBOL, MODULA
enhanced with real numbers.

COPS2 : a compiler of a subset of COBOL to MERA 400 assembly
language (6500 lines of description), a compiler of MODULA (+
reals) to INTEL 8080/808§ assembly language (8300 lines).

- 8) Projects

Unknown.’
9) References

Bor76, Bor77, Bor78, KKWS82.

- 19 -

CWS1 and CWS2
Compiler Writing Systems
‘Gregor V. BOCHMANN
Département d’Informai; ique
Uni#ersité de Montréal
Case Postale 6128
MONTREAL 101
(CANADA)

1) Members of the project

G.V. BOCHMANN, 0. LECARME, P. WARD, M. LOUIS-SEIZE, D. GURTNER, and others,

2) Birthdate : 1972 Deadline : 1977

“3) General Features

Lexical Analysis : . fixed, sightly parametrizable scaﬁher
Syntactié Analysis : CWS1 : weak precedence (bottom-up)
CWS2 : LL(1l) with regular'expressions
(top-down)- '
Attributes Evaluation : during parsing’
AG Class CWSl : purely synthesized
CWS2 : ¥L - AGs
AG language based on Pascal -

Code Generation no special feature provided.

- 20 ~

4) Schemas

Both systems are written in Pascal, produice compilers written in Pascal

and run on CDC Cyber 74 and Xerox Sygma family.

scanner
skeleton

scanner
Attribute Grammar terminal
generator
Grammar transformer A vacabulary
|
scanner

parser
generator

syntactic
tables

semantic
actions

error handling
generator

error handling
procedure

test programs)

: analysis

compiler
[Pascal]

\

test programs
generator

_J/

compiler generator

/

Additional
declarations

\

generation time evaluation time

e R R AR N W E [y pu R W

- 21 -

scanner
skeleton

Grammar
Transformer and
Parser generator

Attribute
Grammar

Y

terminal
vocabulary,

scanner

dictionary generator

recursive descent scanner

parser

A .
compiler
~=%» generator

semantic attributes
and semantic actions

Additional
\Declarations

generation time evaluation time

5) General Comments

a) about the metalanguage

The two systems accept, in addition to "normal" semantic rules involving
attributes occurrences, the specification of semantic actions to be executed:upon
reduction of each production. Semantic rules and semantic actions are embedded in the
RHS of the productions themselves, as for YACC. It is possible to define local attri-
butes, i.e. variables local to a production. The semantic rules language is based on
Pascal, and semantic actions are written in Pascal. The AG, called here the "integrated
descriﬁtion", is completgd by additional declarations of types, variables, procedures,

..., written in Pascal.
b) about CWS 1

The main module of the generated compilers is the parser. Semantic routines
are called upon each reduction to perform attributes evaluation and semantic actions.

Attributes values are maintained on a stack. The test program generator constructs a

- 22 -

set of syntactically correct programs involving every production.
c) about CWS2

The generated compiler is a recursive descent one : a procedure is associa-
ted to each non—gérminal, with value parameters for inherited attributes and variable
parameteré for synthesized ones. Attributes evaluation and semantic actions are inser-
ted in the body of those procedures at appropriate places. Local attributes are imple-

mented as local variables of these procedures.

The syntactic part in written in extended BNF, allowing regular expressions
in the RHS. This permits to overcome the impossibility to write léft-recursive produc-
tions in LL(1) grammars. The addition of attributes to extended BNF grammars is dis-

cussed in [Boc 75 a] . CWS 2 also provides for attributes—influenced parsing.

d) other remarks

Portability and usability (user-friendliness, efficiency; etc..) of the

systems were the main design goals.

To generate the scanner, the grammar writer pPicks the relevant tokens among

a fixed list. (identifiers, numbers, strings, etc.) and sets a number of options.

6) Optimizations

None required.

7) Applications

Teaching.

b1
-~ 4 -

8) Projects

None : the team has disintegrated.

9) References
CWS 1 : LB 74a, LB 74b, Lec 75, Lec 77, BL 73.

CWS 2 BW 75, BW 78

- 24 -

lft's System
J. VAN KATWIJK
Delft University of Iéchnology
ept. of Mathematics and Informatics
132 Julianalaan

DELFT

(The Netherlands)

1) Members of the project
J. VAN KATWIJK and perhaps others.

2) Birthdate : ? Deadline : ?

3 General Features

Lexical Analysis :
Syntactic Analysis :

Attributes Evaluation :
AG Class :

AG Language :

Code Generation :

4) Schema

unknown - (LEX?)

LALR(1) with disambiguating rules
and precedence rules (YACC).

during parsing
1 L-AGS
based on C and YACC input language

no special feature provided.

Delft's system ig wtitten in C and runs on UNIX

Delft

Attribute

Grammar preprocessor

YACC +
C Compiler

- 25 =

5) ‘General comments

The Delft system has limited ambitiions : its goal is to augment the power
of YACC with a capability to deal with simple forms of attributes.

In fact, attributes are considered as parameters of’non—terﬁinals~
<nherited attributes being input parameters, and synthesized ones output para-
meters -, and no output parameter can depend (in the outside context) on an I
input'parameter. That is, the AG must be evaluable in one left—to—right pass'
(1L-AC). '

The basic ideas and the notations used in the system are much closer to
affix grammars [Kos 71] or extended AGs [WH77, WH79, WM83] than to "normal” AGs.
The evaluation stuategy is derived from EWat74].

The pérse tree is not constructed ; rather an attribute stack is maintai-
ned in parallel with the parsing stack. Before recognizing a non-terminal, all
its inherited attributes must be available on top of stack ; after the recogni-
tion of that non-terminal, those inherited attributes must be topped by its
synthesized attributes. The order of attributes in a reference to a non-terminal
is important since it is also the order in which those attributes (identifiers)
are placed on the stack., To achieve this, it is possible that one has tofinsert

an attribute mover, i.e. a new non-terminal deriving the empty string the only

purpose of which is to provide an action hook to move attributes values around
on the top of the stack. Those attribute movers are generated automatically by

the system, but.it is possible that the new grammar be not LALR(1) any more.

The input language is a mixture of affix grammars, YACC metalamguage and

C. The semantics rules are written in C.

The system is to be used as a preprocessor for YACC and is about 3000 lines

.of C long. It is available from the University of Delft.

- 26 -

-6) Optimizations

None required.

7) Applications

A compiler (front-end?) for ALGOL60 and an other for a subset of Ada.

We have no information about the performance of the system and the gene-

rated compilers.

8) Projects

Unknown .

9) References.

Vak 83.

- 27 -

DELTA
ngihition des Langages et de
leurs Traducteurs par Attributs
Bernard LORHO ‘
Institut National de Recherche
en Informatique et en Autamatique
BP 105
78153 LE CHESNAY Cédex
 (FRANCE)

1) Members of the project

Bernard LORHO, F. BLAIZOT, L. BLAIZOT, P. BOUCHENEZ (attributes
processing), Pierre BOULLIER (lexical and syntactic analysis).

2) Birthdate : 1972 Deadline : 1976

3) General Features

Lexical Analysis - : regular expressions withiuser-defined predicates
" and actions, and error recovery.
Syntactie Analysis : SLR(k), LALR(1), LR(1) with error recovery
Attributes Evaluation : construction ‘and descendent evaluation_of
the compound dependency graph
AG Class non-circular
AG Language ’ any

Code Generation - no special feature provided

' 4) Schema

- 28 -

DELTA is written in PL/1 and runs on Multics.

Lexical
Description

“Attribute
Grammar

l source text
| .

A

: |
Lexical ‘ @ ! scanner
Constructor '
-SYNTAX [PL/1] - parser
Syntactic / T PO

Constructor i 3 - graph

“"'|_constructor

- Semantic | Compound
Constructor dependency
[PL/1] ' graph
‘ .
' | tables v ‘;L
@ Topological
7 sort

v

non-circularity
tests [Program
(pL/1] | [any]

‘ I execution

ey

generation [evaluation time

- 29 -

5) General Comments

" The system used for the lexical and syntactic parts is
SYNTAX". See the chapter devoted to the FNC/ERN system for a description
of SYNTAX.

Semantic rules can be written in any language, and DELTA will
produce, for each source text, an evaluation program written in that langua-
ge. Each semantic rule is a statement in that language specifying what to do
‘with the different attrlbutes _instances (considered as variables) : they may
be a551gned passed as parameters to subprograms, etc. The descriptiom of an

AG is composed of :

- a (maybe empty) header; this header is divided in three parts
which will be inserted in the produced program, respectively at the beginning,

between the declarations and the start of the program, and at the end ;

— The list of attributes declaration ; each attribute is declared
with its kind (see further), the list of non-terminals to which it is attached,

and maybe its type (in the sense of the semantic rules language) ;

- the list of syntactic productions and associated semantic rules ;
- : " : . F :
- a (maybe empty) list of "key terminals" to be used in error reco-
very. ' ’
DELTA predefines a number of lexical attributes, the values of which

is set at parsing time.

DELTA provides facilities to ease the writing of an AG : a large num-—
ber (more than 60% in practical AGs) of semantic rules (copy rules) need not be
written because the system uses a set of default rules to generate them. DELTA

recognizes four attribute "kinds".:

-~ synthesized ;

" - ipherited ;

i 2 e 1me S S P S ok S 2 o e, T R S e S g S S G - % S am e

(*) trademark of INRIA

- 30 -

- global : like an inherited but intended to be carried unchanged

over a whole subtree ;

- compound : a pair of a synthesized and an inherited attributes
with the same name, attached to the same non-terminals and intented to cir-

culate from left to right on list-like productions.

DELTA also accepts synchronizing attributes, which merely add new
'dependenc1es to a semantic rule, and empty semantic rules for attributes ocecur-
rences which will never be evaluated but which must be defined (for the AG to

be "well formed™).

The attributes evaluation method is as follows. In parallel w1th
Parsing, the compound dependency graph is constructed : the tables produced by the
semantic constructor contain information about the dependencies between attri-
butes occurrences. This graph is complete except that copy rules are collapsed :
the two (or more) attributes instances are represented by the same node. The graph
is then traversed in a depth=first manner (topological sort) to determine the
attributes instances to be evaluated and their evaluation order. Variable names,
with the correspondlng type (in the semantic rules language sense), are generated
as placeholders for the attributes values. Dead ends, i.e. attributes instances
not comnected to the root of this graph (defined as the attributes of the start
symbol) are not reached by this traversal and are thus eliminated from evalua-
tion. This process produces a program (in the semantic rules language) which
can be interpreted or compiled and run to give the desired results (this must be
.programmed in the semantic rules). When an attribute instance becomes useless
(at a certain point in the evaluatioﬁ program), the corresponding variable may
be reused for another attribute instance, if necessary. Copy rules are not ge-

nerated, because the corresponding attributes instances are represented by the

same variable.

Non-circularity tests are provided too, but they are optional.
However running one of the tests is important because, if there is a circula-
rity in the dependency graph, the topological sort loops. The tests take as
input the attributes tables, The main theoretical effort in DELTA has been to
improve those tests so that they remain feasible, even for large AGs [LP75, DJL84 1.
The main improvement is the notion of ”éovering" [LP75]. There is also a pro-

gram to check strong {absolute) non-circularity in polynomial time.

- 31 .-

There is also a simplified version of DELTA, which acceptsﬁ.
only purely synthesized AGs. The semantic rules can be written in Pasgal
(TABACT) or in PL/1 (TABPL1). Attributes values are computed bottéh—u;
during LR parsing, and stored on a stack parallel to the parsiﬁg stack.
The Pascal programs generated by TABACT, together with the ?ascél vefsiéﬁ

of SYNTAX analyzers, are portable ; however the constructors must be run

on Multics. A version of TABACT also ruds on SM90/SMX.

6) Optimizations and performance

Strictly speaking of attributes evaluation, all the optimiza-

tions have been described in the previous section.

DELTA is a pionneering work, and as such will stay in an expe-
rimental state. However, it is an important timestamp, on both theoretical

"and practical levels.

The full generality of DELTA - non-circular AGs, any program-

ming language for the semantic rules - is the cause of its inefficiency.
DELTA is written in PL/! and has the following size :

SYNTAX constructors * 12 000 lines (8000*)
Semantic constructor - 3 700

Non=-circularity tests

Full non-circularity 1 700

Strong non-cricularity 1 100

SYNTAX analyzers 5 000

Dependency constructor 800

Attributes Ordering 900
TOTAL 25 600 (21600)

TABACT and TABPL]| are much smaller (3000 lines each) ; the
produced evaluators are composed of the SYNTAX analyzers and the genera—~

ted programs.

(*) 8000 lines if restricted to'the LALR(1) constructor.

- 32 =

7) Applications

DELTA was the first AG system in France, and was available rather ear-
ly (1974) : it has thus been heavily used for a large number of research purposes,

and for teaching purposes. It was also used in the first release of Perluette

(q.V.)

TABACT and TABPL] are used for more "industrial' purposes. TABPLI] is
used in the European Ada Compiler to build the abstract syntax tree. TABACT is used
in the RHIN project (Agence de l'Informatique) to develop a compiler for the PDIL

language, devoted to communication protocolis:description.
8) Projects

Transport of TABACT to UNIX
9) References

Lor74, Lor77, LP75, DJL83, 84.

- 33 -

ELMA

’ M.B. MERISTE

; Tartu University
‘TARTU, Estonia

(U.S.S.R.)
1) Members of the project
Merik B. MERISTE.
2) Birthdate : 7 Deadline : ?
3) General Features
Lexical Analysis : ?
Syntactic Analysis: @ ‘ precedence
Attributes Evaluation ﬁ visit-sequences
»AG Class n-visit AGs
AG Language = ' meta-ELMA
Code Generatiom ¢ no special feature provided.

4) Schema

ELMA is written in FORTRAN and runs on RYAD machines. A version runs on
APPLE II.

- 34 -

i
! ,
i
’ i Source text
3
iyn;ixnand Scanner and : <::::::::::::>
exico
Parser erator F‘----~\\~ I
[Extended BNF , _gen : , i y
\J'\- Scanner
! Parser
y
y
Abstract
Atribute Computation of N g?tiigrj§:§:°n
Grammar- visit sequences sequences
[meta~ELMA

attributed
tree

evaluation
time

generation time

5) General Comments

T

With ELMA, attributes are defined on abstr;ct trees, i.e. on an abstract
syntax described in BNF exténded with regular expressions. The usual notation for
attributes occurrences is extended to take into account any sequence of non-terminal
symbols. Meta-ELMA is.an extension of FORTRAN. The class of acceptable AGs lies between
the mult i~-pass AGs and~the 0AGs. . ,

The evaluation strategy seems to be the simple multi-visit one :

the attributes are partitijomned into passes, and for each pass the tree-walk is direc-

‘ted by an order which depends on locai heuristics.

’

6) Optimizations

Unknown.,

- 35 -

7) Applications

About fifﬁy la;guages.

We have no information about the performances of ELMA

8) Projects

Optimizations such as the ones of HLP (q.v.).

9) References

Mér 80, Mér 81, VM 82.

- 36 -

FNC/ERN
Fortement Non-Circulaire
Evaluation Récursive par Nécessité
Martin JOURDAN

Institut National de Recherche

en Informatique et en Automatique

BP 105 i

78153 LE CHESNAY Cedex
(FRANCE)

1) Members of the Project

Martin Jourdan (attributes processing), Pierre Boullier
(lexical and syntactic analysis), Bernard Lorho, Bruno Courcelle,
Pierre Deransart (advisers). '

2) Birthdate: 02/1982. Deadline: none.

3) General Features

Lexical Analysis: regular expressions with user-defined
predicates and actions; and error recovery.
Syntactic Analysis: SLR(k), LALR(1), LR(1) with error recovery.
Attributes Evaluation: FNC: primitive recursive schemes [CcF 82].
ERN: recursive evaluation by need [Jou. 84 a,c,el
Both methods are descendent.
AG Classzy FNC: strongly (abéblutely) non-circular.
ERN: unrestricted (circularities aredetected
at evaluation time). -
: based on Lisp.

@
ation: no special feature provided.

aQ
o]

o

)

(2]

4) Schema

- 37 -

- FNC/ERN runs on Miltics:

Lexical

Description

actions and

predicates

LPL/11]

Attribute

Grammar

User-Written

Scurce text

f
i Lexical

mnstructor'
| NEW-10CL

Scanner

i TPL/ 1]

]

Syntactic

error|
[PL/1] '
" Parser hand -
[PL/1] . f
: _ ling
Tree [Pﬁl]

u[Lisp]

Constructor

Constructor / ‘
SYNTAX :
o frL/1]

[BNF+Lisp]

S |

femantic
Constructor '

FNC/ERN

rarse

tree .

[Lisp daté]

[PL/1]

Evaluator

[Lisp]

generation

time

/

evaluation

time

- 38 -

5) General Comments

a) about lexical and syntactic analysis: The underlying system

is SYNTAX: The scanner and parser are table-driven. The syntactic
analysis uses LR methods. SYNTAX provides in particular intensive
optimizations of the tables size, a very efficient and powerful
error recovery mechanism, and facilities for user-defined error
messages. The scanner tables are constructed from regular expres-
sions using LR-like methods, producing directly the deterministic
automaton; this method allows to use an unbounded number of
characters in look-ahead to solve the conflicts. User—-defined
predicates and actions allow to solve conflicts and to add "con-
text-sensitive" information to the scanner. The scanner has the

same error recovery mechanism as the parser.

b) about attributes evaluation:

FNC and ERN accept the same attribute grammar as input, and
share many modules (see schema). The module called "Property
test" builds an internal form of the semantic rules and checks
that the AG is "well-formed”(e.g. no inherited attribute of a
LHS is defined). The next module generates, through a set of
"default rules", the missing attribute declarations and semantic .
rules. More than 607 of the semantic rules in practical AGs can
thus be omitted; this eases very much the design and writing of
an. AG. The default rules for generation of missing semantic rules
ae borrowed from the system DELTA (q.v.), together with its four
attribute types, The generation of missing attribute declarations
is entirely original. ‘

FNC/ERN produces evaluators written in Lisp, and the attribute
definitions language is based on Lisp. The description of an AG
is composed of:

L 211
0o wlids

[
[}
m

isp forms whic
e forms are

usually auxiliary function definitions;

* Trade mark of INRIA

Attribute prammar

v

| -

Syntactic processing

SYNTAX

Syntactic analysis
of the semantic part
- (SYNTAX)

xoperty Tesgt

Generaciovlb of missing
declarations aund

definitions

FNC AN

Stronc ron -

circularity test

b, [/

Optimization

Evaluator Construction

AN

Cross-re ference

tables production

The system predefines a number

4

- 39 -

//Egs;%\~

function

of lexical

- a (maybe empty) list of
attribute dgplarations; éach
attribute is declared wiph
its type (in the DELTA sense,
not in the Lisp sense) and
the (maybe partial) list of
the non—terminals to which
it is attached;

- a (maybe empty) list of
default values for synthe=’
sized attributes, to be
applied at "error nodes";
these error nodes appear in

the parse tree when an unreco-

verable syntactic error has

occurred; it thus possible to
evaluate attributes on
synfactically correct por-
tions of text, and get the
behaviour of a real compiler;
- the (never empty!)list
of syntactic productions and
assqciated semantic rules;* '
- a kmaybe empty) list
of "key terminals" to be

used in error recovery.

attributes, the

value of which is computed at parsing time. Also a number of

fuctions are predefined, € ,g. to produce error messages.

* As with DELTA, it is possible to have "synchronizing attributes"
and empty definitions; the latter produce run-time errors 1if they
are used (implicity or explicity); :

- 40 =

);%
24

FNC uses the evaluation method introduced in [CF82] and later -
improved [{Jou 83, Jou84 a,ﬁ,d,e]; After the common processing, FNC
checks the strong non-circularity of the AG (with an improved algo-
rithm [DJL83, Jou84e, DJL84]), computes the "argument selector" and
builds (after the optimization phase) the set of Lisp evaluation
functions, one for each synthesized attribute.

ERN uses the evaluation method presented in [Jou84 a,c,e].

After the common processing and the optimization phase, ERN builds
the set of Lisp evaluation functions, one for each attribute (either
synthesized or inherited).

Both methods are applicative, recursive and implement a dynamic
evaluation by need. The control flow of the semantic rules is
mixed with, and influences, the evaluation process. The result of
the evaluation is in both cases the "semantic value" of the source
text, defined as the list of the values of the synthesized attributes

of the root of the parse tree.

6) Optimizations and performance

a) Space management

Lisp, as the basis of the run-time evaluator, allows an effi-
cient automatic memory management, since every datum is accessed
and manipulated through pointers. Morcover large data structures
such as symbol tables may easily be shared among many attributes
instances. However the management of this sharing is left to the
grammar writer . '

As for parse tree, a concrete parse tree is built, with all
the terminals (to keep the system simple). However, simple pro-
ductions do not appear in the tree, and this saves much space. '

As for attribute values, two optimizations are performed
automatically:

=~ attributes such that all their instances are used only once

rt
e
»

(this is computed statically at generation time [JouB4e]) are not

stored in the tree; they exist only as function return values;

- 41 -

-~ useless subtrees (i.e. subtrees such that all the-synthe-
sized attributes of their root have been computed) are dymamically
deleted.

The size of the function calls stack is bounded by:

- for FNC, the height of the tree;

- for ERN, the height of the compound dependency graph, which

- is much larger.

b) use and performance of the system.

The use of Lisp allows to take full advantage of the dynamic
evaluation by need: you can use and write functions which do not
¢ompute all their arguments, which is impossible with other lan=-
guages. '

The height of the function calls stack is larger for ERN than
for FNC, and the function calls mechanism is much more called
upon; so, although theoretically optimal, ERN is practically less
efficient than FNC, and restricted to the analysis of small texts.
However, since it avoids the expensive non-circularity test, ERN
is well suited . to the development of a new AG.

The FNC/ERN constructor produces a number of cross-reference
tables which glve much information about the AG ‘The FNC/ERN run-
time system provides many options to control the evaluation, the
proce331ng of the results and the debugglng of the AG.

As for the size of the system, the constructor part of SYNTAX
is 12000 PL/1! lines (8000 if restricted to only the LALR (1) cons~-
tructor), and the FNC/ERN constructor is about 4500 PL/1 lines
and 200 "SYNTAX" lines. The runtime system is about 500 Lisp lines,
plus 200 PL/1 lines for the interface, plus 5000 PL/1 lines for
the analyzers part of SYNTAX.

- 42 -

7) Applications

* Toy languages,

* FNC is included in the Perluette system (q.v.), both as the
first phase of the generated compilers and as the constructor for
a number of inputs to Perluette.

* A full IS0 Pascal to P-code compiler which compares honou-
rably with a hand-written one: on Multics, it runs only 2.7 times
slower, and when processing a 6000+ lines Pascal program,it builds
a tree 1300000 words large and the garbage collector messages
show a maximal use of 2 350 000 words, which seems acceptable.

* A Pascal to Ada translator [BDJ 83, 84]

* A compiler for the LOM language (data processing), developed

in Toulouse.
8) Projects

* Transport to UNIX.

* Implementation of the OAG/ visit-sequences evaluation method
[Kas 80], to run useful comparisons with the FNC method.

* An interactive tool to trace circularities statically,

* A new SYNTAX constructor for RLR (Regular LR) grammars [Bou
84 al.

* A full compiler writing systemAa la MUG2 (q.v.), with abstract
syntax trees, attributed tree transformations, and special fea-
tures for code generation.

* An Ada version, written in Ada and producing Ada evaluators.

* A programming environment generator (i la Synthesizer Gene-

rator (q.v.)), providing incremental analysis and compilation.

- 43 =

9) References

CF80 , CF82, Jou82, Jou83, Jou84 a,b,c,d,e, DJL83, DJL84,
BDJ83, BDJS4. ’
about SYNTAX?::

[Bou 84a] P.Boullier?i "Contributionm 3 la Construction Automa=

tique d'Analyseurs Lexicaux et Syntaxiques (in French)

thése d'Etat, Université d'Orléans, Orleans (1984).
[Bou 84b] P.Boullier: "Lexical and Syntactic Analysis", in

[Lor 841, pp 7-44. '

- 44 -

FOLDS
‘FOrmal langage Definition System
Isu FANG
Computer Science Dept

Stanford University

STANFORD , Ca
(U.S.4)

1) Members of project

Isu Fang. The project was realized in part at Faculdade de Economica

€ Administraca da Universidade de Sao Paulo (Brazil).
~ 2) Birth date :1971 Deadline : 1972.

3) General Features

lexical Analysis : fixed scanner recognizing tokens of Algol -

like languages s

Syntactic Analysis : Earley non -deterministic parser.
Attributes Evaluation: concurrent processes

AG Class: non-circular .

AG Language : SPINDLE

Code Generation : no special feature provided.

4) Schema

- 45 - ‘ -

’

Source text

| .

Lan . Scanner | M
guage SPINDLE | ‘ v M
Definition | Parser L A
[5PINDLE]" . | e
Compiler \ MULTILATE b I H
- Crder Code ; intefpfetei IA I]\:I
*—f—4>j T E

' E

o

/////’JL—“\\\\
semantic value.

g

generation time |evaluation time.

5) General Comments |

FOLDS is the first historical implementation of Knuth's
attribute grammars. It is essentially an experimental system to be
used to design new languages.

There is no way to specify the lexical_analysis. FOLDS
provides a fixed scanner which recognize$ identifiers, numbers,
strings, etc .

FOLDS accepts ambiguous grammars. In .that case the Earley

non-deterministic parser used in FOLDS produces the set of all the
derivation trees of the source text, in time G(n). 1If the grammar.
is not ambiguous, or if a particular source text has only one deri-
vation tree, the time complexity is OKn) Syntactic ambiguities

can be resolved by(hsmmlguMnng predicates involving attributes
values. In that case all the possible derivations trees are constru-
cted, and only those which verify the predicates'(hopeﬁﬂly'only

onej are kept; the others are discarded. However the test of the
predicates can be performed only when the attributes are available,
ie. not during parsing.

Semantic rules are written in SPINDLE (Semantic Prepara-=
tofy INput LanguagE). In fact SPINDLE provides for defining processes
which can be executed in parallel. Normally each semantic rule is
a separate process, but a process may also compute several attri-
butes values at a time. Apart from that, SPINDLE is an Algol like

language with data structures a la VDL (Vienna Definition Language) .

- 46 -

€Copy rules need generally not be written, which can save up to 50%
of the total number of semantic rules to be defined. It is also
possible to define local attributes, i.e. variables local to a pro-
cess.

The language definition in SPINDLE is translated into code
for the parallel machine MULTILATE (gachine Enderéyﬂ% The Inter-
pretive LAnguage To be Executed). This machine generates the processes
corresponding to the attributes instances of a derivation tree and
executes them'in parallel according to the following scheme:

- a semantic rule activates the corresponding process;

- the processes have one of three possible states:

-~ inactive if never yet activated;
~ passive if awaiting a datum (attribute value)
not yet defined (the corresponding attribute(s) being it~ (them-)
self(-ves) undefined);
- else, active;

= the whole scheme is initiated by activating the processes
corresponding to the (synthesized) attributes of the root of the
derivation tree(s).

With such a strategy, only the attributes necessary to
compute the attributes of the root (the "semantic value" of the source
text) are evaluated. Furthermore the system can accept any non-
circular AG and even evaluate trees of circular AGCs inyol&ing no
circularity, like the FNC/ERN system (q.v.) or the LINGUA system (q.v.)

However, the performance of such a system implemented on
a monoprocessor machine cannot be good (and is not, actually), because
the number of passive processes can be very large and the search of
processes to activate can be long, dispite the use of chain links
and stacks. Furthermore you must add the load of the inter pretation

of MULTILATE code on a conventional machine.

6) Optimizations

Space for storing attribute values is allocated dynamically.

= \47 -

However different instances having the same value (through a copy
rule) imply distinct storage,except,for»compleX:values. A garbage
collector recollects the storage freed by processes which terminate

and by trees from ambiguous derivations which are discarded.

7) Applications

* TURINGOL
* a subset of SIMULA-67 (rewritten from [Wil 711])
No informatiom is available about the size and the performances

of the system

' 8) Projects
None (termimateéd).

9) References
nsélerences

Fan 72, Fan 73 .

- 48 -

GAG
Generator based on Attribute Grammars
Uwe KASTENS

Institut fur Informatik II
Universitat Karlsruhe
Postfach 6380
D-7500 KARLSRUHE |
(F.R.G)

1) Members of the project

Uwe KASTENS (now departed to Paderborn University), Brigitte HUTT-ASBROCK,
Erich ZIMMERMANN, P. DENKER.

The present correspondent is E. ZIMMERMANN in Karlsruhe.
2) Birthdate : 1975 Deadline : 1981

3) General Features

Lexical analysis : not part of GAG

Syntactic analysis :

Attributes evaluation : visit sequences (ascendent evaluator)

AG class : ordered, or automatically arranged orderly
AG language : ALADIN

Code generation : see below.

4) Schema

GAG is written in standard Pascal and runs on a large number of machines.

- 49 -

. Source text
Attribute Grammar

[acapmn]

‘hand-written

Scanning—Parsing
" Static Semantics

B WV

Analysis h\wﬁ scanner

parser

arser
Dependency Analysis or P
Computation of
visit-sequences Parser
S . . rator
generato tree

Attributes optimiza-:

. constructor
t ion .

Parser Interface

AT 8 Attributes
Visit-sequences Evaluator
Transformation [PASCAL]

PASCAL Definitions

PASCAL Code

Attributed
Tree

Kernel Routines

[pascaL]

5) General Comments

3

a) about lexical and syntactic analysis : this part is not included in

GAG. From the input AG, GAG prcduces a fi le containing the syntactic part of the
AG (BNF productions) plus tree-building procedure calls to be executed at each re-
duction. An LALR(1) parser generator named PGS is available from Karlsruhe. The tree

constructor itself is generated by GAG.

'b) about the input AG : it must be written in ALADIN (A Language for

Attributed DefINitions). ALADIN is a strongly typed, applicative language. The pos-
sible types are basic types, subranges, setsand structured types. Predefined types
are INT, BOOL, CHAR, STRING and SYMB (terminal symbols of the language) . Other basic
typés are enumeration types a la Pascal, and subranges of scalar types. Structured
types inelude union types a la Algol 68, structure types (records without variants)
and (linear) lists. A number of predefined operators and functions are supplied with

their usual meéning'(e.g.'HEAD and TAIL). The grammar writer can define constants,

- 50 -

A

types and (recursive) functions. Since ALADIN is an applicative language, there is
no control flow structure but rather value-producing selection structures : these
are the CASE "statement' and the IF-THEN-ELSE conditional. ALADIN is completed by a

LET clause a la Lisp, types conversijons and type and symbol tests.

The syntactic part of the AG is written in Extended BNF, i.e. RHSs can
be regular expressions. However alternatives are forbidden (they must be separate
productions) and repetition clauses may not be nested. A number of laws apply for

attributes of symbols appearing in a repetition clause, involving list processing.

All the attributes, their ALADIN type and their attachement to the
grammar symbols must be declared, but declaring their direction (synthesized or

inherited) is optional.

Semantic rules are normal rules, transfer rules or context conditions.
A transfer rule is an abbreviation for multiple copy rules. A context condition is
a boolean expression referencing attributes occurrences ;5 this expression‘muét be
true at evaluation time, else an error message is generated and, maybe, a default
value is returned. Context conditions can stand alone, i.e, apply to a whole produc-
‘tion,or be included in "normal" semantic rules. Some context conditions are generated
implicitly upon use of certain ALADIN constructs.

s

ALADIN also provides for non-local attributes access, with the two clauses

INCLUDING (refering to attributes of nodes upward in the tree) and CONSTITUENT (refe-

ring to attributes of nodes downward in the tree).

c) about the evaluation method : GAG is a straightforward implementation

of the evaluation method by Kastens [Kas 80] ; the tree traversal and semantic rules
evaluation are directed by visit sequences. The only (but important) differences

stand in the storage optimizations which will be discussed in the next section.

d) about the results of the evaluation : the normal result is the comple-

tely attributed tree. However GAG supplies predefined ALADIN output routines for

attribute values, which ease interfacing with some back-end.

- 51 -

6). Optimizations and performance

The optimizations are numerous, and represent probably the most attractive

feature of GAG.

a) about the evaluation strategy : the visit-sequences are encoded effi-

ciently in a table. It is possible that two or more visit-sequences share some table
entries. Any sequence of "evaluate" operations is combined with one of the tree-

walking operations. The typical size of such a table is 1 Kbyte.
GAG also accepts some AGs which are not directly ordered. With a more
.careful analysis. it is possible that the AG can be "automatically arranged orderly" ;

if so, GAG can compute the corresponding visit-sequences [Kas 80, Kas 84].

b) about the tree representation : the tree is compacted and "abstracted"

by eliminating "chain productions" (simple productions) and useless terminals. The
remaining tree nodes are linked together by two pointers, one to the leftmost son
and one to the right brother. Experience shows that accessingAa descendent with this
structure is not slower than with a direct (e.g. indexed) access, and the sizé of

the tree is reduced by 25 Z.

c) about the mapping of ALADIN types to Pascal types ; since ALADIN is a

strictly ?ppiicétive'language with no side effects, structured types are implemented
using'pointers. Thus a STRUCT or UNION type becomes a pointer to a Pascal record (with

* variants for UNION), and a LIST is implemented by a pointer to a chain of Pascal records
linked together. Actually the anchor of a list is composed of two pointers, one to the
head of the list and one to its last element ; this allows an efficient implementation

" of list concatenation. Using pointers, copying structured values reduces to copying
pointers‘:_moreover; list structures. can often be shared among several attributes

values. ALADIN simple types are mapped .l : 1 to Pascal simple types.

. d)- about attributes values storage : GAG performs a complete lifetime

analysis to determine if a given attribute :

- can be stored in a global variable (pairwiée disjoint attributes instances
1ifetimes),.

- can be stored in a global stack (property included lifetimes),

- 52 -

- or must be stored nodewise (any other case).

This lifetime analysis is based on the visit sequences and the rules
concerning the computation and use of attributes values. It is described in [Asl 79,
KHZ 82, Kas 84). Furthermore it is possible to store two or more different attributes
in the same global variable or global stack, provided that the lifetimes agree and the

Pascal types are compatible.

As an example, for a Pascal front-end with 140 attributes occurrences,
59 arestored nodewise and the remaining arestored in 11 global variables and 18 global
stacks. The total attributes storage is reduced to 25 7 of the tree size. However the
storage of dead attributes stored in the heap is not reclaimed because Pascal does

not provide an effective mean therefore.

e) about the ALADIN to Pascal translation : common compilation techniques

are applied during this phase, including common subexpressions elimination (stored
and considered as attributes...), tail recursion elimination (mandatory because the
"loop'" concept is absent from ALADIN, a purely applicative language), and inline coding

of a number of predefined functions.

f) about the system : GAG is implemented in standard Pascal. Portability

was one of the design requifements, and GAG comes with a configuring preprocessor,
named PROPP, to adapt it to each particular implementation. The generated compiler
is written in Pascal. -

The whole GAG system is 44000 Pascal lines long, but is very modular. This
figure includes the support modules, in particular PROPP, but not the parser generator.

GAG has been widely distributed over the world.

GAG supplies extensive statistics about its operation either at generation

time or at evaluation time.

7) Applications and Performances

In [KHZ 82] a complete AG describing a Pascal front-end is given. This

3000 lines AG is processed by GAG in 124 secs (x), producing a 10700 lines compiler

(¥) All the figures are drawn from [KHZ 82], running on.a SIEMENS 7.760 machine
(similar to IBM 360, 370).

- 53 -

with 4 visits maximum to any symbol. This (pure) front-end analyzes source texts at
ata speed.of about 350 tokens/sec. The full front-end with scanner and parser (genera-
ted by PGS) runs at 250 tokens/sec. The space needed to analyée a 1n.000 tokens text
is roughly 500 Kbytes of heap storage plus 50 Kbytéé of stack space. These figures
are, according to the authors, very close to those of other compilers using a tree

as internal structure.

The generated Pascal front-end compiles to a 150 Kbytes code after all the
Pascal checks have been removed. These checks are useless since most of them are per-

- formed by GAG itself on the ALADIN text.

Apart from toy languages, front-ends were generated for Pascal (kHz 827,

Ada [UDP 82], LIS and PEARL [DIN 80].

The Pascal front-end has been interfaced with a code generator produced

automatically by the CGSS system developped in Karlsruhe.

8) Projects

None : the project is terminated.
&

2) References

Kas 80, Kas 84, KHZ 82, Asb 79, DIN 80, UDP 82.

- 54 -

HLP 78
Helsinki Language Processor
Martti TIENARI
University of Helsinki
Dept of Compﬁter Science
Tukholmankatu 2
SF-00250 HELSINKI 25
(FINLAND)

1) Members of the project

Martti Tienari (head), Mikko Saarinen (lexical part), Seppo Sippu,
Eljas Soisalon-Soininen (syntactic part), Kari-Jouko RHihY, Matti
Sarjakoski (attributes evaluation, code generation, control part),

Lassi Juntinen, Kai Koskimies, and many students.
2) Birthdate : 1975 Deadline : 1982
Tte——— e—————

2) General Features

Lexical Analysis ¢ regular expression + screening
‘Syntactic Analysis ! LALR(1) with error recovery
Attributes Evaluation : Alternating Semantic Evaluator

AG class : simple multi-pass

AG language . : based on Burroughs Extended Algol +

features for code generation

Code generation : "code templates"

4) Schema

- 55 -

HLP78 runs on Burroughs B6700 and B7800 machines

Eexical

Lexical

part

Deseription

_ Syntax +

~ Semantics + .
Code

Syntactic and

—3

Semantic Part

¢ Generation

Error Recovery

"““‘*‘“%é;TCOmpilerl
T

Kernel
Routines
[Algol]

\\

— i
4. !)
_\Ru~ | scanmer |
Executabl . i* _ — i
' | | parser +
s

=

code

generation

time time

Nt

!
[
|
|
!
|
| ////Ject
!
I
!
f

. treeconstrucﬂ
tor ;

H
B

_tree traverser

« + attributes

i
1
|
' l code
}

generator ?

7N

) ng ‘

'eyaluatlon

5) General Comments

a) about attributes evaluation

'HLP78 uses the most well-known attributes evaluation method :
evaluation in passes, derived from the Alternating Semantic Evaluator (ASE)'[JW75].
The first pass is carried out during parsing, so it can contain only synfﬂesized
attributes and may thus be empty. The algorithm used to assign attributes to pas-

ses is an improved version given in [RU81].

b) about code generation : code generation is performed as the last

traversal of the tree. Code generation instructions are of two kinds : "visit a
subtree" and "write some code onto some file under some condition" (code templates).
The grammar writer has total control over the tree walk, which is similar to those

performed in "one sweep' evaluation.

c) about the input metalanguages : there are two metalanguages to write

the inputs to HLP78, one for the lexical description and one for all the remaining :
syntax, attributes, code generation. ;
Both are designed such that their aspect is close to English. As a

consequence they look rather verbose, but they are easier to read. g
An attribute grammar to be input to HLP78 is composed of

- (optional) memories (i.e. constants) declarations ;

- attributes declarations : each attribute must be declared with
its kind (direction) and (Algol) data type (simple type or array)-;

= non—terminals declarations (since nothing can differentiate a
non-terminal from a terminal in the productions) : each non-terminal must be
declared with its attributes 3
= start symbol declaration ;
- (optional) Algol formats declarations H
= (optional, but usually required) procedures and functions

declarations (written in Algol) ;

- production descriptions ; each production comes with its associa-

ted semantic rules and code generation instructions. . -

Some semantic rules and the code generation instructions may be

omitted ; the system will apply default rules to generate the missing ones. For

~code generation the default is to visit the subtrees in left-to-right order, and

emit no code.

Normal semantic rules are either assighments statements or procedure
calls. Those procedure calls must specify which are the output parameters (attri=-
butes occurrences) ; input parameters are expressions made of constants, attri-
butes occurrences, usual operators and an applicative if-then-else. Procedure
calls may compute simultaneously (i.e. in a single semantic rule) several attri-

butes occurrences.
Predefined "attributes" and subroutines allow to retrieve the text
of a token or its "unique number", to emit error messages refering to the line/

column coordinates of the error point, to abort the translation, etc.

6) Optimizations and performance

a) tree-walk optimization : if, in a given pass, a given subtree con-

i3
tains no attribute to be evaluated in this pass, it is skipped. This explains why

the different passes are impleménted'by recursive procedures.

b) storage management : since the only structured data type avai-

lable in HLP78 is arrays, copying such structurescan be very expensive ; such
copies can be involved either in normal semantic rules (through assignments)

or inside procedures. HLP78 provides a mean to avoid éuch copies inside proce-
dures when they are not necessary : each procedure may start with a “copy block"
describing those copies. The system will then automatically check each call of
those procedures to determine whether the copy is actually necessary, i.e. whe-

ther the corresponding "old" attribute instance is not yet useless.

The parse tree does not contain unit (i.e. simple) productions with

trivial semantics, nor proper terminals (e.g. keywords).

- 58 -

Attributes values storage is reduced by a very efflclent dynamic
allocation technique [Ral 79]. Attributes values are accessed through pointers,
and attributes instances that are given the same value by copy rules point to
the same storage area. Moreover the system performs at evaluation time (during
parsing) an analysis to find out the moment after which each such area becomes
useless (i.e. all the attributes instances pointing to this area become use-
less). Then the dllocator can reuse the area for another class of attributes ins-

tances.

¢) performances : on the Bumoughs B7800, front-ends generated by
HLP78 run at a speed of 5000 to 6000 lines per minute, i.e. 3 to 4 times slower
than hand-written compilers. As for space, the analysis of a Pascal text 1000

lines and 4700 tokens long requires 250kbytes of workspace [KRS82].

The size of HLP78 is about 35000 Algol lines.

7) Applications

HLP78 has generated compilers or front-ends for more than ten real
languages, including PL360, Simula, Pascal, Ada and Euclid. It has also been

heavily used as an educational tool.
8) Projects
The HLP78 project is terminated.

The same team has started in 1981 a new project to develop another
translator writing system based on AGs, named HLP84. Ils main goalé are porta-’
bility, ‘ease of use and efficiency. It will be written in Pascal and will gene—
rate compilers written in Pascal. Il will provide a variety of parsers (LR(l),
SLR(1), LALR(1), and LL(1)), and many shorthand notations will ease the task
of specifying typical compiler operations. For efficiency, the AG class will
be restricted to thoses for which it is poss1b1e to evaluate all the attributes

during parsing [Tar82, KR83]

9) References

JW75, RU8I, KRS82, Kor80, Ral'76a, Ral80a, Raf84, RSS78, RSS83,Tie79, Tie8O

- 59 -

HLP / SZ
Helsinki Languége Processor / Szeged
Tibor GYIMOTHY, Endre SIMON
‘Research Group on Theory of Automata
Hungarian Academy of Science
Somogyi u.7 .
H-6720 SZEGED
(HUNGARY)

1) Members of the project

Endre SIMON, Tibor GYIMOTHY, Arpad MAKAY, Janos TOCKZI, Tamas GARAI,
Ferenc KOCSIS.

2) Birthdate : 1979 Deadline : none

" 3) General Features _ p

Lexical Analysis : regular expressions + screening
Syntactic Analysis : ELR(1), ELALR(1), ESLR(1) and ELR(0)
Attributes Evaluation : 1) Alternating passes 2) Visit sequences
AG Class : 1) simple multi~LR 2) 0AG

AG Language : those of HLP 78 (q.v.)

Code Generation : no special feature provided.

4) Schema

The same as HLP 78 (q.v.). In fact HLP/SZ is another implementation (and

an extension) of HLP 78.

- 60 -

HLP/SZ is implemented in SIMULA-67 and generates compilers written in

SIMULA-67. It runs on a CDC-3300 computer with 64 k words (of 24 bits) of main memory,

5) General Comments

The choice of the parsing method (ELﬁ(l), ELALR(1), ESLR(1), ELR(0Q)) is

done automatically by the system.

The two attributes evaluation methods correspond to the use of alternating

passes [JW 75 Jand visit-sequences for ordered AGs [Kas 80 1.

6) Optimizations

a) ASE method : in a given pass a subtree will not be visited if it .comn-
tains no attributes to be evaluated during that pass. Also after each pass subtrees
such that all their (synthesized) attributes are evaluated are deleted (the SIMULA
run-time system includes a garbage-collector). Lastly, the first evaluation pass is

combined with (bottom-up) parsing, and computes purely-synthesized attributes.
b) OAG method : this method is modified to accept a larger class of non-
circular AGs: The modification deals with the manner in which the dependencies are

transfdrmed into a total order [GSM 83].

7) Appliéatiohs

the two metalanguages of HLP/SZ
- a Pascal subset (100 productions)
. Toy languages

a front-end for a block-structured language with concurrent blocks.

The total size of HLP/SZ is about 15 000 SIMULA-67 lines. No information

is available about its performances.

- 61 -

8) Projects

A new project started in 1983, aiming to implement a compiler writing

system in Pascal, following the general lines of HLP/SZ but with both LL and IR
parsing techniques.

" 9) References

GSM 83, Sim 84.

- 62 -~

L LiLA -
Language Implementation LAboratory '
L Johan LEWI
Computer Science Dept.
Katholieke Universiteit Leuven
Celestijnenlaan 200A
B-3030 LEUVEN
(BELGIUM)

1) Members of the Project

Johan LEWI, Karel DE VLAMINCK, Jean HUENS, Michel HUYBRECHTS, Eric
STEEGMANS, and others. : '

2) Birthdate : 1973 Deadline: ?

3) General Features

Lexical Analysis - 3 regular expressions
Syntactic Analysis : ELL(l) with error recovery

Attributes Evaluation : during the recursive descent parsing

AG Class : 1L-AGs
AG Language : based on Pascal
Code Generation : see below

4) Schema

LILA is written in standard Pascal and thus runs on a large number of

machines. The generated evaluators are written in Pascal.

- 63 -

\ Source text

Language ' LILA | :
Description [Pascal] ‘—‘ i , . ‘Compiler
| ST | | S ISP |
]: ' : [Pasca-l]

Diagnostics

error

results» messages

5) General Comments

Basically LILA is a parser generator which has been extended to deal with
(semantic) actions and attributes. The input to LILA is what the authors call a
generalized attributed extended context-free grammar (AECF-grammar), i.e. a
grammar written in extended BNF (meta-operators are exclusive and inclusive
alternance, non-negative and positive repetition, and grouping), with semantic actions
calls embedded in the productions. These actions, which are described in Pascal just
after the production, can reference the (unique) attribute of each (terminal or
non-terminal) symbol appearing in the production. However, since each attribute can
be a record containihg several fields, this is the same as several attributes per
symbol, Some of the fields represent inherited attributes and the others synthesized
ones; LILA checks whether they are used consistently. 4

5
Given an AECF-grammar, LILA checks whether it belongs to the AELL(l) class,
that is : '

- the underlying grammar is an Extended LL(1) grammar;

- the attributes can be evaluated in a single left-to-right pass (1L-AG).

If the grammar passes the test, LILA produces a recursive descent parser, with
a procedure for each non-terminal; the attribute of a given non-terminal is
represented by a parameter passed by reference. The semantic actions are

implemented by procedures local to each non-terminal-procedure.

Apart from the input (terminal) and non-terminal vocabularies, LILA provides for
defining an output vocabulary. Each outpuf symbol may have an attribute, and LILA

produces a procedure to output those symbols together with the value of their

attribute, However the grammar writer may supply his own output routine, which

- 64 -

acts as a (very simple) code generation part.
‘.

The lexical part is defined in exactly the same way, except that the grammar
must be an extended type-3 grammar, i.e. it must not use recursion. From this
grammar, LILA produces a finite-state scanner recognizing the language. The output
symbols ® of this grammar are the input tokens of the syntactic grammar; their
attributes. are evaluated in the scanner and may be used in the syntactic grammar.
LILA supplies a standard "read-in" procedure for the scanner, but the user may also

redefine it.
LILA has two error recovery mechanisms, one for interactive input (Skip,
Undo and Redo) and one for batch input (Skip, Recognize and Synchronize). The

grammar writer must state in his grammar at which points and how the

synchronization will work.
6) Optimizations
None

7) Applications and performances

* teaching compiler construction
* toy languages
A

* desk calculators
* compilers or front-ends for Atlas, REGTRAL, Alto, Chill and Ada

We have no information on the size and performances of LILA. Its authors
claim that LILA and the generated programs are "simple, reliable, adaptable, portable
and efficient". '

8) Projects

The industrial development of LILA, now called MIRA, has- been taken over by :

Expert Soitware Systems n.v.
Software Engineering Product Division
Building "De Schelde"
Moutstraat 100
B-9000 GHENT
(BELGIUM)

- 65 -

- MIRA runs on. every computer which has a standard Pascal compiler (IBM
PC-AT or XT under MS-DOS and compatibles, APOLLO. "F™Q, SUN, VAX (VMS or
UNIX), HP3000, IBM 3033 and 308! (under MVS and VMS"), Siemens 7500 family
(under BS2000), etc.). It is able to produce compilers in Pascal, C or Ada, provided
that the semantic actions are written in that target language.

9) References
LDH75, LDH77, LDH79

- 66 -

LINGUA
Georg Heeg, Enno de Vries
Abteilung Informatik
Universitit Dortmund
Postfach 500500
D-4600 DORTMUND 50

(F.R.G.)
1) Members of the project
P. WILMES, G. HEEG, E. DE VRIES,
2) Birthdate : 1973 Deadline : 1980 (?)
3) General Features
;T
Lexical Analysis : : left linear grammars (regular
. expressions)
Syntactic Analysis : LALR(k)
Attributes Evaluation : Recursive evaluation by need
AG Class : unrestricted
AG Language : ’ based on PL/1
Code Generation : ' no special feature provided.

4) Schema

- 67 -

Attribute
Grammar +
Lexical

Descriptio

Grammar
Reader

Scanner
o I source text]

/ﬁ Generator

tables

internal form i scanner

™~

parser

SRS N,

i
|

| executablej tree

Parser parser
Generator PL/1]

o

compiler constructor

i -\

Attributes | Semantic
| Generator |

’ attributes
evaluator
(recursive
functions)

5 (PL/1]

Compiler
Kernel

L/1]

gemantic
value

generation time evaluation time

- - =

5) General Comments

iy

The attributes evaluation strategy is a recursive evaluation by need, very
close to the one used in the ERN system (see the FNC/ERN system) : each attribute
is turned into a function, taking as parameter a tree (or tree node) and returning
the value of that attribute at that node. Each function recursively calls other
functioné to evaluate other attributes if needed. An attribute value; once com-
puted, is stored in the tree in order to avoid reevaluating it. The process is
started by calling the functions corresponding to the (synthesized) attributes of

the tree root, which form the "semantic value'.

This strategy is efficient because it reduces the number of attributes
instances to be evaluated to those really necessary to compute the semantic value.

However this "necessity" is purely static here, as opposed to the ERN method.

- 68 -

True circularities are detected dynamically, by marking each attribute ins-
tance which is needed but not yet computed (that is, during its computation).
However, if the grammar proves to be absolutely non-circular, which is optionally

tested at generation time, this dynamic test is disabled.

The metatanguage is rather classical. Semantic rules ave written in PL/L
and the attributes data types are PL/l types (those which can be returned by a
function, which still leaves a great choice). One of the remarkable features
of this language is that it is completely parametrizable at the lexical and
syntactic levels ; that is, the grammar writer can tailor the appearance of his
AG to his own tastes. Another feature is that the lexical description is a BNF

left-linear grammar, augmented with an ALLBUT construct.

The system provides extensive information about the generation and eva-

luation processes.

The parser is generated as a tailor-suited PL/L.program rather than as a

set of tables for a fixed parser, which is the case for the scanmer.

6) Optimizations

None.

7) Applications and Performances

. a pilot implementation of the control language NICOLA.
. a compiler of a subset of Pascal to P-code consisting of 110 (syntactic)

productions.

For the last application, the scanner generator took a few CPU seconds,

the parser generator (the AG is LALR(2)) 15 seconds, and the semantic generator

cam~— 3o - ! L . . N
seconds. The PL/1 compiler took 25

—

80 seconds. The generated compiler analyzes

0
120-lines Pascal texts in 5 seconds and uses 236 kbytes of (dynamic) meﬁory. It

consists of about 400 functions.

. - 69 -

We have no information about the size of the system.
8) Projects
The authors speak of an unknown LINGUA TI.

9) References

HV 80.

- 70 -

LINGUIST - 86
Rodney FARROW

Intel Corporation

1) Members of the project

Rodney FARROW (now departed), Sue OJEDA, Tuyen QUOC, Al HARTMANN,
Tom WILCOX. '

2) Birthdate : ? Deadline : 1983

3) General Features

Lexical Analysis : regular expressions
Syntactic Analysis : LALR or LL
Attributes Evaluation : . alternating passes
AG Class : simple multi~LR

AG Language : based on Pascal

Code Generation : no special feature provided.
4) Schema

LINGUIST-86 runs on Intel 8086-based systems with floppy disk or hard disk

secondary memory. It is written in Pascal and produces compilers written in Pascal.

- 71 -

0

Source text
regular scanner x
expressions ™ generator
Attribute LALR
rammar arser scanner +
S . nerator | parser +
ge “tree
constructor
LINGUIST-86
parse. tree

(0

User
modules
[PASCAL

Attributes

» Evaluator +
tree reader
writer -

Predefined
system modules
PASCAL]

object code

H

evaluation
time

generation time

5) General Comments

$

a) about the evaluation strategy

The evaluation stragtegy is basically an alternating passes evaluation,
where the attributed parse tree is stored mainly in secondary memory (disks). This
method is derived from [Sch76]. In a left-to-right pass for instance, a node is read
from the fiie onto the stack, its inherited attributes (i.e. those for the correspon-
ding pass) are evaluated, and then, for each df its sons. (from left té right), the
following process is repeated : read the node onto the stack, evaluate its synthesized
attributes, write it onto the file. Then evaluate the synthesized attributes of the
former node, write it on the file and pop its sons from the stack. When the pass is
" ended, the file is ready for being input to a right-to-left pass (which impliesvthat
the passes are strictly alternating).

- 72 -

This process is implemented through a set of recursive procedures, one for
each production and each pass. Each procedure takes as parameter the node correspon-
ding to the LHS of the production, which has been read and allocated onto the stack

by the caller.

The alternating-pass test is polynomial, and the whole is easy to imple-
ment. It is very efficient in space since main memory is limited to 48 kbytes on the
host system (8086-based) and yet everything runs ! However the whole process consu-

mes much time and space in secondary storage.

LINGUIST~86 can generate an evaluator to be interfaced with either a
bottom-up parser (in which ocase the first pass, which is combined with parsing, must
be R-to-L) or a top-down (first pass L-to-R). The choice is left to the grammar

writer. However the system comes with only an LALR (bottom-up) parser generator.

b) about the use of the system

The semantic rules are written in an expression language based on Pascal
and augmented with a functional if-then-else. The system predefines two attributes
for terminal symbols.

.'\'

Each non-simple production has also a "limb symbol" which is the third
type of grammar symbol (in addition to terminals and-non—terminals). It is used to
construct the name of the production-procedures, but it may also have attributes
which serve as local names inside the production, e.g. to store common subexpres-

sions.

LINGUIST-86 has also a facility to generate some of the missing semantic

rules.

A semantic rule: may define several attributes occurrences at a time.
f1 the

.. .
This is useful for instance if 2ir values d nd on

[$1GN N

then be tested only once.

- 73 -

6) Optimizations

They are all related to space management.

The most efficient space-saving optimization is called "static subsunption'.
Its effect is to store (whenévér: possible) "temporary'" attributes (defimed as attribu-
tes which areused only in the current pass) into global variables rather- than nodewise
or onto the stack. The effect is to reduce the size of the tree nodes (secondary sto-
rage) and the size of local storage on:the stack (main memory). It also saves some
code in the evaluation procedures (by 13 to 20 7Z) since it eliminates a large number
of éopy rules. Static subsumption is related to the investigation of the storage ;1—
location problem by Ganzinger [Gan 79b] and to some optimizations implemented in

the GAG system (q.v) (see [Far 82b, FY 85)).

Other space-saving optimizations are not to store in the tree temporary
attributes, and to loosen somewhat the order of attributes evaluation in esch produc-

t ion-procedure.

7) Applications and performances

LINGUIST-86 was designed to be used by INTEL Corp. to develop language

il
translators and other processors for their machines.

The two applications quoted in [Far 82b] are a Pascal froﬁt—end and
LINGUIST-86 itself, which is bootstrapped as a 1800-lines AG evaluable in 4 passes,

first R~-to-L.

LINGUIST-86 is about 55 kbytes of code and processes its inputat 350 to
500 lines per minute (frcnt-end only), which is competitive with hand—written com-
pilers running on the same machine (400 to 900). Experience shows that most of the
processing time of LINGUIST-86 and the gemeratedcompilers is spent reading and wri-

ting the tree from and to secondary storage.

- 74 -

8) Projects
Unknown. Rodney Farrow is now at Columbia University in New York.

9) References

Far 82a, Far 82b, FY 85

7)_

Modularer Ubersetzer Generator
J. EICKEL
Institut Fur Informatik
Technische Universitat Munchen
Arcisstrasse 21 - Postfach 202420
D-8000 MUNCHEN 2
(F.R.G.)

MUG 1

1) Members of the project

. J. EICKEL (head), R. WILHELM, K. RIPKEN, H. GANZINGER,
J. CIESINGER, W. LAHNER, R. NOLLMANN.

2) Birthdate : 1972 Deadline :

3) General Features

Lexical Analysis :

Syntactic Analysis :

-Attributes Evaluation :

AG Class :
AG Language

Code Generation

1975

regular expressions

LL(k), LR(k), LALR(k) with
error recovery

in parallel with parsing

1L - AGs

calls to PS 440(*) procedures
embedded in the CF-grammar

see below

(%) PS 440 is the system implementation language of the Telefunken TR 440 cbmpuﬁef

-'76 -

4) Schema

MUG 1 runs on the Telefunken TR 440 machine.

i
i
i
|
: Source text
I
i
-
Symbols scanner ig_—_;&___ﬁ
efinition generator g Scanner
i
i
1
Attribute grammar
Grammar reader :
parser ll
[parser
generators !
F
1 i
]
i
5
Internal i
' .
‘ representation |
; error
; \\\\N }/’ l recovery
rammar !
g module
accessmodule | !
: 1
|
]
[|
" attributes | B
: error ! '
handler or recovery : attributes
i {
generators generation ! handler
1| H B4
] i $
L3 Module
Semant ic ’/_,,aé—””'dﬂT :
actions modules Semant ic aCtuns_’__,,,/~”’/’ i ’ mocule
PS 440] / reader A
__/ 1lib ;
MUG 1 [PS 440 Tibrary { [Ps 440]
: modules i .
{
_—///7 |
]
1
|
!
!
Generation time evaluation time
|
{
i

- 77 -

5) General Comments

MUGl generates one-pass compilers. The semantic rules are written as proce-
dure calls embedded in the CF-grammar. Each procedure has in-arguments (inherited
attributes) and out-arguments (sypthesized attributes). Non-terminals may also have
such in- and out-arguments. In fact attribute grammars in the sense of MUGl are very

close to affix grammars [Kos 71b]. The AG is restricted to be an 1L-AG.

Attributes evaluation is carried out in parallel with syntactic analysis.
In the top-down case, the attributes handler manages the stack(s) of attributes
values and the calls to the procedures. In the bottom-up case, the underlying CF-
grammar must be transformed in order to force the parser to do a top-down simulation
in some cases where inherited attributes are to be transfered. This transformation
is performed automatically by MUGl, but the resultant grammar may not be LR(k) any

more because of the introduction of empty~RHS productions.

‘Special routines are provided to translate intermediate codeé to machine

code ; those are not part of the AG.

One of the main goals of MUGl was modularity and efficiency of the generated

compilers. This explains those strong restrictions. .

6) Optimizations

None.

7) Applications

. Toy languages

;A subset of Algol 60, which sérved as a basis for a student compiler
laboratory project.

.It was intended to "bootstrap'" MUGl in some way in order to tramsport it
and the generated compilers onto other machines (PDP11l).

.MUGlwas used for several years for teaching compiler courses

- 79 -

MUG 2
Modularer Ubersetzer Generator 2
J. EICKEL (head), H. GANZINGER,
R. GIEGERICH, K. RIPKEN, R. WILHELM|
Institut Fiir Informatik
Technische Universitdit Munchen
Arcisstrasse 21-Postfach 202420
D-8000 MGNCHEN 2
(F.R.G.)

Preliminary Notice :

MUG 2 was originally developped in Munich as a successor of MUGI.
However MUG2 is considered by its authors as a research tool in which to
implement theoretical ideas rather than as a production-quality system. This
explains in part why the design and implementation of MUG 2 are so fuzzy and

change quickly. We shall describe its state as of late 1983.

An other point is that the original team in Munich has split into three
teams located in Munich, Dortmund and Saarbr't'xcken, and each team concentrates
on different aspects of the compilation process; thus MUG 2 is now a -
three-headed system called respectively MUG 2, M200 and OPTRAN, written in

different languages and running on different systems.

MUG 2 in Munich is written in Pascal and runs on a Siemens machine
under VM/CMS. M200 is written in Modula-2 and runs- on Unix. OPTRAN is

written in Pascal and runs on Unix.

- 80 -

Addresses :

. Abteilung Informatik
Universitit Dortmund
Potfach 500500
D-4600 DORTMUND 50 (F.R.G.)

. Fachberich 10 - Informatik
Universit8t des Saarlandes

D-6600 SAARBRUCKEN (F.R.G.)

1) Members of the project

*
In Munich : J. Eickel, G. Bartmuss, G. Jochum’, A. Liebl, K. Ripken",
M. Storz, S. Thirmel, F. Welty*, W. Willmertinger*, H. Wittner.

In Dortmund : H. Ganzinger+, M. Vach.
In Saarbrlicken : R. Wilhelm®, I. Glasner, U, M(')'ncke, B. Weisgerber.

2) Birthdate : 1975 Deadline : 1985 ?

3) General Features :

Léexical Analysis : extended regular expressions

Syntactic Analysis : LL(k), LALR(k) with error recovery and
abstract tree construction

Attributes Evaluation : several one-sweep passes

AG Class : modified simple multi-sweep

AG Language ‘ADELE

Code Generation : optimization through attributed

transformational grammars (OPTRAN) +

code templates.

*
: left to industry

T formerly in Munich.

- 81 -

4) Schema

P \\\\
[Source siiy
- _

—
Scanner ﬁ\““N\‘N\M scanner
generator . RN par ser
tree constructor
|
! M
BNF + string-to- r-| parser and tree e ///”_' """"" ~.
tree grammar “““'Wﬁ constructor gene- |~ (abstract \
| | rators , ' .. tree
1 — -
AttribugngE;?]’luation .. Se.mant ic e y Attributes
\\‘ passes constructor Evaluators
\\\\\\-~____,/«”'
{ ttributed
! abstric':ﬁ
— |
/’////ﬁ— \\\\\ E
// Attributed Trans- .
f formational Grammar(s)\nu> Tree Transformations | Tree analyzer
K [OPTRAN] Constructor "--.. | and trans-
N : ! former +
. 3 : attributes
reevaluator

/—'\,-_\\ . | ’__J_,,,.,'Z_.__,__m.” N
C Code Generator ' -/ ~

ode Templates e e e ! - / new attributed

Constructor : {
_,,//// ; : -abstract tree -
__ . -

o

v

Code generator

i

Ly = .
P S
{(intermediat:)
\code /
e

generat ion time : evaluation time

- 82 -

5) General Comments

MUGZ 1is a complete compiler generatorbased on attribute grammars. Its main
goals are modularity (both in the input descriptions and in the generated compilers),

expressive power, efficiency and versatility.

As for pure attributes evaluation, considered as the operation of decora-
ting some tree with some values, the two peculiar features of MUG2 are the use of

abstract trees rather than concrete syntax trees, and attributed tree transformations.

a) about the ''syntactic" part

This part contains the lexical analysis, the syntactic analysis and the

abstract tree constructor.

The operators (nodes) of the abstract trees have a fixed arity. The same
subtree may be duplicated to become the son of two or more different nodes [Gie79].

The abstract tree is constructed in parallel with parsing.

b) about attributes evaluation

The modularity in attributes evaluation is implemented in ADELE and in the
generated compilers by the splitting of the AG into one or more passes (i.e. subgram-
mars), each corresponding to an evaluation sweep. This decomposition into passes is
left to the grammar writer, and each pass must be evaluable by the "one-sweep" strate-

gy [EF8lc]. All passes operate on the same (abstract) tree, which will be decorated
step by step.

An attribute grammar in ADELE is composed of the following parts [Gan82]:

L - definition of the abstract syntax ;

- types and constants ;

-~ attributes declarations ;

- functions specifications H

|

definition of passes, including local attributes declarations, functional

- 83 -

attributes specifications and semantic rules (called "attributes statements').

The definition of the abstract syntax is mandatory because an ADELE AG can
stand alone, without refering to a particular string-to-tree grammar. MUG2 will check
that a given string-to-tree grammar indeed generates cofrect trees w.r.t. the given

' abstract syntax definition. The main characteristics of abstract grammars in ADELE

are

~ ambiguity is allowed ;

- terminal symbols are automatically distinguished by not appearing as the
LHS of a production ;

- simple productions are also distinguished (by the grammar writer) : they
will not appear in the tree and cannot have associated semantic rules, apart from

simple copy rules.

The types and constants part specifies Pascal-like and Pascal-compatible
types and constants. In addition to those a concept of functional types is provided.
Their implementation is some Pascal type about which nothing is known to the grammar

writer. Functional types can be (indirectly) recursive.

Attributes declarations specify the ADELE type and kind (i.e. synthesized
or inherited) of each attribute. The attachment of attributes to nodes will be infered
from the attributes statements. Two predefined "lexical" attributes are provided.

Sz
Functions specifications declare the profile of external functions andfor

procedures, which must be supplied separately.

Attributes statements (semantic rules) are associated with a particular
(ébstract) production. They are written as assignments of expressions toattributes
occurrences as in any AG. An expression can be either a Pascal expression, another
attribute occurrance, or the body of a Pascal procedure. Within such bodies it is-
possible to refer to other attribute occurrences and to access subcomponents of those
if they have a structured type (record or array). Using a Pascal body it is possible to de-
fine several attributes occurrences in a single attribute statement.

A functional attribute is defined as an attribute (sub-) grammar. In ADELE

ény attribute (sub-) grammar "AG" defines the function "AG of X" for any node X

- 84 -

which is labelled with (one of) the start symbol(s) of "AG" in the tree. "AG of X" ig
then seen as a function mapping a tupel I of values for the inherited attributes at,

X to a tupel S of results as follows

- initialize the inherited attributes at X with I 3

- evaluate the "AG" - attributes in the subtree rooted at X 3

- deliver the final values S of the synthesized attributes at X as the
result. The attributes instances of "AG" evaluated by this "call" disappear after

the results have been delivered.

Functional attributes values are computed by invoking such a process by
the "eval” clause. They can be passed as normal attributes values to other nodes in
the tree. A typical use of such functional attributes is to implement symbol table
entries ; each entry will then be the subtree corresponding to the declaration, which

can be traversed when "evaluating" those functions.

An (outer) attributes evaluation pass may contain local attributes and
local functional types. Attributes whichare declared locally cannot be accessed from
other evaluation passes, and are therefore not stored in the tree but rather (because

of the l-sweep strategy) on a stack.

An evaluation pass may also contain circular attributes dependencies if
they are defined as "iterative". If so, the attributes evaluation will be repeated
iteratively until all the attrlbutes instances values do not change during one pass
(i.e. until "convergence"). Circular dependencies are used (by the keywords last and
initially) to supply old values to the new iterationThis feature, which ig only a
"formalization" of what happens in real compilers, is very useful for e.g. data flow

analysis.

It is also possible, in each semantic rule, to reference non-local attri-
butes occurrences (of an ascendant node) with the enclosing construct. Because of
the l-sweep strategy, it is possible to store those enclosed attributes in global

variables.

~ 85 -

¢) about attributed tree transformation

Tree transformations are a tool to specify and perform source level
optimizations, after some evaluation passes have computed relevant information,
e.g. data flow information. In MUG2, tree transformations are written in OPTRAN
[GMW80, GGM82, MWW84]. They are a sequence of transformation units (t-units). A

t-unit is a set of transformation rules composed of :

- an input template describing the original shape of a subtree ;

- a predicate, which is a boolean expression involving attributes of the
nodes of the input template, and which tells whether the transformation is applica-
ble ;

- an output template describing the final shape of the subtree ;

- attributes reevaluation rules, which tell how to compute the attributes

of the new nodes in term of the old ones.

The t-unit is completed by a specification of the strategy to use when
traversing and transforming the tree. OPTRAN offers several fixed strategies (e.g.

bottom-uyp).

Tree transformations may map the input tree language onto itself (pure
transformations) or onto another language (transfer transformations, e.g. to produce

intermediate code). i

After each application of a transformation rule the attributes of the res-
tructured tree must be reevaluated to guarantee the crngistency of the attributed
tree. Reevaluation is not needed at all if the safeness of the transformation phase
canbe proven [GMW 80]. The reevaluation algorithm used in MUG2 is described in (MWW 84]
and uses a table-driven automaton. The authors claim it is more efficient than the one
of Reps [Rep 82b3.

The output of a t-unit is an attributed tree which may be feeded to ano-

ther t-unit or to other evaluation passes.

d) about code generation

Code generation is the part of MUG2 which is in the least advanced state.
It is described by code templates : there is a code template for each operator (node)

in the tree, and it is a sequence of actions which can be of three kinds :

- 86 -

- visit an operand (son) subtree ;
- compute some local values (e.g. labels) ;

- output some code using the node's attributes and those local values.

This method resembles the one used in HLP78 (q.v.). However those code

templates may receive, use and pass some parameters.

Apart from that, only theoretical work has been undertaken, e.g. on

peephole optimization.

6) Optimizations
The main optimizations are related to storage management.

The first point is that using abstract trees rather than concrete syntax
trees reduces the storage needed for the tree, by getting rid of clumsy syntactic

constraints.

As for attributes values, the splitting into one-sweep passes allows to
apply the optimizations devised for evaluators in passes [Poz79, R4i79,...], and
indeed they are MUG2 allows for instance to determine (at generation time) the
lifetime of attributes, distinguishing temporary (i.e. one-pass) attributes which

can be stored on a stack [Gan 82].

7) Applications

. Toy languages.

. A sophisticated formatter for mathematical formulas.

No information is available on the size and actual organization of MUGZ2,

nor its performances.

8) Projects

- 87 -

The future of MUG2 ([BT841) concentrates on two main aspects :

- attributed tree transformations as described here;
- a new form of AGs, named Attribute Coupled Grammars [GG84], in which no
distinction is made between syntactic objects (trees) and semantic objects (attributes

values).

The last point will be further developed by Harald GANZINGER in Dortmund.
As a by-product, the implementation wiil be carried out in Modula-2, and the possible
evaluation‘strategies will include ASE>and the Kenndy-Warren method. This implementa-
tion is planned to be completed by the end of 1985. The Munich version of MﬁGZ also

incorporates Attribute Coupled Grammars.

9) References

BG 81, BT 84, Gan 82, GG 84, GGM 82, Gie 79, GMW 80, GRW 77, MWW 84,
Rip 75, Wil 78.

- 88 -

| NEATS
New Extended Attribute Translation System
Ole Lehrmann MADSEN '
Computer Science Dept.
Aarhus University '
NY- Munkegade
DK-8000 AARHUS C
(DENMARK)

1) Members of the project

0.L. MADSEN (head), P. JESPERSEN, M. MADSEN, H. RIIS (NEATS), -
S.H. ERIKSEN, B.B. KRISTENSEN (BOBS).

2) Birthdate : 1978 Deadline : ?

3) General Features g

Lexical Analsyis : unspecified (hand-written ?)
Syntactic Analysis : LALR(1)

Attributes bvaluation : DAG~evaluator [Mad 80a]

AG Class : : non-circular

AG Language : EAG or EATG
'Code Generation : EATG

4) Schema

NEATS is written in Pascal and runs on DEC-10.

- 89 -

Attribute BOBS syntactlic ,
A T e Tt tables
Grammar " :
Y Translator skeleton
EA(T) G
" generator Semantic translator
- tables

generation time evaluation time

5) General Comments

The input to NEATS is an Extended Attribute Grammar (EAG) or an Extended
Attribute Translation Grammar (EATG). Extended Attribute Grammars{ Mad 80, WO 77, WM 79,
‘WM 83] are a mixture of affix grammars [Kos 71] and attribute grammars. Attributes have
no name 3 they are just slots attached to each non-terminal (and some terminals).
Synthesized and inherited attributes are distinguished. The semantic rules and cons-
traints are embedded in the context-free productions, by filling the tattribute) slots

with variables and expressions.

At the basic level, input attributes (i.e. the inhefited ones of the LHS
and the synthesized one of the RHS) are just variables. These variables can be used in
the expressions defining output attributes. If all the input attribute variables are
~distinct, then no constraint is attached to the production. It is allowed to use the
same variable for different input attributes, and even to use expressions. This means
that the input attributes must have the shape described by those expressions, in a
pattern-matching way. Similarly, the same variable for different input attributes means
that those attributes must have the same value. These constraints are implicit in an
EAG,‘which‘is a generative description rather than an analytic one. For an example of

an EAG see [Wat 79].

Constraints can be enforced by introducing non-terminals deriving the empty

string iff a given predicate is verified. Because of the generative nature of EAGs,

- 90 -

those productions can be derived only if the predicate is true. Those predicate non-

terminals are used to describe computations which would otherwise be described by extra

grammatical user functions,

Extended Attribute Translation Grammars (EATGs) are to EAGs what attribu-~

ted translation grammars [LRS 74] are to normal AGs, or what syntax—directed transla-

tion schemes [AU 73] are to CF-grammars. An output grammar is associated to the input

grammar ; they have the same non-terminals but may have different terminals. The

output grammar is also an EAG. To each input production a corresponding output produce

tion is associated. The attributes expressions of the output production can refer to

the attributes variables of the input production but not vice-versa. Output terminals

can have only inherited attributes, specifying e.g. what value is to be output for the

terminal "INTEGER".

Attribute values have a domain (type). Basic domains are booleans, integers;,

names {(strings) and Pascal-like enumerations. Domains can be combined with the follo-

wing domain constructors

cartesian products (records), discriminated unions. (vari-

ants), (partial) maps (to represent arrays or tables) with disjoint union and over-

riding, and sequences. Attribute values having a "map" domain can occur (in the géne--

rative sense) only if they are used where defined ; this implements constraints such

as mandatory declarations.

1

An EA(T)G to be input to NEATS is composed of :

a definition
a def inition
a definition
a definition

a definition

of
of
of
of
of

ones for an EATG) with their

the attributes domains ;

user functions (there stay some !);

non-terminals and terminals with their atéributes domains
attributes variables, with their domains ;

the set of productions (input productions,: and output

semantic equations.

NEATs transforms such a description into an equivalent classical AG. This

transformation is possible only if the EAG is well-formed {Mad 80a], i.e. non-circular.

The syntactic part is processed by the BOBS LALR(1) parser generator. However predicate

- 91 -

non-terminals do not appear in the actual CF-grammar : they are translated into cons-—

traints.

Attributes evaluation is performed by a DAG-evaluator [Mad 80a] : during
parsing the parse tree is not constructed, instead the compound dependency graph'is
built. This graph is then traversed in a depth-first manner, and attributes are
evaluated upon return to a node. This depth-first search can also detéct dynamically
the true ciréularities. This evaluation strategy works for all non-circular AGs, and

even for circular ones if a meaning is given to "circular attributes'.

6) Optimizations

In the compound dependency graph, nodes (i.e. attributes instances) which
are connected by a copy rule are collapsed. This saves a lot of space. The authors
claim that all in one the size of the DAG is proportional to the size of the parse

tree.
it is intended to implement a method to let attributes values influence the
parsing (rule-splitting [Wat 80]). However this will change completely the evaluation

strategy.

-7) Applications

: Actual applications are not known. The references present some examples of

EAGs and EATGs ; in particular [Wat 79] is an EAG to express the static semantics of
full Pascal ; [JMR 78] presents an EATG to translate the pL source language into the
~cL assembly language ; [Mad 80a] studies how to express predicate transformers, dena-

tational semantics and operational semantics by means of EAGs.

We have no information about the sizes and actual performances of the
system ; however it is considered as slow because of its important space consumption,

even on the DEC-10.

- 93 —

PARSLEY
Milton E. BARBER
Summit Software
LOS GATOS, CA
(U.S.A.)

1) Membeps of the project

M.E. Barber and probably others.

2) Birthdate ? Deadline ?

3) General_Features

Lexical Analysis: type~3 grammars (regular expressions).

Syntactic Analysis: MD (1) (Mixed Directions Parsing).

Attributes Evaluation: alternating passes

AG Class simple multi-pass

AG Language: ‘ Parsléy language (strict extension of
Pascal). _

Code Generation: : no special feature provided.

4) Schema

Parsley is written in standard Pascal and thus rums on a large

.number of machines.

- 94 -

-

Input Parsley

[Parsley Comriler

Processor

Language] [Pascall

[Parsley]

5) General Comments

Parsley is an attempt to provide a unified framework combi-
ning scanner generation,parser generation, attributes evaluation
and standard Pascal programming. A summary of Parsley extensions
over Pascal is as follows:

- tree structures become a data type; they are described by
context-free grammars;

- an extended language is provided to express the computation
of certain kinds of functions on trees; this language offers
essentially AGs capabilitys

- a new kind of subprogram, called an "iterator",is provided;
.like a function, it yields'values, however it yields a stream of
values rather than a single value;

T @ neéw statement, called "parse", is provided; it takes a
stream of elementary objects, constructs the parse tree of that
stream according to a specified grammar and then computes a spe-
cified set of functions on this tree.

Everything from a simple scanner to a complex multi-pass AG
ispresentéd to the user via a single model: the parse statement.
The Parsley processor automatically recognizes the fact that, for
4 scanner, finite~state techniques are sufficient, and auvtomati-
cally determines the number of passes necessary to evaluate more
complex AGs. It can also determine whether attributes evaluation
can be conducted in parallel with parsing. The parse statement
can be used as any Pascal statement in a Parsley program;this en-

hances. the flexitility of the system.

- 95 ~

MD parsing is a mixture of top-down (LL(l)) and bottom-up
(LALR (!)) parsing, with a preference given to the former. It
is based on the partitionning of a grammar into pieces;

Since the system is written in standard ANSI/ISO Pascai,

it is highly portable.

6) Optimizations

Unknown.

7) Applicatiohs<

Unknown, apart from the Parsley processor itself which is

bootstrapped.

8) Projects
Unknown.

9) References

Bar 83

- 96 -

V.P. MAKAROV
Gomel Nivision
Institute of Mathematics
Acade@y of Sciences of Bielorussia.

(U.S.S.R.)

SAGET

1) Members of the project

V.P. MAKAROV, V.G. PESHKOV.
2) Birthdate : 1979 (?) Deadline :

3) General features

Lexical Analysis :
Syntactic Analysis :
Attributes Evaluation :
AG Class :

AG Language :

Code Generaﬁion :

4) Schema

?

automatic generation but otherwise unknown.
LR(1) with error recovery

during parsing

purely synthesized

SEM

no special feature provided.

SAGET is written in PL/1, produces compilers in PL/l and runs on the soviet

M5030 computer.

;”iéxical
description L

- 97 =

» SCanner

LEM]

'vAﬁtrihute

o ' 9
scanner l

tables

generator]

parser

Grammar .
SEM |

5)_General Comments

generator

transductor
generator

skeleton |

lexemes stream

parser

tables

——

skeleton

Y ’
derivat;;;-::;;“\\‘\
in inverse notation /)

$

‘ITransductor

generation time

e e e et e e e e e e]t it e e e e o e o e N G s e e = e e e e

output values

evaluation time

The basic evaluation algorithm is the classical one used for evaluating

synthesized attributes during a bottom-up syntactic analysis. Attributes values are

stored on a stack parallel to the .parse stack.

- 98 -

PP : :
‘ The only modification, which transforms<such an’AG into an attributed‘quasiq
translat ion grammar, is the use of "working attributes" which act as local variableg

inside a production and propagate information from left to right. However this infor-

mation cannot be used inside subtrees ; this is not inherited information. .

It is also possible to use global attributes (global vafiables);

Semantic rules are written embedded in the productions. The metalanguage
is called SEM and is based on PL/l. Synthesized and working attributes can have only
the types bit-string or integer. Global attributes can have any PL/1 type. User-

defined functions and procedures are written in PL/1.

The SAGET system consists of about 3500 PL/l lines.

6) Optimizations

Unknown.

7) Applications

Pascal (syntactic part only).
We have no information about the performance of SAGET.

8) Projects

Unknown.

9) References

Mak 82, Mak 83, MP 80.

- 99 -

SSAGS
Syntax and Semantics
and Generation Sys

Teri F. PAYT

Box 517, PAOLI, PA
(U.S.AL)

SDC, a Burroughs Company

Research and Development

Analysis
tem

ON

19301

1) Members of the project

Teri F. PAYTON, Steven E. KELLER, John A, PERKINS,

S.P. MARDINLY, S. ROWAN

2) Birthdate s ? Deadline : ?

3) General Features

4) Schema

Lexical Analysis :
Syntactic Analysis :
Attributes Evaluation :
AG Class :

~AG Language :

Code Generation :

SSAGS runs on Burroughs B6900 (in Algo

regular expressions

SLR with error recovery
Visit—-sequences |

0AG ,

IDL (InEerface Description-Lapguage)

No special feature provided.

1 68) and soon on VAX/UNIX (inC).

~ 100 -

‘Scanner Generator

SCANRGEN]
Parser Generator
PARSERGEN !
Semantic Analyzer | Scanner
1 Generator (SAG)] parser
Attribute Generation ~ ‘Generation
| System g tree
‘ ystem
Manager constructor
Manager
' ' attributes
Data Structures = Evaluator
Definition Tool
DSDT
I '
]
SSL '
Data Structures :
and Operations :
i
// Attributed
SSL Translator tree
i
generation time evaluation time

5 i

5) General Comments

SSAGS was designed to be not only a pure attributes evaluator but mainly
a program generation tool, applicable to the development of a wide range of software

products.

Regarding the core of the system, SAG, which is the attributes evaluator
generator, not much can be said : SAG uses well-known methods [Kas 80]. The 0AG
~evaluation is performed by a set of recursive procedures. The output is the attributed

tree.

The most interesting feature of SSAGS (and the most unusual with respect
to this survey) is the data abstraction facility provided by the DSDT. The structure
of the output attributed tree can be described by a high level specification (in IDL),

- 101 -

and packages which implement those data struetures and the operations to manipulate
them are produced automatically. Those packages (and in fact the whole generated
front-end) are written is SSL (Semantics Specification Language) which is a subset
of Ada "powerful enough to specify the semantics of a front—end, yet simple enough
to facilitate easy translation to a variety of implementation languages such as
Algol, Pascal or C " [PKP82al]. This later tramslation is the task of the SSLT,
which currently produces Algol 68 (on the Burroughs B 6900) and C (on VAX/UNIX).

The other unusual feature of SSAGS is the use of AGs to implement tree-—
transformation grammars (TT-grammars) [KPP 84]. A TT-grammar specifies the mapping
of trees of an input grammar to trees of an output grammar (and vice-versa in some
cases). A number of different classes of TT-grammars are defined. SSAGS automatically
translates a TT-grammar into an AG performing the translation, and generates the
corresponding evaluator. The authors claim that this new formalism is much more
pleasant than AGs to specify tree-to-tree transformations such as performed in a
- compiler front-end (from input language parse tree to an intermediate form). The loss
of generality (TT-grammars do not have the full power of AGs) is balanced by the

possibility to prove the "correctness" of the transformation.

6) Optimizations

None, as far as we know.
iy .
SSAGS producesan attribute dependencies cross-referencer and traces in

order to help the grammar writer "debugging' OAGs' cycles.

7) Applications

SSAGS itself : the system is bootstrapped.
. A FORTRAN format encoder.
. An Ada front-end (under progress).

. ‘Ada to DIANA trees and DIANA trees to C trees.

8) Projects

Improvements of tree transformation techmiques.

- 103 -

SUPER
V.M. KUROCHKIN .~
Computing Centér of The
Academy of Sciences of the USSR
Varilova 40
117333 MOsScowW
(U.5.S.R.)

1) Members of the project

V.M. KUROCHKIN, A.N. BIRJUKOV, V.A. SEREBRYAKOV.

2) Birthdate : 1978 Deadline : ?

3) General Features

Lexical Analysis : s 2

Syntactic Analsyis : LR(1), LL(1)

Attributes Evaluation : Léft—to—right passes

AG Class : 1) Non-circular 2) One-~visit
AG Language : based oh Pascal

Code Generation : No special feature provided

'4) Schema

The system is written in Pascal and generates compilers written in Pascal.

- 104 -

' |
1 ——
(T;;;:;;\\ Scanner and E ' .
[t
I

e Parser generator {TT———
\3111:—"]/ ser g _—

‘ B
e
trﬁg_,)
‘ Genefat}on of
Trasca] —+ trograns s Tres

Cbject code

evaluation time

1
t
1
i
]
]
1
!
]
1]
]
1
1
i
¥
tree traversals ' Traverser
|
)
|
]
[}
1
|
|
1
%
generation time :
i
]
|

5) General Comments

SUPER distinguishes global attributes, corresponding to large data struc-
tures (arrays, records, files,...), and other attributes.
5
An algorithm, linear in the size of the source text, organizes the infor-
mations so that attributes evaluation can be performed in a sequence of top-down left-
to-right tree traversals. This tree-walk is computed by a coding of the parse tree

during syntactic analysis.

SUPER comes in two versions, a general one for any non-circular AG, another

limited to one-pass (1l visit) AGs.

6) Optimizations

As soon as an attribute instance becomes useless, it is deleted and its

storage reclaimed.

- 105 -

7) Applications

. ASPLE
. . SUPER itself (the semantic generation part), representing about 3000
Pascal lines.
We have no information about the performance of the system.
8) Projects

Unknown.

9) References

BKS 79a, BKS 79b, BKS 80, BKS 81.

- 106 -

The Synthesizer Generator
Thomas REPS, Tim TEITELBAUM
Dent. of Compu;er;Science

Upson Hall

Cornell University

ITHACA, NY 14853

(U.5.A.)

1) Members of the project

Thomas REPS, Tim TEITELBAUM, Alan DEMERS , Susan HORWITZ, M. FINGERHUT,
A. ZARING, K. MUGHAL, D. MOITRA, T.K. SRIKANTH.

2) Birthdate : January 1980

3) General Features

4) Schema

A
Lexical Analysis :

Syntactic Analysis :

Attributes Evaluation :

AG Class :
AG Language

Code Generation :

Deadline : unspecified

regular expressions (LEX?)

LALR(1) with disambiguation rules an& prece-
dence rules (YACC) or structural top-down
derivation

Incremental

1) Non-circular 2) OAGs

SSL (Synthesizér Sﬁecification Language)

none.

The system is written in C and runs on VAX/UNIX.

- 107 -

: user requests
Editor

Synthesizer editor
Specification . Generator i
[ssL] [c] kernel

Lcl |, display

]
|
|
tables |
:
t
|
1

attributed tree

5) General Comments

The Synthesizer Generator is a tool for specifying how objects may be
edited in the presence of context-sensitive relationships. The editor designer pre-
pares a specification which includes rules defining a language's abstract syntax,
context-sensitive relationships, display format and concrete input syntax. From this
specificétion the Generator creates a full-screen editor for manipulating objects

(texts) according to these rules.

The Synthesizer Generator is particularly well suited for creating editors
that enforce the syntax and static semantics of a particular language. Each object
to be edited is represented as a consistently attributed (abstratt) derivation tree.
When these objects are modified some of the attributes may no longer have consistent
values ; incremental Pnalysis is performed to update attribute values throughout the
tree in response to modifications. 1f an editing operation modifies an object in
such a way that context-dependent constraints are violated, the attributes that indi-
cate satisfaction of these constraints will receive new values, and can be used to
annotate the display in order to provide the user with feedback about the existence

of errors.

Editor specifications are written in the Synthesizer Specification Language
(SSL), which is based on the concepts of a term algebra and an attribute grammar, al-
though certain features are tailored to the application domain of language-based

editors. SSL is described in [RT 84a, RT 84b] and summar ized below.

- 108 -

The Synthesizer Generator has two components : ;

a translator that takes an SSL specification as input, and produces gram-

mar tables

- an editor kernel that consists of an attributed-tree data type [DRT 81,
Rep 82] and a driver for interactively manipulating attributed trees ; the kernel

takes input from the keyboard and executes appropriate operations on the current tree.

A "shell" program handles the details of invoking the translator and pro-

ducing a language-based editor from the resulting tables.

A number of original ideas implemented in the system are discussed below.

a) Optimal-time incremental attributes updating
[Rep 82a, Rep 82b, RTD 83, Rep 84]

Each editor represents a program as anattributed tree, and programs are
modified by tree operations such as prunning, grafting, deriving and parsing. A deri-
vation tree modification directly affects the values of the attributes of the modifi-
cation pointﬁ and maybe other values ; incremental analysis is performed by updating
attributes values throughout the tree in }esponse to modifications. After each modi-
fication to a program tree, only a suBset of attributes insgances, denoted by AFFECTED,
is determined as a result of the updating process itself. The editor kernel of the
Synthesizer Generator uses algorithms which require O(IAFFECTEDl) steps, where the

is the

application of a semantic rule is counted as an atomic step. Since jAFFECTED
minimal amount of work required to update a tree after a modification, these algorithms

are asymptotically optimal.

In each generated editor, one of two versions of the attribute updating
algorithm is used : either one which works for arbitrary non-circular AGs or a much

more efficient

P P S SR T
“he il 1

one which works for ordered AGs. The choice is done at generation time' :
if the grammar passes the OAG test, the editor is created with a version of the editor
kernel which has the more efficient change propagation routine. In addition, this kernel
uses a much more compact representation of tree nodes that leaves out some of the ‘

information needed by the more general algorithm.

- 109 -

These attribute updating methods also have applications in optimizing com-
pilers for updating data flow information after an optimization has been applied (see

the transformations in the MUG2 system).

b) Sublinear attributes evaluation

[Rep 82b, Rep 84, RD 85] A method for reducing the amount of primary sto-
rage an editor uses has been implemented in the Synthesizer Generator. It allows to
make use of spill files in secondary storage. Syntactic subtrees outside the current '
focus of attention are linearized in a preorder representation and paged to secondary
storage. The semantic effect of the subtree, viewed as a function from its inherited
attributes to its synthesized attributes, is compiled into a linear code string that
evaluates the function. The compilation method ensures that when the function is eva-
luated, 6nly a sublinear number of temporary values will be retained at any one time.
The compilation method is based on an algorithm for evaluating a distinguished attri-
bute of an n-attribute tree that saves at most 0(/5) attribute values at any stage of

the evaluation.

c) The Synthesizer Specification Language

- The core of an editor specification is the definition of an abstract syntax,

specified as a collection of phyla and operators. An operator is a uniquely-named,
possibly O-ary, cartésian'product of phyla. A phylum is a non-empty set of operators.

"A rule of the form :

phy_ : op (phyl,phyz,-~.,phyk) ;

declares the membership in '"phy " of a k-aryo erator "op" with arguments "phy.",
phy_ P g phy,

"phyz",..., "phyk", and is analogous to the context-free production :

phy_- phy, phy,...phy,

with some differences.

- 110 -

Predef ined primitive phyla include INT, CHAR, STR, FLOAT, DOUBLE and BOOL.

*

For instance the INT phylum contains the nullary operators (comstants) 0,1,-1,2,-2,..%

The first declared operator of a phylum is termed the completing operator
and is used, by default, at unexpanded occurrences of that phylum in the derivation

tree (so it should be O-ary).

Attributes and semantic rules are attached respectively to phyla and ope-
rators. The basic syntax of the corresponding attribute grammar borrows much from C
and YACC input language. It is extended by the possibility to use local attributes in
a "production”, which permit defining a computation in one operator of a phylum withou

imposing that definitions be provided in every production of the phylum.

In SSL, an attribute's type can be one of the built-in primitive types, or
it can be a user-defined composite type. The same sort of rules are used precisely to
def ine composite types as to define abstract syntax. Thus, the abstract syntax tree
being edited and the attributes attached to it are all elements in the universal domaii

of terms.

SSL incorporates a notation that permits the specifications of separate
aspects of a language to be placed in separate portions of a specification : AGs and

S . . .
declarations can be split in séparate parts. It is allowed to

- add a new attribute to an existing phylum ;
- add new semantic rules to existing operators, and

- add new operators and their semantics to an existing phylum.

The display of an object is defined by an unparsing scheme given for each
production and consisting of a sequence of strings; names of attributes occurrences
and names of right-side non-terminals (phyla). The display is generated by a left-to-
right traversal of the tree that interprets these schemes. Formatting is defined by
control characters that can be included in the string of an unparsing scheme. The same
- formalism is used to display composite attributes values. Local attributes such as

error messages can be embedded in the display.

- 111 -

To specify the input interface, productions are given for a concrete input
syntax (a la YACC), along with semantic equations that define a translation to abstract
syntax. This translation can be context-dependent by allowing inherited attributes
to be propagated from the current cursor position in the abstfact tree into the tree
being parsed. This allows to define e.g. macro-commands. The. mechanism.to translate
input text to an abstract syntax tree provides the editor designer with the ability

to define textual and structural interfaces in whatever balance is desired.

Because of the uniform treatment of syntactic and semantic domains, it is
possible to permit attribute values to refer to and perform calculations on syntactic
components. A second consequence of that uniform treatment is that denotable (attribu-
tes) values are themselves attributable tree-structured objects. The expression lan-
guage of SSL permits forcing the attribution of a (previously unattributed) structure

with "attribution expressions" of the form :

expression {equations}. attribute.

The value of such an expression is computed as follows

- the expression is evaluated, yielding some attributable (but as yet
unattributed) object S ;

- the inherited attributes of S are’initialized by the given equations ;

- the value of S. attribute is computed by demand and returned.

6) Optimizations

The optimizations of the incremental evaluation algorithm are numerous and
described in [Rep 82b, Rep 84]. A data structure (sharable 2-3 trees) allowing effi-

cient operations such as insertion, deletion, retrieval, ete., while keeping storage

usage low is also discussed.

7) Applications

The origin of the Synthesizer Generator is the Cornell Program Synthesizer
- (thus the name) which is a structural editor with static semantics checking, incremen-~

 tal compilation and execution capabilities. The Synthesizer Generator was designed to

- 112 -~

be able to construct easily Program Synthesizers for other languages.
Applications are :

- a Pascal editor with full static-semantics checking ;
- an editor for partial-correctness programs proofs in Hoare-style logic
[RA 84] ;

a full-screen desk calculator ;

a lambda-calculus editor_with interpreter ;.

a text formatter ;

a mathematical equations formatter ;

incremental code generators of two varieties :

- using Sethi-Ullmann register allocation, and

- using continuation semantics ;

~ & program editor that uses data-flow analysis to detect program anomalies
such as uninitialized variables, computation of a value that is never used, conditions

that are always true or always false, division by zero and unreachable code.

8) Projects R

The Synthesizer Generator will be extended to allow the specifications of
global relations whose values are to be maintained automatically as a function of the
state of a program being edited. A relational query language available in generated

editors will then provide a powerful tool for computing program properties.
The authors expect to distribute the Synthesizer Generator by late'84.

- 9) References

On the Synthesizer Generator itself : Rep 81, RT 84a, RT 84b, TR 80, TR 81,
TRH 81.

On the incremental evaluation algorithms : DRT 81, Rep 82a, Rep 82b, Rep 83,
Rep 84, RTD 83. '

- 113 -

Tallin's System
Jaan PENJAM
Institute of Cybernetics
Academy of Sciences of Estonia
Academia Tee 21
 TALLIN

(U.S.S8.R.)

1) Members of the project

Enn TYUGU (head), Jaan PENJAM.
2) Birthdate : 1980 Deadline : ?

3) General Features

Lexical Analysis : ?

Syntactic Analysis : precedence

A ttributes Evaluation : 1) eaqation solver 2) recursive evaluation
AG Class : 1) Non-circular 2) SNC

AG Language : UTOPIST

Code Generation : No special feature provided.

4) Schema
The system is written in FORTRAN. A reduced version runs on APPLE II.

The following schema is applicable to the first version of the system,

the one using the equation solver.

¥

- 114 -

Y

parser

, —> | Scanner and
' parser generator

parse tree
[UTOPIST]

Attribute UTQPIST
Grammar Compiler
{UTOPIST]

PRIZ actions

+ UTOPIST PRIZ
forms + svstemn
other modules b

Y

evaluation timc

User Functions
[FORTRAN or
Assembler]

generation time
s

5) General comments

This (unnamed) system uses the WIRTH parser generator developed at Tartu
University (USSR). Any other parser could be used, provided that it produces a tree

in UTOPIST form, maybe using a linear -transcoder.

The UTOPIST language and the PRIZ system were developped by E. TYUGU at
Tallin University to implement automatic program synthesis systems. PRIZ is a "goal

oriented problem solver". A particular problem can be considered as a relation over

- 115 -

typed variables, such that if some are known (input vafiables), some others can be
computed (outﬁut variables). Such a problem, i.e. the computation of some output
variables, when input variables are given, can be solved by decomposing the problem
into subproblems. The UTOPIST language is interpreted by the PRIZ system which compu-
tes the transitive closure of the relations corresponding to a given problem, organi-
zes the information flow and executes the computations necessary to solve the problem.

In fact, the whole is close to a PROLOG system.

Thus, to each production in the AG is associated a relation over the attri-
butes occurrences. The semantic rules are written in UTOPIST, using predefined and/or
user operators, the latter being written in FORTRAN or assembler. The parse tree is
itself a relation (called TREE) over nodes instances, labelled by non-—terminals.
Attributes instances are dynamically associated to those nodes instances because the
non-terminals are typed by the associated attributes themselves (the declarations are
written in UTOPIST). Then the PRIZ system has only to solve the computation of the
output variables of TREE, which correspond to the synthesized attributes of the root

of the parse tree. For more details see [Pen 80al.

The efficiency of the whole system is strongly depéendent on the one of the
PRIZ system. The strategy used here is similar to the one of DELTA (q.v.), since the
computation of the information flo& is separated from the variables evaluation proper.

g

This system is presented by E. TYUGU [Tyu 80] as an example of automatic
program synthesis. This is both an originality and a drawback. The originality is to
evaluate the attributes using a problem solver designed for other purposes. The draw-
back seems to be using a general purpose system to solve a problem which can be solved

more efficiently with more specific methods.

The system comés in two versions : a dynamic one, described above, and a
.static one, more efficient, based on the FNC method (see the FNC/ERN system) and
using the same kind of input, written. in UTOPIST. Since this method avoids the dynamic
-ordering of the flow, the PRIZ system is used’ only to deal with user subprograms calls

and parameter passing. The SNC test is performed at generation time.

- 116 -

6) Optimizations

Unknown.

7) Applications

The lack of practical efficiency seems to restrict the usage of the system

to language design. Only small languages (e.g. MILAN) have actually been tested.
8) Projects
Unknown.

9) References

Pen 79a, Pen 80a, Pen 83a, Pen 83b, Tyu 77, Tyu 80.

1) Members of the project

Masataka SASSA,

- 117 -

Tokyo's System
Masataka SASSA
Dept. of Information Sciences
Tokyo Institute of Technology
Ookayama
Meguro-ku i
TOKYO 152 !
(JAPAN) |

Junko TOKUDA, Tsuyoshi SHINOGI, Kenzo INOUE, S.
VEHARA, H. TAZAKI, S. NAKAMURA, H. YOSHIDA.

2) Birthdate : ? Deadline : ?

vj
3) General Features

Lexical Analysis

Syntactic Analysis

Attributes Evaluation:

AG Class
AG Language
Code Generation

-

regular expressiohs + user actions

multipass partial grammar SLR(1) or LALR(l)
parsing.

in parallel with parsing + actions called at
each reduction

purely synthesized

Algol-like (procedural)

standard intermediate language and optimizer

and code generator (not part of the system).

4) Schema

Tokyo's system is written in FORTRAN and produces compilers written in

- 118 -

FORTRAN.
i -
|
" source text
PR ‘===9f master control program 7! R
s } l
LL L]) - ' L
LEXICAL _—’f Lexical analyzer generator Scanner+actions
parser+actions
e . PASS1 _
LEXROUTINES > macro processor+FORTRAN .
GRAMMAR1 » parser generator \\
{ partially parsed\
' \ text PASS | }
ACTIONI ———— macroprocessor+FORTAN .
l
.ROUTINES1 :
.GRAMMAR?2 > parser generator j g'-standard
e - e 1 scanner
LACTION2 | macro processor+FORTRAN parser+actions
.ROUTINES2 / |
MAIN —>] macro processor+ FORTRAN }’V .
, SETEEI intermediate\
| language /
.PRELUDE N \text
"‘ \;7_.///
— . S
Optimizer * ' optimizer ‘
code generator ': code generator

generation time

e

ijet coé
_

.

par

execution time

e

- 119 -

5) General Comments

Tokyo's systém aims at solving efficiently the problems caused by
counter-one-pass languages features, such as identification of targets of a goté
statement, identification of variables in procedure bodies (Algol 60 and 68) and
redefinable operators precedence (Algol 68). This last problem is especially

difficult because it influences the correct parsing of arithmetic expressions.

The solution to these problems, which has been implemented in Tokyo's

system, is multipass partial grammar parsing. The idea is to make several

paéses on the source text, each pass parsing and analyzing only small portions
of the text. For instance, in an Algol 68 compiler, the first pass would
analyze mode and operator declarations, constructing a mode table and an
. operator table; the second paés would analyze variables and procedures
declarations, constructing a symbol table; the third pass would analyze the rest
of the text, performing (in a single pass) identification, type checking and

translation into an intermediate language.

_ Another design goal of Tokyo's system is the efficiency of the generated
compilers. To achieve it, the parsers do not" construct parse trees.
Rather, semantic analysis is carried out in parallel with parsing. The
intermediate form produced by each pass and input to the next is composed
of the partially parsed intermediate text and of global information computed
by the semantic analysis and stored in tables,

£

The other design goals are :

* complete, readable, easily modifiable compilér description;

* efficient and usable compiler generator which can flexibly and partially

" regenerate a compiler whenever part of the description is changed;

* machine-independence - considerations.

a) The lexical analyzer generator

The lexical analyzer specified by the user is responsible of scanning in
one pass the whole source text; a standard scanner, "scanning" only an internal

form of the intermediate texts, is supplied for the other passes.

- 120 -

The lexical description is composed of a set of character classes, a set
of tables (for keywords, etc.), and a set of regular expressions describing the
tokens. A user-defined procedure is called after the recognition of each
‘regular expession. The return value of this procedure may be used to choose

the terminal symbol to be passed to the parser.

b) Multipass partial grammar parsing

Basically it works as follows : the parser of each pass reads input text
of the pass and copies it into output text of the pass. When it catches the
starting position of the partial grammar to analyze in this pass, it enters the
parsing mode, analyzes (a part of) the input text, and outputs the
corresponding, goal symbol. The i-th pass parser is given a partial grammar Gi
which is a subgrammar of the whole grammar G. The parsing is made only on
partial portions of the i-th text which correspond to sentences in I‘(Gi)' The
goal symbol Si of the partial grammar Gi is output to the (i+l)-th text and
will be treated by the (i+l)-th parser as a terminal symbol. The rest of the

i-th text is merely copied to the (i+1)-th (in internal form).

In order to catch the starting position(s) for i-th pass parsing, two sets
must be given : PRECi, the set of terminal symbols preceding sentences of
L(Gi) in the text, and FIRSTGIi (Si)’ the set of first terminal symbols of
sentences in L(Gi)' While the later can be computed automatically, the former
cannot because it cannof be derived from Gi alone; thus it should be specified
explicitly in the description of G;. The i-th pass parsing is triggered whenever
a symbol a ¢ PREC, is followed by a symbol b FIRS’I'(;"l (Si) in the i-th
text. Similarly, to determine the terminating position of a partial grammar
parsing, the description of Gi must explicitly specify SUCCi, the set of
terminal symbols following L(Gi)'

Other features to specify "exactly multipass partial grammar parsing
include :

- extra goal symbols specification, when the combination of PRECi and

St
FRs (S)) is insutfficient to discriminate exactly what is needed;

- 121 -

- a mechanism. to save and restore parser states, e.g. to skip

initialization parts in variables declarations (Algol, C);
- a mechanism to replace input terminal symbols when information gained
in the preceedihg passes allows such discrimination, e.g. an identifier
denoting a function may be replaced by the symbol "function

identifier" after the identification pass;

- a mechanism to catch '"range structures" such as begin... end, extended
g ena

to catch e.g. if... then;
- a specification of the syntax of label definitions.

c) Description and evaluation of semantics

Semantics is described by a modified attribute grammar : symbols
(non-terminals and terminals) may have only synthesized attributes which are
implicitly transfered from bottom to top. This transfer may be overriden by
user-specified actions, written after the production proper. These actions
(semantic rules) are written in a procedure-oriented language which is
macro-translated into FORTRAN. This language allows complex operations to
be specified concisely, e.g. "ENV +:= DECS" adds a whole set of declarations
DECS to an existing environment ENV. Semantic attributes are implemented by
semantic stacks elements, as usual with bottom-up parsing. Global entities. may

also be used to replace inherited attributes.

d) Generator Organization

The generator is composed of a number of processors (see schema) so
that (re)generation can. be incrementally applied to each component of the

input description.

e) The generated compilers

The generated compilers are also composed of a number of modules (see

schema) which can be overlaid in a natural way.

122 -

The authors have designed a machine-independent interme diate language
named IL. If the grammar writer chooses to use this intermediate language, he
may use directly the IL optimizer and code generator, Presently the latter
generates code for only the japanese machine FACOM 230-455, but it was
written with special care for generality and portability, and thus should prove

easy to retarget.
6) Optimizations
None required.

7) Applications and performances

* Toy languages
* Pascal compiler
¥ compiler for a subset of Algol

* compiler for a subet of Ada

We have no information about the size and performances of the system.
As for the generated compilers, comparisons have been done between a
two-pass parser and a one-pass parser; the former runs with CPU time

Increased by 5% w.r.t. the latter, but space is reduced by 20% using overlay.
¥

Experience shows that multipass parsing simplifies very much the

description of counter-one-pass language features.
8 Projects

Unknown,
9 References

STS79, STSS0.

- 123 -

! :
|
VATS

%Visible Attributed Translation System
1 P.G. SORENSON

Dept. of Computational Science

University of Saskatchewan
SASKATOON, SASKATCHEWAN S7N OWO
(CANADA)

1) Members of the Project

A.Berg, D.A.Bocking, D.R.Peachery, P.G.Sorenson, J.P.Trembléy
J.A.Wald. ' o

2) Birthdate:? Deadline:?

3) General Features

Lexical Analysis: hand-written scanner, or geherated by
Lex
Syntactic Analysis: LL(l1) with error recovery

Attributes Evaluation:in parallel with parsing

AG Class: L-ATGs (Attributed Translation Grammars
[LRS74]) '
AG Language: ATG + C

Code Generation: No special feature provided.

- 124 -

4) Schema

VATS is written in C and runs on a number of small machines
under UNIX (VAX-11l, Zilog ZEUS, DECSystem 2060, Perkin—Elmer
3200 serie, SUN-2) or PC-DOS.

fattribute \ Source Terxt :
TN . ™~ e
Grammar . SATS N ! R
ATS : .
. Trarnslator .
[ATGJ et mmvvmnne 2 Y FOR— ; [P
+ Generator j fcurce "ﬁ
“ubroutines . i [c ‘ P User
' — e ek 3 r . ' o
- ‘ & roenstator
i

" - N\\ ! ."/ Ey
ﬂ g \\ ’_; - [C]

Y
parser

\ SR .
L ‘Source] ;
\\: N ,r“ :
WIer o , ;,/
/i'
e
— ~ ~. -
" Pesul ts " Disple
generation time evaluation time

5) General Comments

The input to VATS is an Attributed Translation Grammar (ATG)
[LRS747,

- 125 -

A Translation Grammar is a context-free grammar in which RHS of
productions are composed of terminals, non-terminals and action
symbols which can be seen as callstp user-defined procedures. These
calls are performed when the preceding terminals ahd/qr non-ter-
minals are recognized, which implies that the parsing method must
be predictive (descendent). An ATG is a Translation Grammar where
symbols (terminals, non-terminals and action symbols) have attri-
butes. The notation used in VATS for a symbol is thus:
symbol<il,iZ2>s1,s82
where il and i2 are the inherited attributes of "symbol" and sl
and s2 are its synthesized attributes. Attributes have no names:
they are rather positional slots in which you write attributes
variables (identifiers). The semantic rules are written sepérate—
ly using those attributes variables. _ »

ATGs accepted by VATS are restricted to be L-ATGs in simple
assignment form. An L-ATG 1is an.ATG whose attributes can be eva-
luated in a single left to right pass. An L-ATG is in simple as-
signment form when all the semantic rules are copy rules. This
is achieved by introducing action symbols where non-trivial se-
mantic rules are evaluated. When an ATG is in simple assignment
form, the explicit assignments (copy rules) can be made implicit
by renaming (in the productions) the attributes occurring on the
LHS of an assignment with the name of the attribute occurring in
the RHS of the assignment. An.ATG to be input to VATS must be an
L-ATG in simple assignment form with implicit assignments.

An input file to be input to VATS must contain:

- an ATG as previously defined;

-~ for each action symbol @ X, the.definition of the correspon-
ding procedure _ X; such procedures are parameterless, the values
of inherited attributes are retrieved from the stack one at a time
by calling the procedure llinh, and synthesized attributes are
pushed back on the stack one at a time by calling the procedure

llsyn;

- 126 -

~ a number of required procedures (main, llscan,...);

- other auxilliary routines.

The ATS generator converts this file into a C program named
the ATS translator source; in particular the ATG is replaced by
a set of parsing tables. This translator source is then compiled
and linked with the (fixed) ATS parser source to form the execu-
table user translator.

When a syntactic error is encounteréd, a local correction
of the source text is attempted, by successively inserting a new
symbol, deleting the offending symbol, and replacing it with a
new one. For each of these corrections, a trial parse (a parse
limited to the next few symbols) is performed (ignoring the ac-
‘tion symbols) and if it is successful, the correétion is valida-
ted and parsing resumes with the new text. If none of the correc-
tions is valid, the offending symbol is deleted and the parser
is restarted; however, ultimately, recovery will probably fail and the
parser will give up.

Since VATS has been heavily used for educational purposes,

8 special feature has been added to make the parser operation
"visible". In this mode the display screen is divided in a num-
ber of dedicated zones:

- the input zone, where the current input line is displayed,
with the most recently scanned token marked by a cursor;

- the parser area which provides a narrative descriptions of
the actions of the parser ;

= the recovery area which describes the actions taken by the

syntax error recovery algorithm;

- the stack zone displaying the content of the primary parse

stack (terminals, non-terminals and actions).

- 127 -

As the source text is analyzed, messages are emitted in the re-
levant zones, so that the configuration of the parser is main=
tained up to date. This feature proved very useful for teaching

purposes.

6) Optimizations

None .

7) Applications and performances

* Teaching purposes.

* A data base query language

* A number of systems related to distributed applications
(PANEL), form design (PICDRAW), data bases (SPSL/SPSA), and end
users facilities (PICASSO).

No informatioh is available about the size and performance
of the system, but the authors cTaim VATS has "substantial capa-

bilities", even on microcomputers.
8) Projects P

Global attributes

%

* automatic generation of error recovery tables
* enhancements to the "visible" operating mode

* acceptation of ambiguous grammars.

~ 128 -

9) References

Since this system was made known tpo us after the publication
of the bibliography, the next reference is not included in it:
[BBP84] A.Berg, D.A.Bocking, D.R.Peachey, P.G.Sorenson, J.P,
Tremblay, J.A.Wald: "VATS- the Visible Attributed
Translation System', report 84-19, Dept of Computa-
tional Science, University of Saskatchewan, Saska-

toon. To appear elsewhere.

- 129 -

YACC !

Yet Another Compiler-Compiler
Stephen C. JOHNSON
AT&T Bell Laboratories
600 Mountain Avenue
MURRAY HILL, NJ07974%

wsA)
1), Members of the Project
Stepheﬁ C. JOHN-SON and others
© 2) Birthdate : 1973(?) Deadline : 1978
3) General Features
Lexical Analysis :* hand-written or generated by LEX (regular expressions)
Syntactic Analysis : LALR(1) with disambiguating rules and some error

recovery

Attributes Evaluation: in parallel with parsing

AG Class : purely synthesized

AG Language : C

Code Generation ¢ no special feature provided
4); Schema

- YACC is written in C and produces "compilers" written in C. YACC is a
standard compronent of any UNIX environment. |

- 130 -

Grammar + YACC O . Parser +

Je

gzztioizz; [C] Routines

5) General Comments

Although YACC was not designed with the attribute grammar method in mind,
it has a mechanism which empowers it with the same capabilities as other systems
described in this survey (S-DELTA, SAGET, CWS!). Moreover its widespread usage
makes YACC a strong reference point to which other systems can be compared, It

was thus impossible not to include YACC in this survey.

YACC is basically an LALR(l) parser 'generator. The productions are written in
a dialect of BNF. Terminal tokens names must be declared; one-character tokens
may also appear literally in the rules. The other names appearing in the rules are

assumed to be non-terminals.

YACC has a mechanism which allows the user to control the resolution of
shift/reduce or reduce/reduce conflicts when building the parser : a shift/reduce
conflict is resolved by favoring the shift, and a reduce/reduce one is resolved in
favor of the (textually) earlier production. The user may also associate a precedence
level and an associativity kind with some tokens, which facilitate very much the

description of e.g. arithmetic expressions.

As for error handling, YACC provides only a very crude mechanism. The user
must add some productions involving the reserved token “error" to suggest places
where errors are expected and where recovery might take place. Upon detection of
an error, the parser pops its stack until it enters a state where the token "error" is
legal. It then shifts this immaterial token and restarts in that state. It remains in
error state until three tokens have been successfully read and shifted; until then the

detection of ancther error produces no message,

- 131 -

As for semantics, YACC provides for the execution of some actions upon
. reduction to a given production; These actions are written in C and are embedded in
_the description of the productions themselves. They may also appear inside the
productions rather than at the end; however YACC internally translates such cases
into new non-terminals and productions to execute the action upon reduction of these

new productions.

Those actions may have a "return value", which is actually a single synthesized
attribute. The attribute of the LHS is denoted by g% and those of the RHS symbols
are denoted by §1, 92, etc... Terminals have also an attribute which must be
computed by the scanner. Inside the actions, those attributes can be used as any
variable. In fact they are references to elements of a stack which runs in parallel

‘with ‘the parse stack, as is usual with bottom-up parsing.

Having only one attribute may seem rather restrictive, but this attribute may
be a structure, with many fields, thus obviating the problem. It is also possible to
have this attribute have a type which depends on the symbol to which it is
attached. '

The result of the "evaluation" is the attribute of the start symbol. However,

since the actions are any block of C statements, the user can store some

intermediate results when desired.
6) Optimizations
None required.

7) Applications and performances

Applications of YACC are numerous. Among the ones developped for the UNIX

environment at Bell Labs, let us quote :

compilers for C (the Portable C Compiler), APL, Pascal, RATFOR, etc.
a C program checker (lint),

- a mathematical texts typesetter (eqn),

a Fortran debugging, system,

several desk calculators,

a document retrieval system,

- 132 -

The usage of YACC spreads continuously as the number of UNIX sites gro\'a
up.

YACC executable code is 200 kbytes on a 68000 based. machine, Th
produced parsers are very efficient and reasonably compact.

8) Projects
None,

A revised version of YACC (EYACC), including a much improved. error recovery
was developped in University of California in Berkeley and runs on Berkeley UNIX,

9) References
S.C. Johnson : "YACC. Yet Another Compiler-Compiler", report CS-TR-32, Bell

Laboratories, Murray Hill, NJ (Quly 1975). Also in "UNIX Programmer's Manual",
Volume 2 (any edition).

- 133 -

OTHER SYSTEMS RELATED WITH
ATTRIBUTE GRAMMARS

1) H¥P
Name : HFP (Hierarchical and Functional Programming)
Author(s): Takuya KATAMAYA, Yutaka HOSHINO (1980-7)

Address : Dept. of Computer Science, Tokyo Institute of Technology TOKYO 152 (Japan)

'Descrigtion:HFP is an application of AGs to a programming methodology. The basic idea
is to develop programs as attribute grammars. Programs are decomposed hierarchically
into modules ; each module is characterized by its inputs and its outputs. To such a
description is associated an attribute grammaf : the module names are the non-terminals
of a context-free grammar describing the caller/callee relationships between modules.
The semantic rules correspond to the body of each module. To each "production" of the
grammar is associated a decomposition predicate telling whether this decomposition is
applicable ; these predicates involve the values of the inputs of the LHS module, i.e.

its inherited attributes (detérministic case, the only one used in HFP).

Thus the derivation tree is a function of the inputs to the root module.
'HFP uses absolutely non-circular AGs,which are translated into procedures [Kat 80].
A proof method based on assertions is associated to HFP [KH 81] ; it has been proved

sound and complete in the sense of program schemes, under some restvictive conditions.

References : Kat 80, Kat 8la,b, KH 81, Kat 84

- 134 -

2) TAG
Name : TAG (Tester for Attribute Grammars)
Author(s) : Mehdi JAZAYERI, Diane POZEFSKY (1975-1980)

Address : Dept. of Computer Science, University of Noth Carolina, Chapel Hill,
NC 27514 (USA)

.Descrigtion:TAG is a tester which performs the ASE (Alternating Semantic Evaluator)
test on AGs. The grammars which have been tested include PL 360, an ALGOL subset,
SIMULA, PASCAL, S-FORTRAN. Thé authors have also studied, from a theoretical point

of vue, two optimizations applicable to evaluation in passes : elimination of the parse

tree and dynamic allocation of attribute values.
References: JW 75, JP 77a,b, JP 79, JP 80a,b, JP 81, PJ 78a,b, Poz 79, KMP 75.

3) PAULSON'S SYSTEM :

Name : undef ined : sometimes called CGSG (Compiler Generator for Semantic Grammars)
[Pau 81] or PSP [Ple 84] ;

Author (s) : Lawrence PAULSON (1979-1982)

Address : Dept. of Computer Science, Stanford University, Stanford CA 94305 (USA).
Now at Computer Laboratory, University of Cambridge, Cambridge CB2 3QG (UK)

Description: CGSG is a compiler generator for languages described by a semantic grammar.
A semantic grammar is a combination of (extended) attribute grammars, for describing
the syntax and static semantics of the language, and of denotational semantics [ss 71,
Gor 79 for describing the dynamic semantics. The compiler generator consists of the
grammar analyzer,which converts a semantic grammar into a language description file,
the universal translator, which reads that file and then compiles programs into stack
machine (SECD) instructions, reporting semantic errors, and the stack machine which

reads the program's input, executes the instructions and prints the outputs.

- 135 -

Attributes evaluation is performed in the universal translator, and uses
the DAG evaluation devised by Madsen [Mad 80a,b,c,] : the parse tree is not construc-
ted, instead the compound dependency graph is built. The graph is then travérsed in
depth-f irst manner, computing attributes upon return. This allows the dynamic detec-
tions of circularities. The result is the attributed DAG itself, which is then proces-

sed by the simplifier and the code generator.

The grammar analyzer is rather efficient, but the univefsal cqmpiier trans-
lIates Pascal programs 25 times slower than a conventional compiler, and ﬁhe gtack
machine executes them 1000 times slower [Pau 82] . Because of storage mneeds, the uni-
versal translator cannot compile programs more than 20 pages long. The system is writ-
ten in standard Pascal and is 4400 + 3900 + 1300 lines long. It has produced compilers

for Pascal, Fortran and a number of smaller languages.

The main interésting point of CGSG is the clean description of run-time

semantics by means of denotational semantics.

References:Pau 81, Pau 82, Pau 84, Ple 84.

4) PERLUETTE

Name : Perluette 1
Author(s) : M.C. GAUDEL , Ph. DESCHAMP, M. MAZAUD, R. RAKOTOZAFY (1978-1983)
Address. : INRIA, BP. 105, 78153 LE CHESNAY Cedex (France).

Description : Perluette is a compiler generator based on abstract data types (ADTs).
Source and target languages are described by ADTs and the translation is defined as a
morphism from the algebras defined by the source ADT to algebras defined by the target
ADT. This is the second phase of the generated compilers. The first phase is a trans-
lation of the source program into the corresponding term of the source ADT, and is
described by an attribute grammar. The third phase is the generation of target code

from the target ADT term, and is described by code template:. This modularization

of the generated compiler is reflected in the mddularization of the inputs to Per-

luette: the source language and target machine can be described

- 136 -

completely separately, and it is possible to try several translation choices of a
given source language into a given machine code. These translations can also be proved

correct in an algebraic framework.

The first phase of Perluette and its generated compilers is a variation of
the FNC system (q.v.) ; in fact FNC was designed to replace DELTA (q.v.) in Perluette.
The variations consist of special constructs to deal with terms of the source ADT,
especially to provide a better type-checking . FNC was also used to generate a large

part of Perluette itself.
The generated compilers are written in Lisp and are reasonably efficient.
A number of toy languages have been described and implemented. However, theoretical

problems have arisen when trying to describe Pascal, and are not yet resolved.

The strong points of Perluette are its modularity, both for its inputs and’

its outputs, and the possibility to prove the correctness of the generated compilers.

References : Gau 80a,b, Gau 81, Des 82.

- 137 -

CONCLUSION

The different systems presented in this paper have considerably -
different ambitions : some are very simple, performing little more than
syntax-directed translations, others aim at providing a tool for generating a
whole compiler. The efficiency of the generated evaluators is generally the
inverse of their expressive power (the class’ of accepted AGs), but some
systems break this rule (e.g. GAG). Some <can run on micro- or

minicomputers (e.g. LINGUIST-86), others need a large mainframe.

Figure 1 classifies the different systems according to their
expressive power, Figure 2 gives a two-dimensional classification, according
to the expressive power and the (approximative) date. It shows a tendency
to accept larger classes, because of their larger power which eases the
writing of AGs by getting rid of implementation details, and because much
work made the generated evaluators more efficient in time and in space.
However there exist exceptions in both ways: the new HLP&% is of
restricted power but seeks much efficiency. Conversely, the first available
. systems, FOLDS and DELTA, are very general.

- 138 -~

Any AG .

non-circular (FOLDS, DELTA, NEATS, ERN, LINGUA,
m Penjam's, CIS, Syntheziser)

SNC (ANC) (FNC)

L -ordered

)
""'// K\\»\
" . (GAG, HLP/SZ, SSAGS, ordered gylfi*sweep (ELMA, MUG2)
Synthesizer) - N - /
multi-LR (PARSLEY, HLP/SZ, LINGUISI
w~ 86, HLP 78)
(SUPER) [ERR SV AN multi-L
e = =

. L ¢

Ps

1L e (CWS2, HPL84, MUG1, VATS, APARSE)
Pure-$ (S-DELTA, SAGET, CWSI)

Eigure 1: Expressive power of the systems

- 139 -

——

| 139V VITHC-S | 1SMJI s-21ng
~ SIVA i
| voum ASUVY Y ZSMD 190K 1-1
!
P T-13TNW
M 98-ISINONIT |
A9IS¥Vd zS/dH 8Ld'TH Y1-1ITna
|
| ¥3d0S dooms-1
| |
W VH1E 2o _ deans-137nW
SOVSS ZS/dTH “
! 19ZT1S9aYjULg oyn paispio
M
m pPo18pi1o-
| | w
! oNd ; (ONV) ONS
| g1 1ezIssyjudg endurl,
; Ned s,aefueq © SIVAN Y ovima 5a'104 1BYNOI[O-uOU
] m ¢
—y i + S
se6t 0861 61 uL6l SSET)
3yeq

ion

Historical evolut

ire 2

Figu

- 140 -

We hope that we have achieved our goal: provide an exhaustive catalogue

of practical systems based on attribute grammars.

Acknowledgements

We would like to thank all the people who answered our

questionaire.
Many thanks also go to Nelly Maloisel for her careful and patient
typing of this enormous work.

Imprimé en France

par

I'Institut National de Recherche en Informatique et en Avtomatique

o
&

LY

