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ON PERIODIC PHENOMENA OF QUEUEING SYSTEM

M/G/1 WITH GROUP ARRIVALS AND BATCH SERVICE
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2. Lanzhou University, Lanzhou, China

Abstract

In this paber several models of queueing system M/G/1 with group
arrivals and batch service are considered, and the following fundamental
questfons are replied : <i> What is the structure of the phase space of
the imbedded Markov chéin ? <ii> What are the sufficient and necessary
conditions causing the imbedded Markov chain to be reducible or
irreducible and perioq;c or aperiodic ? <iii> What aré the sufficient and
necessary conditions of existence of stationary distribution ? The

generating function of stationary distribution is obtained.

Résumé

Dans cet article on étudie plusieurs moddles de type M/G/1 avec
services et arrivées par groupes. On analyse (en exhibant des conditions
nécessaires et suffisantes) les causes de périodicité ainsi que les
conditions d'ergodicité. On calcule enfin les distributions stationnaires

du nombre de groupes et du nombre de clients.

Note : Ce rapport a 6té rédigé en 1985, A 1'occasion du séjour du
Professeur Chen Yong Yi A 1'INRIA dans le projet MEVAL sous la direction

de Guy Fayolle.
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certain carelessnesses on the periodicity and the irreducibility ([5.
p.393]. Sahbazov had also some carelessnesses on the periodicity [61.
Teghem, Loris-Teghem and Lambotte have noted the periodicity and the
irreducibility of the imbedded Markov chain, but they did not analyse in
detail this problem and in addition it exists also several faults in .
their conclusion [7]. Zhang discussed the periodicity for M/G/1 with
group arrivals and single service [11]. In the present paper, we
developed the results of [11] and [T7].

Since 1long time no sufficient attention has been given to this
problem and the following fundamental questions have not been solved :
What is the structure of the phase space of the imbedded Markov chain ?
In what case does the imbedded chain be periodic or aperiodic ? What are
the sufficient and necessary condition of existence of stagionary
distribution ? In this paper, we have analysed concretely several models
of queueing system M/G/1 with group arrivals and batch service, and get a
clear understanding of the condition of periodicity and irreducibility,
the structure of phase space of imbedded Markov chain and the sufficient
and necessary conditions of existence of stationary distribution, so that
we replied thoroughly these questions and corrected several carelessness

or faults of some articles.

2 — ANALYSIS OF SYSTEM

In the queueing system M/G/1 discussed here, the following
assumptions are made :

1) Customers arrive in groups. The arrival instants process 1is a
homogeneous Poisson process with parameter A. Denote the total number of

* *
customers of the nth arrival group by e {n_} are i.i.d.r.v's (the

n'nz1 .
independent and identically distributed random variables) with the common

g.f. (generating function)
. *
nn ® r ‘ .
¢(x) = Ex =) ¢Yx , ‘ (2.1)
Y1
*
and its expectation E™n = d 2 1.

he service time of the n-th batch is Y. {Y},, are l.i.d.

48 Aiim v

non-negative r.v's with the common d.f. (distribution function) B(t) and
the expectation b >0,
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3) Customers are served in batches. We denote the capacity for service of
the nmth batch by Kn..{Kn}N>1 are i.i.d. r.v's with the common g.f.
K

P(x) = EX "= § q,rx‘" (2.2)
r=1

If the nuhber of customers in the system at the moment that the nth
batch begins to be served is not less than Kn’ then Kn customers are
served., However, if this number is 1less than Kn’ then the present
customers are completely served. The customers arrriving later will be
served in the postrior batches. The families of the above r.v'.s are

independent. We shall denote all the above r.v's by F.

For the queueing system described above, the three cases are

distinguished in detail, viz.

a) If the customers arrive at an empty system, then they will be served
after an additive random waiting time Zn' {Zn}ﬁg1 are i.i.d., whose d.f.
is C(t) with the expectation ¢20., This discipline can be explained
practically by "servers idles, system closed". The model of individual
service for this queueing Asystem is considered in [6]. Again if ‘in
addition zn = 0, then the model transforms into the model considered by

Miller in [4].

b) The arriving customers at the idle moment of system have a special

service time Yh. {Yh} are i.i.d. whose common d.f. is B'(t), and the

nz1

, .
{Zn}nz1’ {Yn}ng1 are independent of F.

expectation b'>0,

For the individual service, a) is a particular case of b).

¢) As for the service of .fixed duration, for examplé, whether there are
customers’ or no, the train shall depart on time. The sYstem for
individual arrival and single service transforms into the ordinary
M/G/1 system, ’

- Several authors considered another service discipline that is a
little different from 3), viz to start the éervice if and only if the

number of waiting customers is not less than the service capacity.

In this paper, this case is not discussed.

By means of the theory of I.M.C. (imbedded Markov chain), taking the

moments of the batches departure from the system to be renewal points,
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and the number of customers in system, i.e. the length of queue

(containing the customers being served) to be the states of system, we

obtain the following I.M.C. for (a), (b) and (c) respectively :

max(F,n—K £ >0

n+1 ’0)+Vn+1 ' n
(a) & = (2.3)

n+1
-K 0)+V E =0

max( Cn+1 +r]n+1 n+1’ n+1? n

n=0,1,2,oo~’

where F’O is the length of queue at t=0,

En is the length of queue at the instant rn+0, where 'y is the time

of the nth batch departure,
Vi is the number of arriving customers during the nth batch service,

is the number of the first group of arriving customers after
is (2.1),

Cn+1

gn=0, the g.f, of Cn+1

e is the number of arriving customers before 'the starting of
service for the first group of arriving customers after gn=0 during the

additional time interval Zn'

(b) max(&n"Knﬂ ,0)+Vn+1 ’
En+1 B (2.4)

. p - 1] =
max ( Cn+1 Kn+1 ’O)+Vn+1 ’ En 0

n=0,1,2,...,

where V'rl+1 is the number of arriving customers during the special service

time y’n when gn=0. The rest of the r.v's have same meanings as above.

() max(gn—Krl+1 ,0) +Vn+1 , n
g = . (2.5)

n+1
vn+1 ' 5n=0

n=0,1,2,uoo,

where the r.v's have the same meanings as above.
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It follows from the above assumptions that all of {Vn}, {nn}, {;n}

and {V;!} are respectively the families of i.i.d. r.v' s.

It is clear from (a) that the common g.f. of n_ is
H(x)=Ex " = h x = Y x J P (i customers arrive during
i=0 i=0 O

2 |z =t) aC(t) = [7 ] V(&) x () - Je-“‘“—d’(x))dc(t)aE(A—M(x))

0 i=0

where C is the L.S. transform (i.e. Laplace-Stieltjes transform) of C(t).

It follows from the assumption (2) that the common g.f. of Vn is

-3 ©

v -]
K(x) = Ex " = J kixi = ) ot f P(1 customers arrive during Y |Yn=t)

1=0 i=0 0
aB(t) = | I x v, (t) dB(t) = [0 ypiey < BOA-re(x)),
0 1=0 0

where B 18 'the L.S. transform of B(t).

Noting that (;n+1,n ,K .) . and (go,§1,...,gn) are

ne1? net Kne
nz1 for (a) is a M.C. It follows by the

same way that {En}n>1 for (b) and (¢) are also M.C.

independent, it is seen that {En}

When Krl = 1, (a) can be considered as a special case of (b),

+ ' '
because we can take Yn Zrl to be Yn and nn+1+v to be Vn+ y SO ;hat

n+1 1

maX {81 My K1 2O Vg "0 et ™1 ¥V g oy 1 Vg "X 7K g O3V,

It should be noted that when kn £ 1, (a) is uncertainly a special
n+1=1’ ”n+1=3' Kn+1=5’ Vn+1=2’
v;1+1=nn+1+vm1e5' .then En+1=2 for (a) and €n+1=5 for (b). Because for (a)
the arriving customers during Zn can be served together with the first

case of (b). For example, if e;n=0, z

group of arriving customers after gn=0; but for (b) they will be sérved
in posterior .batches.

Let 2 = 0 (f.e. n ,=0) for @) or Y\=Y (1. Vi =V .,) for
(b). We obtain the model considered by Meller., For the case of single

arrival and individual service, (¢) is the ordinary system M/G/1, and so

10
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is (a) when Zn§0 or (b) when Yh—Yn. But these deduced systems M/G/1 have
a little difference.
Finally, it should be noted that when £,50 the systems (a), (b) and
(¢) have the common formula, viz only the first row of their transition
matrixes of I.M.C. are different. Thus we shall investigate mainly the"

system (a).
We define the set
*
pIET s | P(n=1) >0, i € N ={1,2,...}},
*
whose elements will be briefly called the possible values of Ny
Now we consider the g.f. of.Vn, Vh and nn. It is obvious that
v
n fme-xt(1—¢(x))
0

K(x) = EX dB(t),

R(x) - 61 P - [T (=0 gp1 (4,
0

fw =t (1-¢(x))

H(x) = EX dac(t),

*
where ¢(x) is the g.f. of Npe

Noting
_ © © h h -
K (x)= Z P(V =J)xJ [T Mt eMypey oy [ A8 LT Abgpee
j=0 0 h=0 0 h!

@ n
-y LT = ey M apey,
h=0 ht 0

o h - -
d I (at)’e AtdB(t)>0, then, we consider only {(¢(X))h}hzo' If
0 .
P(Vn=j)>0, it exists a certain [q;(x)]S whose coefficient of the term X°
is positive. Since this coefficient is the jth term of the s—fold
convolution of {¢ }, J is a finite sum of several possible values of n .

We note that if J ,§, € N={0,1,2,...}, P(V =3 )0, B(V =300, then
S,»S, € N s0 that the coefficient of [¢(s)]s1. z1>o and the coefficient

+
of [4( )]SZ, %,C. From the fact that the coefficient of 112

[o(x)131*S

N

is greater than zero it follows that P(Vn=J1+j2)>O. This fact
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shows that the set of possible values of Vn’ denoting by G, is closed for

addition, in other words, G 1is a semimodule (i.e. additive semigroup

formed by integers), and P is the generator of G.

It follows similarly that the sets of possible values of o Vh and

+ L]
Cn nn are also G

We denote the set of possible values of service capacity Kn by 5,
and the g.c.d. (greatest common divisor) of all elements of G by ¢, and
the g.c.d. of all integers of G (also P) by o, and the g.c.d. of ¢ and P
. by m.

Arranging all integers of G in increasing sequence, i.e. n1<n2<.--.

1’ then it is clear that
-1 is finite, it follows immediately that & €

and denoting the g.c.d. of first i numbers by t
t12t22...2021. Because t
N+={1,2,...} so that tz=t2+1=.

« We obtain from the elementary number theory that n €N4. ¥

1
ee=0, viz ¢ 1s the g.c.d. of

n ,l’l ’n.o,n

172 2 0
nZno. .
ng = a1n1+a2n2+...+a2n2, ai8N+, 15158 (2.6)

holds. It follows that every element of G takes the form of no, néN+. and

nO€N+ so that VnZnO, no€G.

Theorem 1 The phase spaces of M.C. definited by (2.3), (2.4) and (2.5)

contain the irreducible close set
*
G = {km |k=0,1,2,...1},

the rest of states are transient (in fact, inessential)

Qroof By the same argument as above, we obtain that for G and E, nO.nO €
. - — -

N, so that ¥ t-no, tho, [“1}1Si§2’ {aj}1sj55 e N,

apd to=a1n1+a2n2+...+azn2, n1,...,n1 € G

2.7)
e N +q.n_+ a N .
t o=a,n a,nN ooo+asns,

l’l1....,Hs e E,

hold, where n1,n2,....n2 have the same meanings as above; E1<;2<...<;S

are the first s numbers of G arranging in increasing sequence. It follows

from the elementary number theory that ¥kEN, the Diophantine equation



tog - to = km ' (2.8)

has the sufficient large solutions of positive integers. It follows from
(2.7). and (2.8) that VkeN, sufficient large t¢ € G, to € G so that
km=to-to, and to and to take the form of (2.7).

We consider first the system (a). One can see that the system
starting from the state O can enter the state km. Noting that since n1 is

the smallest number of G and P is the generator of G, n1GP, i.e. n, is a

*
possible value of n, (and cn), hence the system starting from 0 can

transform to the state a,n +...+a,n,-n,>0 by one step with a positive

11 M _
probablity. In fact, put Toaq “Dqs nn+1=(a1-1)n1+a2n2+...+a1n2, V410>
K n, in the latter formula of (2.3), it follows that the above

n+1 1

conclusion is valid., Put again Kn+ 451, v =0 in the first formula of

2 n+2
(2.3), 1t 1is weasily seen that the system can enter the state

a1n1+,,,+a2n2—231 with a positive probability. The successive procedure

permits that the system can reach the state
km=a1n1+...+a2n2-3531-...4355820. Conversely, it follows from the first
formula of (2.3) that the system starting from km can enter 0. In fact,

ne1 7Py s Vpyq=0s then £y “max{km-n, 0}, 1f kn-n, S0, then
gn+1=o, if gn+1=km—nL?0, then put again Kn+2=n1, Vn+2=0 and so on. By
writing p=min{t |km—tn1$0, teN+}, it follows that the system can enter 0

at the p—~th step with a positive probability.

if gn=km, put K

It should be noted that since m is the g.c.d. of ; and ¢, the
possible values of r.v's in (2.3) take the form of km. Hence if the
system is in G*, then in every transition the states that the system can
reach with a positive probability take always the form of km. From what
we described above it is easily seen that G* is a close set, and that

*
since every state and the state 0 are communicating, G 1is irreducible.

For (c) we can also achieve our aim along the same lines as (a). Now

we consider (b). Denote the intersection of P and {n1....,n2} by

* * .
{n1,...,nk}. Since n_€P, the intersection is not empty. We should

! *

distinguish the two cases : from the latter formula of (2.4) <i>, If n

n so  that *5h th ¥oodef K o
ni a n\j ni, en 'put r;n+1==n‘j = np. n+1 ni’
Vh+1=a1n1+--~+(ap-1)np+.:.+a2nl._It implies that the system starting from
0 can enter n + -n, > Yy o

4 ...+a2 n, > 0 by one step.
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From the first formula of (2.4) by the same means as that of (a), it
follows that the system starting from O can enter km.

éﬁi, then in the latter formula of (2.4), put ¢ be

. * *
<ii> It ¥ nj’ni’ n n+1

J
def » oy '
an arbitrary nJ p’ Kn+1 be an arbitrary ni. Vn 1 a1n1+...+a2nz It

follows that the system starting from 0 can enter a1n1+...+aznz>0.
Imitating the demonstration of (a), it follows that the system starting

from 0 can enter an arbitrary state km.

Because the first formulas of (a), (b) and (¢) are the same, it
implies that for (b) and (ec), G* is also an irreducible and close set,
and for (a), (b) and (c), starting from any state & Gf, the system
can enter 0 with a positive probability. In fact, put 5 =k @ G ’
V=0, K .= 1, then £, =max{k—H ,0}. If k-n,s0, then gn+1=0,_otherwise
put Vn+2=0 K 2=n1, then g 2=max{k 2n 0}..7

Generally, put p=min{t |k—tn

1

1SO, ‘teN }, it follows that by p-steps
the system starting from k & G can enter 0 with a positive probability.
Since G is a close set, it proved that ¥ k ] G is inessential. It
implies that ¥ k e G is transient.

Corollary If and only if m=1 (in particular, for single arrival and
individual service) M.C. is irredgcible, and when m#1, M.C. contains the

infinite transient states.

Theorem 2 For (a) and (b), if P(K Em )=1, m0 € N , and o divides by my

then the periode of I.M. C.G 1s _E_.(if _g~ =1, then aperiodic);
* / m. m

otherwise, G 1is aperiodic. 0 0

For (c¢), every state is aperiodic.

Proof We consider first the system (a). The following three cases are
distinguished for the proof : A

<i>. If P(Kn = mo) =1, i.e. E={mo}, and ¢ divides by m_, then the period

0
*
of G is _>_.
o)
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*
Since G 1is irreducible, it is sufficient to consider -the state 0.
From the latter formula,'it follows that every state that the system
starting from 0 with a positive probability by one step can enter takes

the form of no;mo.

We now demonstrate that to start from 0 and return to 0, it is

necessary to pass by p-steps, éN . Evidently, it is only
necessary to prove that to return to 0 for the first time it pass
certainly by p-steps, p € {n" } nén, Since the case of 7 =1 1is

_ 0 m

0
trivial, we suppose below always _E_.> 1. There are only the two mutually

exclusive cases after starting from a certain state na4m0, n e N+.

<i> Every state that the system passes belongs to {nu4n'm0}. and enter
last into 0. Evidently, starting from 0 and returning to 0, the total

number of steps takes the form of » N €N,

0 N '
<ii> Starting from a certain nu—mo, neN+, the system passes several

states no—n'm0 (n'¥0, n,n' € N) and enter into a certain ng. In order to

) . * *
obtain this result, iff V_ . =ng, no-mo-(n —1)m > 0, no-mo-n m, = 0

n+1
(n,n e N, )e We indicate that 1f no-mo-(n —1)m0 > 0, then
*
no- mo-n m0<0 Otherwise, we have m +(n 1)mo<no<m0+n mo. Denoting o-tmo.
* *
t e N+. we obtain a contradictory 1nequatliy n <nt<n +1. Since a>m0. the

system starting from ng, n € N+ can not reach O by one step, but only

no-mo. It 1is easily seen that for <ii> the number of steps of starting
from 0 and entering into 0 belongs to [0 _} _ .
m, néN

Again note that ¥ t 2 L to-a1n1+a2n2+...+a1nz (for fyo Cf. theorem

1), If an-o and we put e ™M Mg (a -1)n +“2n2+"'+“2nl Vn+1-0,

Kne1 ™Mo 0’

transitions, putting always V=0, we see that the system can return to 0

then we obtain P to¥m0>0. In the following successive

in the following way with a positive probability :

to¥m0 + to-2mo > ees v my >0,
(o)

i.e., we obtain.p,, My >0, ¥t2 Nye

*
It is easily seen that the period of I.M.C. G is .2 _ .

)



;11;
* .
2>, If P(Kn = m0)=1, m can't divide ¢, then I.M.C. G is aperiodic.

Let o=ma+, where 0<e<mo, m0>1,. When tho (ef. theorem 1), the
system starting from 0 can enter the state tom.-m.. In fact, since m. >1,

™
‘ c€G), ¢ can take tmyo=d,n,+...+q,n

0 0 [N

Put g .1°n4» et =(@ =10, *a 0,40 o ta ), Vn+1=0» and K,

0

(tmo >n., tm

n+1 s
1$m0, then
it is easily seen that the conclusion is sure. By the following way the

System can reach 0 :

tdmo"mo > tumo-Zmo hd oo.o he 00

It implies that

(to)

Poo >0+ ’ (2.9)
Since tmo-1 2 ny» (tmo—1)o € G, Tne1tNpeq CBN take (tmof1)qf'Put
Vn+1 = 0, we get that the system starting from 0 can reach (tm0-1)0-mo by
one step. This procedure proceeds, Finally the system can enter into 0 in

the following way :

(mot-1)°-m0 > (mot—1)0-2mo P eee * o.

Denoting the greatest integer which is not more than y by [Y], it
follows that the system starting from O after the transitions by

[ (mot-1)o ] [ot = O] - m a+8 |
+1 = lgt-_ | +1 = [gt - + 1 = gt-q
0 ) To

steps returns to the state 0, Hence we obtain

(ot-a)
P 00 > 0, (2.10)

Since t 2 no, tm0+1 > no. imitating the above procedure, it 1is
easily seen that the system starting from 0 can reach (m0t+1)u-m0 by one
step. The system can enter into 0 in the following way :

(mot+1)+o4m0 + (m0t+1)q42mo * eee + 0.



-12—

Hence 1t implies that the system starting from O returns to 0.after
transitions by

(m0t+1)o ] [ , .
+ 1 = [tg + + 1 = tg+a+l
~ - o*a

Steps, 1i.e.

(otra+l)
P > 0. (2.11)

00
We obtain from (2.9), (2.10) and (2.11) that the period of the state
0 divides to; to-a and to+a+! respectively; then it divides the
difference of every two numbers, for example, a+! and a. Since the two
neighbour integers are mutually primary, the period of the I.M.C. is 1.

<3>. If the number of the possible values of K is more than one, the
I.M.C. G is aperiodic.

Let mo and mb (m > m') be two arbitrary possible values of K . If

mo (or m') does not divide 0, then by means of the demonstration of the
*

case <2> it can be proved that the I.M.C. G is aperiodic. If m, and mb

divide ¢, putting t 2 ny» T = toc €G, K=m, V

+n =0, it follows

n+l n+i S n 0" ‘n#1
that the system starting from 0 can reach to-mo by one step. And it can
enter into 0 along the foliowing way :
to~m0 »> to-2m0 > oo > m0 + 0.
It follows that
t
P o >0, P 0 >0 ) (2.12)
0
0 0 mo
am' =
Putting Kn+1 mo, Vn+1 0, we get from the first formula of (a)
P 20 (2.13)
oMo ™o -

put Kn+1=m0' Vn+1=0’ then we obtain

P
O—mb,o >0 (2.14)
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From (2.12), (2.13) and (2.14) we get

(Ge+1) _ (Gm1)

P My 2P "o P P ,0>0 (2.15)
00 om, '™ oo ~
It implies easily that the period of the state O divides ___ ot + 1 and
“m.
Jﬁi. Hence the period is 1, i.e. the I.M.C. is aperiodic. 0
m
0

Now we consider the system (b) by means of an analogic way as (a).

1>, If a certain possible value of g t , SO that t, is not more

n+1’ 1
than a certain possible value t_, of K

*
> n+1? then the I.M.C. G |is

=ty K=t Vi =0, it follows from the

latter formula of (b) that poO > 0. Hence the state 0 is aperiodic.

aperiodic. In fact, put ;

<2>, If any possible value of ¢ is more than any possible value of

n+1
Kn+1 , then we consider the following three cases :
2.1>., If K takes the unique possible value m and mo divides ¢, then
the period of G is —_ (if —__ =1, then aperiodic). For this case the
m m
0

demonstration is similar to the correspondent -demonstration of (a). Since
1 n+1 take the form of ng, n € N, the

the possible values of Vn+
system starting from O can only reaches a certain state no4m0 by one

and ¢

step. Because the first formula of (a) and (b) are same, the way starting
from a non-zero state and entering into O can be taken in the same way as

*
(a). It implies that the I.M.C.G has also the period.ll_.

T

2.2>, If K takes the unique possible value mO and m0 does not divide g,

then the I M .C. G is aperiodic. Let n' be an arbitrary possible value of
] \J - \ E]
Cn+1 and denote n' by n . For ¥ t 2 n0+n » put Cn+1 n', Kn+1 mo,

Vh " " tomo—n'. Since n' > mo, the system starting from 0 can enter into

tomo mo by one step. The following demonstration imitates that of the

case (2) of (a).

<2.3>. If the number of possible values of K is more than one, then the
I.M.C. G is aperiodic.

M >m . \
Let mo,mo (m0 mo) be two possible values of K« If mg (or mo) does

not divide ¢, then a similar way of (2.2) implies that G is aperiodic.

U an! ' .
1r m0 and m0 divide o, put Cn+1 n >m0 (n' 1is an arbitrary possible

value of ¢ ), K ,,=m), Vi . =to-n'. It is easily seen that po,to-mo > 0.
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The following treatement imitates that of the case (3) of (a).

Lastly, we consider (c). Since Vn+ can be 0, it follows that P0 >0

1 0

*
and the state 0 is aperiodic. Hence the I.M.C. G is aperiodic,

h a

Now we give several examples of (a) which may present in practice.

Example 1 ¢(x) = x6

» P(K = 4) =1
0 = U, Ge {6,12,,000,6N,00.},

*
G* = {0,2,4,.00,2K,eee}. Since my does not divide ¢, the I.M.C. G

0"6,-0'-")"’"1:29"1

is aperiodic.

Examgle_2 o(x) = x6, P(Kn =3) =1,
0=6, 0=3,m =3,m=3, o/m =2. G= {3k |k =0,1,2,...1.

*
The period of the I.M.C. G is 2.

Example 3 ¢(x) = x6, P(K = 2) = P(K = 4) = _%_.
6=6, =2, m=2,G= {2k |k = 0,1,2,...}.

‘ *
The I.C.M. G 1is aperiodic.

Example 4 ¢(x) = x6, P(Kn =1) =1,

-— *
0“6, 0‘1,“’1=m 51, 0/m0°6.G = {0,1,2.-..,k,...}.

0
*
The period of the I.M.C. G 1is 6,

Remark 1 and example 5 ¢(x) = x.

For the model of single arrival, the I.M.C. G* = {0,1,2,..;,k,...} is
aperiodic, i.e. the entire I.M.C. is aperiodic and irreducible. Whether
singly serve or in batches servé. But for the model of single service,
yet it is uncertain whether the chain is periodie or aperiodie, although
the entire I.M.C. is irreducible.

For the model (a) with single service, [6] concludes that the limit
distribution of I.M.C. exists, but it is not right. For this case, in
fact, it is possible that the chain is periodic (cf. example 4). And [5)
studied the model (a) of n = 0 (i.e. Z = 0), [5] considers that the
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I.M.C. is irreducible and aperiodic, it is also faulty. In [7], it exists
also several faults on the conditions of irreducibility and periodicity.
In fact, if the minimum capacity of service (i.e. quorum of [7]) 8, = 1;
then the I.M.C. of [7] is the same as that of the model (a) of n =0 in
the presentlpaper. For em =1, we considér the following examples :

<1>, If
‘0 (mod U4)

i, 1 =0 (mod 8) i, 1
0, 1 # (mod 8) 0, 1 Z0 (mod 4);

by  means of the method of [7], we may take h=2 so that ci=ai=0,
i 0 (mod 2), according to [7], {2k | k=0,1,2,...} is irreducible. But,
in fact, {4k |k=0,1,2,...} is only irreducible (cf. theorem 1).

L]

2>, If
i, 1 =0 (mod %)

0, i 0 (mod 4) '
according to [7], we may take g=2, so that h =2. [7] concludes that h=2

is the periode of the I.M.C. (the entire I.M;C.'is irreducible). But by
theorem 2, 4 is its period.

Cm =1, (i.e. X =1 of this paper), a; = {

In fact, it is easily seen that the possible values of the I.M.C. of
[7] are the same as that of the model (a) of the present paper. Because -
for the I.M.C. {xm} of [7], we have

y X <8

+ -
max(xm Ym Cm.O) + Vm+1 " o

m+1

max(xm—cm,o) + Vm+1, Xm 2 em,

where Ym is the number of customers of several groups arriving when Xm<em
+ .

and Ym Xm 2 8, Vm+1

(m+1)-th batch service, so that theorem 1 and 2 are also valid for the

I.M.C. {xm} of [7].

is the number of arriving customers during the



3 - BEHAVIOURS OF SYSTEM

Generally speaking, Foster's method is no use to a periodic and
reducible chain. We indicate that an'appropriate "compression" of phase
space 1s convenient for the investigation of a periodio chain, In the
pratical problems, in fact, the original length of queue 50 is merely the
total of customers of several arriving groups. The possible values of 50
are evidently in G and after any transition they remain in G « Thus
we may consider G as the phase space. From now on, if without necessity,

we shall drop the suffix of r.v., for example, n represents any of {nn}.

Theorem 3 For the system (c) and the aperiodic cases of the systems (a)
and (b), if the original 1length of queue EO € G* the maximal
possible value of K is N, a finite positive integer, and taking G to
be the phase space, we have the following three propositions :

®

Proposition 1 For the system (¢) (abr.(c)) and the aperiodic case of the

system (a) (abr.(a)), they are ergodicliff
p =dib < d.

For the aperiodic case of the system (b) (abr.(b)), if
p = dib < d',

then it is ergodic; and if it is ergodic and
1

b< b + —0 (3.1)
A
then p = dib < d.

Proof We shall prove first that if d\b < d, then all of the three
systems are ergodic.

According to Foster's criterion [5], it suffices to prove that' the
inequalities '

Y, - 12 2 YJ iy i >N,

~ J=0

JYP <o, i = 0,1,...;N
=0 J i
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has a nomnegative solution.

We consider first the case of 1 > N. Since y, =0 (2> N)),

Pij = z kj;‘i‘*l wl'

<
Putting _
YJ = J(d'4dxb)-1, j=0,1,2,.., (3.2)
We get
TP Y. =) T k., o w(d-dw)
joo 173 yop gqq” TR
© . -1 it ® -1
= ¥ Tk, w,., . (d-db) =] k, I (@m)y. (d'-dib)
3=0 1<y * hri=J 20 * mel t-m
Ly -1 -1 '
= (db - [ my #i)d-do) = (dab=d' +1)(d' -dAb) = = Y -1, (3.3)
m=1, 1

Secondly we consider the case i S N, For the case i = 0 of (a), we have

-

JZOJPOJ S JZOJ{kJ+P(;+n—K+V = J} = dAb+E(g+n-K+V) -

-1

Jz NJP(;+n—K+V=J) S 2dAb+d+dic—d+N < = ‘ (3.4)

If N21i)>0, then we get

Jzojpij = dab+i-d + gi(m—i)wm S dib+l £ dib+N < » (3.5)
m

For (b) and (c), it suffices to consider the case i=0, For (c), we have

P .=k,, ZJPO

oj 37 j=0 j o daab < e (3.6)
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For (b), we have

Py S Ky *+ P(rKev' = ),
where (K|} is the distribution of V', and
© : © -1 ‘
Y jP . S d' + ) JP(E-K+V'=j) - § JP(g-K+V'=))
j=0~ =N =N
S dap' + E(z-K+V')4N < = (3.7)

Bellow we shall demonstrate the necessity. Assuming that the system is
ergodic, and (HO’H1”“) is the ergodic distribution, we get

= P ’ esojoe
nJ 1§o m ] ¥3je {0,1,2,.00})

* *
Note that iff i € G, M, > 0 and that 0 € G for (a), (b) and (c¢),

i
i.e., I. >0. For (c), we get

0
-] J_ 0 [ ] J
M(z) = Y N,Z2° = mK(z) +] ] npP, 2z,
j=0 J 0 je0 fe1 1 H
Note that

1 v v 3
Mz)K(z)p(—) =) 1 I Ik, , .2,
Z N 120 1Say 1 % J7i*E

1 . ]
K(z)p(—) =3 I  wk, .z°,
z  ja-N 15an ¢ IR
we get

;ofonp, el ST wk, + I wk,_,olnd
§=0 1=1 1M 500 got 1 VI qgpgpe ¥ IO

=K(z) T T M M@K )-n K () (L)
i=1 iAN z z

o . © ®

-1 I 1 mwk 2) - J
-NSjs-1 1= 1sgy LA I jZO 121 1215N T1¥eKs- 1407
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Noting

g - . . e 1..'2 .
D XD N Ik, 23 = K(z) D) n.y,2 -
j=0 =1 isgy 1k JTi*g 1l 1o 1%

©

J

-1 ) 1 Iy k, . .z°,
=1 ISP 1-gsis-1 b4 ITIHL
) I 8 muk 2= 3 3 Y muk, . .z,
NSJe-1 gat tsgan D EITRR g tggsey LRI
We have
o« - 3 N

I Inp o2 ek@[ ] ] My, (-2 9= (L) Jena )k (2)u(-),
§=0 1=1 iy* 1=1 154N z z

N ,
N(z) = NK(2)+K()[ § ] n1w¢<1—z1 E)'—now(_l_)]+n(z)x<z)¢(_‘__>.
i=1 iS4 N z z

It follows from above that

N-1
1@ e 22 fplewlo)e 3 1 nw,a-2h)

1 z f=1 {4150V

1-K(z2)y(—)
Z ‘

Letting z+1-0 in the both sides of (3.8), we have
.. N-1 .
1 = {]Iod' D) (z—i)nizpz}. (3.9)
d' -dxb i=1 i+15eN |

thgs we have dib < qd'.

For (a), denoting the distribution of z+n~K by {qi} “N<i<o whose g.f, is
(Z)H(z)w(___), since

P Z q.k, + E q. k R . . (3.10
o3 7 4y o 1o )
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after a somewhat lengthy computation (noting

[ ©

oMW IK(z) = T ] qikj_iz‘j,)
z jo=N i=-N
we have
Ip 2 = sz @u k@] ] q (-2)], (3.11)
j=0 z “Nsis-1
such that
ne = — X2 ([ 3 a,O-zh)ee2Hau > u )]
1K (2)p(——) -Nsis-1 z z
zZ
N-1 )
+ 11 Hiw,vﬂ-z1 Y} (3.12)
i=1 14154 '
Letting z + 1-0 in the both sides of (3.12), we get
L n T }
1 & Q_,*2q_,+...+Nq_, +d+d)c J+ (-, t.
e Rl N =1 1+1S0N i ”(3 13)

Such that dib < d'.

Last we consider (b). Denoting the distribution of V' by {k'} whose

17120
g.f. 1s K(z) and the distribution of r-K by {qi}

A “Ngice whose g.f. is
¢(z)w(—;_).

It is obvious that

Py = I apk+la

. K'. .,
o ysigo 1d gy 1 37H
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and such that

N-1

n(z) = K(z) ) ) Hiw2(1;zi-z)
19K (z)p( L) 1=1 1+1SasN
z
To o 1 1 [TTa oy
+ K@[ I  aqy0-z )]+¢(7;)[K(z)¢(z)—x(z)]}.
14K(z)w(_%_) ~Nsis-1 : .
(3.14)
Letting z» 1-0 in the both sides of (3.14), we have
: ‘ | N-1
1 =_.___{Ho[q'_1+2q'_2+...+qu_N+d+dAb' -dab] + ) ] (9,-1)11111;2}.
d'-dib ' i=1 i+152 N
If —z iq'+d+dAb'4dAb > 0, then d > dib. Particularly if the

~-N<is1 . 1
hypothesis for (b), i.e. b < b' + - holds, then d' > dib.

Remark 2 The hypothesis b < b' + _;_ seems too strong. But for the
model T"singly serve"} i.e. K = 1, the above condition seems best
possible. Since, for this case, (3.15) has the following form :

1 =~ {(d+dab'-drb).

d' -dab

Below we shall consider the recurrence and the transience. Since (a), (b)
and (¢) in Pedro vit's sense are equivalent for recurrence and transience

[8], it suffices to consider .the system (c).

Proposition 2 (a) and (c) are null-recurrent iff p = dib = d'; if

b<b'+_%_ , then (b) is null-recurrent iff p = dib = d'.

Proof According to the proposition 1,.1t is sufficient to prove if
dib=d', then (¢) is recurrent.



_22-

If N = 1, then by =1, d = dxb =1, and

kJ , 1 =0,1
= (3.16)
Pij
Kyopeg 0 132, 0711 20,
Putting YJ = j (§J=0,1,2,.44,), it i3 easily seen that for i > 0,
2 P Y, =i=y,, Y+ as j >« (3.17)
§=0 1374 S SN

According to Foster's criterion [cf.(5)], (c¢) is recurrent

If N > 1, we put again YJ = 3j, j=0,1,2,..., Such that

© [ o -

Toyy= I 1 wpkgd v T T kg

g o iy T =0 je0 1SN J=0 150511

= i + z (9."1)‘!)1-
1N :

For 1 2 N, we clearly have-

i=Y,Y, +=, a8 j + =, (3.18)

ZYJ iy ° LR ,

It follows from Pakes's recurrence criterion (cf.[9]) that (c) is

recurrent.

Proposition 3 (a), (b) and (c¢) are transient iff p = dib > d'.

Proof According to Pedro vit's result [8], it suffices to prove that if
p = d\b > d', then (c¢) is transient. We can also prove this proposition

without Pedro's vit's result. Since the following demonstration is not

the demonstration is valid for all of (&), {(b) and {(c).

FOJ},
We consider the function



] j - 1
Fi(z) = E'Pijz z ., 1 $1 SN, (3.19)
j=0
Noting that
F, (1) =0, Fi (1) = dib - o + ) (241)w2 >0, (3.20)

1N

it is easily seen that it exists z, € (0,1) so that ¥ x € (21,1),

Fi(x) <0, i.e.

i

-]
) Pijxj < xi, 0< 2
J=0

: <x<1, 151sN. (3.21)

Letting o = max(zi....,ZN) and putting

Y, - od, 053<s=, (3.22)
we have
JP, Y SY, 0< 1SN, ‘ (3.23)
i 1373 i

Below we shall consider the case i > N. We have

® ®© N
V-K v d , J »
Ez = ] P(VKej)z' = J ] yk, 2z, (3.24)
J=-N joN get b I*E ,

where Ezv K is the g.f. of V=K.

Putting YJ = (3‘j (0sj<=) where B is a constant, we get, for i > N,
«© o« J i @

m

y P.Y. = T VoK, .., B8 =81 1 vk B

joo NI gl 1spsi-r IR me-i 15gsi-1 ¢ ™4

g2 v m i V-K
=8 I L kB =BER .
m=-N %=1
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B
Choosing B = B such that

*
1> B >a='max(z1,...ZN),
o *j
and putting YJ =8, 05 ]J<m=,
since Ezv_K is differentiable for z in a left neighbourhood of 1 and

_2_ (Ezv—K

) = E(V-K) = dAb-d' > O, (3.25)
dz |z=1
we have
*Y - V.'_
EB VK S Ez K I 21 = 19

SO

(-]

Y P.LY SY (i>N),
5o T

For 1 £ i £ N, we have also obviously
yP. .Y SY,
520 ij J i
and
< = < .
Yi YO 1 QO i < »)

According to the Foster's criterion [5], (a), (b) and (c¢) are transient.

Now we shall study the periodic cases. It.is seen from theorem 2
that (c) is aperiodic. Hence we consider only (a) and (b). For (a) and
(b),'only in the case 1 of theorem 2, i.e., K = mo, the system can be
periodic. By means of the method of compression of phase space, we assume
that the original length of queue EO is the total of customers of seyeral

arriving groups. Because m. divides ¢, the possible values of {En}

0 nzo0 °'°

* .
several times of mo, so that G = {kmo |k=0,1,2,...}. We construct an
*

I.M.C. G** in G by considering the instant of departure of the last
customer of an arriving customers group as a renewal point, and the
numbers of groups of arriving customers groups in the system as the
states.
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For the two cases, we have the following relations respectively :

@) 0 . - &1 * Vnuy s £ > 0
2 Ewer 0 0 0
Mer * Vnayo &n = 0
. -1+ v, £ >0
() g2, 0 )
Viner & = 0

. where

0
gg = the number of groups of arriving customers in the system at rg+0; r,
is the departure time of the n-th arriving customers group,

Vg = the number of groups of arriving customers‘during the service time

of the n—th arriving customers group,

ng = the number of groups arriving customers before the starting of
0
service for the first group of arriving customers after &y ° 0

during the additional time interval zn,

V'o = the number of groups of arriving customers during the special

n+1 0
service time Yh when En = 0,

The correspondents of Kn and Cn are Kg and ;O and evidently

0 0 n+1?
Kn=%n+1

=1-

We consider every m, customers as a "super-customer". Let ¢0(x) be the

common g.f. of the number of "super—-customer" in an arriving customers
: .

0 m
group, then we seen that ¢ (x) = ¢(x 0) which expectation is d/mo.

.,

0
0 Or
Writing ¢ (x) = J ¢, , it is seen that the common d.f. of the service
r=1
time of an arriving customers group is
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B0t) = I o8 "(t),
| rei

V0

o .
and K%(x) = Ex " = - Gib

| e MO0ty o 82 (amax), BV,
0 )

Similarly, we have

B0t = I 60 BT,
r=1

v 0
©(x) = Ex " = B'0 (A-2x),

0 _ d

Mo

'
Evn

Considering an arriving customers group as a "hyper—customer", the
problem transforms into the queueing model M/G/1 with single arrival and
individual service. The arriving instants process 1is a homogeneous
Poisson process with parameter A. The d.f. of service time is Bo(t) (or
B'O(t), for the special service time).

From the remark 1 we seen that I.M.C. G** is obviously irreducible
and aperiodic. The phase space G** - {0,1,2,...}. Noting that (a°) and
(b°) are respectively the special cases of the models (a) and (b) when:
§n+1.Kn+1=1' ¢(x) = x (ef. (2.3), (2.4)), we seen that the theorem 3
holds for (a°) and (b°), i.e. :

* %
Theorem 4 For (a°), the I.M.C. G = is ergodic iff p = 220 < 1,
Mo
For (b°) if p = 2% ¢ 1,
"o

then it is ergodic; and if it is ergodic and

db . daD ey )
_m?)__ mo A (Oor D« apr =+ m0}
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then '

4 - CALCULATION OF STATIONARY DISTRIBUTION

In order to calculate the staﬁionary(i.e. limiting) distribution, we
establish first the following lemma.

Lemma If dib < d', K(z) is analytic in |z |< 1 + & (§ > 0, sufficient
0 # 0, then the equation K(z)w(z-I) = 1 have N

mutually different roots in unit circle |z | s 1, and 1 is 1its simple

arbitrary small) and k

root, O is not its root.

. Proof Because

-1 N . N-1 N_2
K(2)W(z )z |50 = K@zt izt Seoeaspy) g = kol 4 0,
e : i =1,.N
k()wiz D) | %7 1im K2z = 11n KEWE Dz Lo
I 2=0 z+0 z»0 N
Z
Z£0 ZA0

it follows that 0 is not a root of the equation K(z)w(z—1) = 1. We
consider the following equation which is equivalent to K(g)w(z—1) =1 in
"z 40 '

K(z)p(z 1) 2 = 2 | (4.1)

- N
Since y(z 1)z is a polynomial, the two sides of (4.1) are analytic in
|z | < 1+s.

d
dz

= dib+N-d' <N = _9 2N

Noting 21 5 21’
z

(4.2)

¢(Z-1)K(z)zN|

we get w((1+6)-1)K(1+6)(1+6)N < (1+6)N. Utilizing Rouche' s theorem in
|z |< 1+6 and noting the arbitrariness of §, it follows that in unit
circle |z | $ 1 the equation (4.1) and Z' = 0 have the same number of
roots. It is obvious that 1-is a root of (4,1) and that O is not a root
of (4.1). And 1 is its simple root; otherwise, the two sides of (4.2)

have the equal value which contradicts the assumption dib < d'. o
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Denote the roots of the equation K(z)w(z-l) =1 (i.e. the roots of
(4.1)) in |z | S 1 DY 1,8,,8,,000,8y_,+ From (3.8), (3.12) and (3.14) it
is seen that for the determination of 1(z), it 1is sufficient to
determine I ,T, ,I,,...Ny. Noting that N(z) is analytic in |z [< 1 and
that the equation K(z) = 0 and the equation K(z)w(z-1) = 1 have not any

common root, hence if §, 1is a root of K(z)w(z—1) in |z |< 1, then 6, is

also a root of the i-th one of the following equations :

N-1 N
Yo

R . .
w (1"6 ) - H ,J ’ i=1.2’IOD’N—1. (L'u3)
j=1 J kZJ+1 k 1 {

0

where My is the coefficient of I substituting z by 61 in the numerable

0
of MN(z) for the systems (a) and (c); but for (b), this coefficient

divides by K(Gi).

It we resolve the equations (4.3), then all n,, 1 2 1, are

i
represented by N. which is determined by the formula

0

lim 1I(z) = ) I o= 1.
z+1 i=0

In order to resolve (4.,3), we consider the following two cases :

i

Case 1 The all §, are mutually different. For this case, the coefficient
matrix of (4.3) is '

N N N
1-k -k _1-k
I ov -8 ) T w16, ) won T ow (18 2 )
koo k01T ST koo Kk ON=1
N N N
2-K 2=k 2=k
I v 0=6T ) T w (1=65 %) o0 T (1-85 7))
ke K1 T LTk %2 ke3 K N-1
N N N
_N=k-1 _ Nkt _N-k-1
I v (-8 > 1w 5, Yoo Ty (-8 )

k.N k-N k-N
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1-N
1-8,

g2 N
. 1 61

AY

1-N
2

1-N

1—6 R 1-6N_1

2-N

2-N :
LI ] 1_6N_1

1-62

-1
0.0.‘ 1 GN—1

(4.4)
A4

Denoting the three matrixes by A,B and C respectively, we have AéBC.

Below we shall demonstrate A is invertible. Since |A]=|B]|.|C |, and

N-1

| B I = Yy

Vandermonde determinant, we obtain

R - (N-1)
|C | = (80008 y)

1-N

= (610'06 ) (61—1)000(6

N-1

N_

N-1 _ N-1 _ N-1 _
8 18, Toeee 8 1
N-1 - N-1 - N-1 o
8 8, 6, 8, eoe Sylq T8z,
N-1 2 N-1_ 2 N-1 - .2
N-1 N-2 N-1 _ N-2 N-1 _ N-2
81 8 8, Sy eee Sy_q ~Sy_g
PR
+..Q+61 +1 Gg-2+.0.+1 63:?*’..."‘1
N-2 N-2
+'..+61 62 +.0.+62 GN—1 ...+6N_1
2 N-2 2 N-2 2
+...+§1 62 +.0062 6N"1+'..+6N-1
N-2 N-2
62 e0 000 GN_.l

¥ 0, it is sufficient to demonstrate |C | # 0. Utilizing




For this case,

matrix D :

N

1...
T v (1-5
ko2 k 1

N
Y v (1-6
k=3 K

N
Y v (1-6
k=N X

i

)

2=k
)

N-k-1
AR

N

I SR '
dx, k=2

N .
) wk(1—x§ Ky '
dx2 k=3 '

N
d Zwk“_%-w1
dx, k=N

the correspondent coefficient matrix is

1 T eeee 1
1°°°°N-1 1 7 ON— 1 2 N-1
2 2 2
61 624 L 3 I N ) 6N_1 (’405)
N-2 N-2 N-2
61 62 L N ) 6N_1
N-1 g N 5
= (I si) I (61-1) (GJ-si). (4.6)
. i=1 i=1 15i<jsN-1
Since §, # 0,1 and &, are mutually different, |C | # 0 so that |A | # 0.
Case 2 If 51 is ny multiple roots, i=1,2,...,8; n1+n2+...+ns = N-1, then
L N-1 N _
d 3 L (1-x37%y] =0
dx J=1 k=J+1 X'Gi
2 = 1,2,...,1’1 —'10 (407)

changed to .the
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(n141)
1=xI"N 4 et Ny 8
1 ax 2 (n,-1)
2 1
dxn
1
(n1¥1)
2-N d 2-N d
1—X ____(1")( ) 0 0 0  er—t———
17T 2 ! (=1
dxn
1
(n1-1)
X" LT S d
dx : (n-1)
2 ax 1
n
1
© see = x = 6
n1 1
eseee = xn1+n2 L 62

- 1N S 1N
(1“Xn )’ 1-X n +1,ooo

1 1

1

+1,.¢.

_'1 -
(1-X_"), 1=X
. l’l1 n,l
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Below we demonstrate |E |# 0. First we point

s ni(n1-1)
L 2
5 =1
E =
Bl n -1 5 n,-1 n 1
axzaXB. L] .axn axn +2 axn +3. L] .an +n o0 .a&_1
1 1 1 12
1N _ 1-N J-N 1N - 1-N

=X, 1-X, © e 17X =X VX o e

1 1 1

2-N 2-N _y2-N 2-N _y2-N

1"X1 1—x2 co o 1 Xn 1 xn +1 1 xn +2 ee e

1 1 1

-1, T oy oy
1-X, =X, eee 12X =X T 17Xy e

\ 1 1 1

X, =X, = eee =X =8,
1
= ,0, = X = § (4,8)
n+1 n1+n2 2

Noting that in the right determinant, every element of the i-th column

is only a function of X and that in the expansion of a determinant

, i’
every term contains one and only one element of every column, it is
easily seen that (4.8) is valid.

s -
) ni(ni 1)/2
5 1=t ’
Denote the differential operator by T.
s n,-1 a__n"-1
= ' LN < x e
axzax3...axn1 3% o
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From

x .
o | 1 % -1
I q= T(xi...XN_.') (X1—1)"'(XN_1—1)
X2 X2 x2'
1 2 N-1

X1=X2°..-=xn1=’6

xn1 * eeoe +ns__1 + 1 =‘... =XN_1 GGS.

1

it is easily proved that

1 1 wee 1
=N - i X, X XN
| § =(X1...XN;1) (X1-1)...(XN;1-1)T. : (4.9)
' x2  x2 x2
1 2 N-1
N-2 N-2 N-2
| X% XN-1

X1=...=xn1'=6

X

1

nyteeetn  , + 1 =400 = XN_1 = 68.

In fact, according to the differentiation of product, we have

|E|=1 Ti(x1...XN_1)1"N(X1—1)...(X

_141)T FPX =X =8
13

J 1 1 1
ces 0000 ()".10)

X

N

+ tl =, 0= =
Ryteeetng X-17%g



.'.3)4'_.

where
1 1 LI N ] 1
F = X, X% XN-1
2 .2 2
Xy X3 XN-1
N-2 N-2 N-2
X, X XN-1

Ti'Tj are certain differential operators.

In the right side of (4,10), only the term

1-N X1';...=xn =§
- - - 1

) (x1 1)0..(XN_1 1)T.F ® 00 000

Xn1 +, ..+ns;1+1 =...=XN_1=(SS

does not equal zero, for all the rest, since in their correspondent

1

(X1 . ooxN_1

determinants it exists not less than two same columns, they equal zero,

so that (4.9) being proved.

By use of the result of [10], we have
s n o, . S n, s ny1
[E1= gy 870 7ol (671 Tyny g1y 30,

nn

n Ng " 8]2

2 N3 s ngy -
H(%—g) (8,76,) 7iu(s.76,) ] .[wjﬂg oo (856,)

ns ns-—1
. [(as~68_1) ] } #o0. (4.11)

If 6§ is the unique N-1 multiple roots, by a directing calculation we
obtain
N-2

l[El= 1
i=1

—(N=-1)2 -

-

~~
&

)
N

~

For this case, the result of [10] can not be used.
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Denoting the solution {HJ} of (4.7) ((4.3) is its special case of

isjsN

n, =1) by {“o'_‘J}KJ'sN' it is evidennt_l1y that
: i n.n, .
0 s n, (1-N) Ny PR L
A i 1 (6,~1) EJt)e M (8,-5.) b, (4.13)
ny= e SLACH 1 I isicyss 4
N

where pJ is the value of determinant obtained by replacing the j-row,

N N -
te. (5 yo-s39, L1y o™ X =5, ,+++)s with
k=j+1 Xy, k=j+1 2 1
(u1 ,u2pooo,uN) in the determinant ID Io
For the system (¢), it follows from (3.9) that
N .
Iy = (@ =dwo)/{ar+ T ] (1—1)niwz}.
i=1 i+184N
For the system (b), it follows from (3.15) that
M, = (@' -ad)/{ § iqt +d(1eab'-ap)+ ] (2-1)n v }.
1S1isN i=1 i+152 N
For the system (a), it follows from (3.13) that
N
my = (d -dxo)/{ ¥ i +d(14ae)+ § ] (R.-i)niwz}.
151N ie]l I+1SA N

Therefore, the g.f. of stationary distribution, n(z), are.obtained for
the three systems. '

The calculation above is valid for both aperiodic case and periodic
case. But we must note that the I.M.C. are different for the two cases

(ef. theorem 4),
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