N

N

An algebraic approach to recursive queries in relational
databases
N. Spyratos, C. Lecluse

» To cite this version:

N. Spyratos, C. Lecluse. An algebraic approach to recursive queries in relational databases. RR-0499,
INRIA. 1986. inria-00076055

HAL Id: inria-00076055
https://inria.hal.science/inria-00076055
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076055
https://hal.archives-ouvertes.fr

NPT B

RN

M
&

Rapports de Recherche

N° 499

AN ALGEBRAIC APPROACH
TO RECURSIVE QUERIES
IN RELATIONAL DATABASES

Nicolas SPYRATOS
Christophe LECLUSE

AN ALGEBRAIC APPROACH TO RECURSIVE QUERIES

TN RELATICNAL DATABASES

~ Nicolas SPYRATOS Christophe LECLUSE
INRIA Université Paris-Sud Université Paris-Sud

Rocquencourt - BP 105 LRI - Bat. 490 LRI - Bat. 490
Domaine de Voluceau 91405 Orsay Cédex 91405 Orsay Cédex
78153 Le Chesnay Cédex France France

France

ABSTRACT: We propose an algebraic approach to recursive queries in
relational databases through an algebra based on the product space cf all
atiribute domains. The basic operations of the algebra are set-theoretic
differencs, intersection and union, projections and their inverses, and
functicr. composition. Using our epproach, we discuss the specification of
twe important types of recursive queries: ancestors and cousins. We alsc
discuss the evaluation of recursive queries and we give an oplim

-1 ¥ +3 - ~ ™ ¥ 3 FES U P RS G
rithm for compuiing encestors. Furthermore, we show thet funcuionzi
= : ¥

atiributs. Les opérations de base de cette elgebre sont les cpératicns
ie

s

ensemblistes (union, iniersection, difference), les projections el

inverses ainsi que la compositicn des fonctions. Nous utilisens cstte

=

(D

approche pecur spécifier deux exemples importants de requétes
scursives: les "ancétres” et les "cousins”. Nous étudiors également
I'évaluation des requétes récursives et nous donnons un algcrithme

v
< mAantrons oue
S llAUliui v ek

es avac proiil pour rendse

M! !D PAPIER RECUPERE ET RECYCLE

e mam— e e 4 ima e mim s . — e e e

1. INTRODUCTION

In the past few years major attempts have been made to improve
the power of database systems, in particular those based on the rela-
tional model (see [C70]). A significant part of this effort has been in
development of deductive databases. As defined in [G84], "a deductive
database is a database in which new facts may be derived from facts that
were explicitly introduced”. A very important difference between a
deductive and a conventional relational database_ is that in the former,
new facts may be derived recursively. This very characteristic of deduc-

. tive databases is what makes query processing a difficult task in such an

environment.

The problem of evaluating recursively defined queries has gained
considerable attention in the recent litterature [HN84,U85,B85 ...]. The
specification of a recursive query is- usually done in a logic query
language, such as the one described in [U85)], whereas the evaluation is
usually done by transforming the logic query into a relational algebra
program [B85]. The reason for this dichotomy is that logic provides for
noh—procedural specification, whereas relational algebra provides for pro-
cedural evaluation. However, there is a price to pay: translation from
logic to algebra can be difficult [U85,B85b).

We propose a purely algebraic approach whereby both the
specification and the evaluation of recursive queries is done within the
same language. The basic operations of the language are set-theoretic
difference, intersection and union, projections and their inverses, and
function composition. Recursive queries are specified by well-formed
expressions of the language, and they are evaluated by relational algebra
programs. As relational join and selection are easily expressed in the pro-
posed language, the translation of recursive queries into relational alge-
bra programs is straightforward.

The paper is organized as follows. Section 2 outlines the definition
of the language and illustrates the basic concepts by way of examples. It
is also shown how the relational algebra can be embedded in the proposed
language. In Section 3 we discuss the specification of two important

_ 3.

examples of recursive queries that have received exiensive attention in
the literature: the ancestors and the cousins. In Section 4 we discuss
query evaluation. More specifically, we discuss query modification and we
give an optimal algorithm for computing ancestors. Furthermore, we
show that functional dependencies can be profitably used to improve per-
formance when evaluating recursive queries. Finally, Section 5 contains

sorne concluding remarks and suggestions for further research.

2. THE PROJECTICN LANGUAGE

We assume familiarity with the basic relational terminology (as in
[U83] or [M83]). Let U be a universe of n attiributes 4,4z ..., 4, and let
D;=Dom(4) be the domain associated with the attribute 4;, i=1,2,...,n. We
call relation scheme any subset R of the universe U. Frequently, a rela-
tion scheme is denoted by the juxtaposition of its attributes. For exam-
ple, one writes U=A4,4,4;3 or R=A4A; instead of U={4,,4;.45} and R={4, 4,3,
respectively.

. Let T be the set of all wuniversal tuples, that is, let
T =D xDpx -+ xD,. We denote the i-th projection function on T by p;.
Recall that p; goes from T onto D; and that it associates each tuple tin T
with the 4-value of t. A projection on two or more attributes, say 4 and
4;, denoted by py;, is defined similarly, and it goes irom T onto D;xD;.
Relational projections and their inverses constitute the baé%c building

blocks of our specification language.

For any set E, let P(E)={x / x c E} be the set of all subset of E.
Thus, for i=1,2,...,n, an element of P(D;) is a set of 4-values. Similarly, an
element of P(T) is a universal relation.For technical reasons, we need to

extend the projections p; and their inverses as follows (see also Figure 1) :

Definition 1 For all i=1,2,...,n, define the folloWing functions :

m : P(T)~P(D;) such that wueP(T), m(u) = {pi(z)/teul
ot P(D;)P(T) such that \/xeP(D.;) » i x) = {eeT/pi(t)ex] o

Functions of the form ny and nj!, involving two (or more) attributes can
be defined in a similar manner. We recall here some simple facts about
cartesian products and projections ,whose proofs are omitted as they are
straightforward (see for example the introductory chapter in [Des]).

Proposition 1 : For alli=1,2,...,n, and for all j=1,2,...,n, we have
(@) VreP(D) i r) = Dyx - - xDy_yx r XDjya% - - %D,

(6) vr EP(DixDJ-) Vs€P(D;x D),
11'{):1(1') =rXDpx XDy XDy % XD; 1 XDjpyX - - - XD,

and rxs = 5 (r)onzl(s)
() vreP(T), r cni'm(r), and mnii(r) =+
(d) WreP(T)vseP(T),if rcs then m(r)c mls)
(e) VreP(D;), WseP(D,), if r c s then) c nY(s)
(f) VrieP(D), rixrpx - -« xry = nii{rdn - nngir,)
(&) WreP(D;). Vs eP(D,), w7 {r us) = (r) U n; 1(s) and
i r=s) = n7(r) - n;7Y(s) and
m(rus) = mr) U m(s) and
m(r—s) > m(r) ~m(s) . @
Let us now see an example that we shall use as a running example.
Example 1.

Let U be a universe of three attributes Ay Azand Ag, with the following

- domains
Dy = Dom(4;) = {a,a'}

. e m e m

D, = Dom(4p) = {b,b’,b""}

Dg = Dom(Ag) = {e¢,c'}
Consider the following cartesian products :

D,xD, = {ab, ab’, ab”, a’b, a'b’, a'b”" |

DoxDjg = {be, be’, b'e, b'e’, b''e, be’ §

T=D,xDsxDg = {abc, abc’, ab’c, ab’c’, ab’'c, ab”’¢’,

a'be, a’be’, a’b'c, a’b'e’, a'b’c, a'b’’c’}

Let us apply Definition 1 to some examples :
for r=fa} in P(D,), we find (see Proposition 1a):

nYr) = r x D, x Dg = {abe, abe’, ab’e, ab’c’, ab’'c, ab”’c’}
for r={b,b'{ in P(D,) we find (see Proposition 1a):

nsY(r) = Dy x r x Dy = fabc, abc’, a’be, a'be’, ab'c, ab'c’, a'b'e, a'b’c’}
for r={ab,a'b} in P{D, x D,) we find (see proposition 1b):

ni(r) = r x Dy = {abe, abce’, a'be, a'be’}
for r={be,be’'} in P(D; x Dg) we find :

nga{r) = D, x r = {abe, abe’, a’be, a’be’}) =

The specification language that we propose, called "projection language",
or PL for short, consists of all expressions that can be (well) formed using
the Iollowing operations : set-theoretic difference, intersection, union,
projections and their inverses, and function composition. Function com-
position is denoted here by juxta:position of function symbols. Thus in Fig-
ure 1, if x is in P(Z;), then mnj!(x) means m(nj'(x)). Here are some
examples of PL-expressions:

mn;Yz) , where z € P(D;)

mntnin(x) , where x € P(D;)

n Y (x) nnjY(y) , where x € P(D,) and y € P(D;)
The following expressions are not well formed and, therefore, they are not
PL-expressions :

mm(x) m(z)nmi W y) . m(m(x)um(y))

D I I S

e r s m e o

Figure 1

It is tedious but not difficult to show that join and selection can be

~ expressed in the language PL. We sketch the proof below, where we

assume, for simplicity, a universe U of three attributes Ay . Azand 45 (as

in Example 1).

JOIN : Let r be a relation over 4,4, and let s be a relation over Azds.That
is, let r € P(D, x D,) and s € P(D,x D3). Then we have : '
rus = fteT/mp(t)cr A myt)cs)

= fteT/mp(t)er] n fte T/ my(t)cs)

=nig(r) nngl(s) o

Example 1 (continued)
Consider the following relations :
r = {ab,ab’} € P(D, x D,)
s = {be,b"'c} & P(D; x Dg)
Using Proposition 1b, we have:

€

nF(r)=r x Dg = fabe,abe’,ab’e,ab’c’}

nzg(s) = Dy x s = fabe,ab’c,a’be,a’b’'c}
Therefore, we find :

iR (r)ong'(s) = fabel = rws o .
Clearly, if r and s are defined over disjoint sets of attributes then the join
becomes a cartesian product.

SELECTION : Let r be a relation over A14; and assume a selection condi-
tion of the form 4, = a. It follows from Definition 1 that:

(i) m(fa)) is the set of all tuples over A1A2A5 that satisfy the given
condition and, therefore, that

(i) mizni2(fa}) is the set of all tuples of D, x D that satisfy the given

R R

D T Ry R,

-

e s e e etk me e B r e mmn rmm e tm e, - -

condition.
It follows from (ii) that’ ‘
(iit) » n meni}(fa}) is the set of all tuples of r that satisfy the given

condition, and we conclude that

rameri(fal) =ft er / m(t) =fad] =04 (r) o

Example 1 (continued)
Consider the relation r = {ab, ab’, a’b} and the selection condition 4;,=a. It
follows from Proposition la that:

nl(fa}) = fa} x Dy x Dy = {abe, abe’, ab’e, ab’'c, ab’'e’]
Applying the projection m; on nyl({al), we obtain:

meni'({a}) = {ab, ab’, ab”}
Therefore, we have:

 rn mem(fal) = {ab, ab’, a'b} n {ab, ab’, ab"’}
= {ab, ab'}

= Op=a (I‘)

It is not difficult to see that selection of r following the condition: 4,=a or
A,=a’, is expressed by the intersection: r nnny(fa,a’l). More compli-
cated selection conditions may involve the difference operator. For exam-
ple, the set of tuples of r whose Ap-value is different from b’ is expressed
by the intersection: n myems? (mp(r) - {b’}), that is ‘

Ogpey (7) =7 0 mgmz" (me(r) = (b)) °

In conclusion, we have seen in this section the language PL and,
also, how relational join and selection can be defined as Pl-expressions. It
follows that the language PL embeds the relational algebra. In the follow-
ing section we show that the language PL is also suitable for the

specification of recursive queries.

3. THE SPECIFICATION OF RECURSIVE QUERIES

G ee . c e ...

-8 -

When specifying recursive queries, the underlying assumption is
that all attributes (or at least those involved in the query) have the sarne
domain. Thus, instead of the diagram of Figure 1, we have now that of Fig-
ure 2 below, where

D = Dom(4,) = Dom(4z) = - -+ = Dom(4,) and

T = Dom(A,) x Dom(Ag)x - -+ x Dom(4,) = D"

In order to simplify the presentation, we assume a single universal rela-
tion r. Furthermore, we assume that the projections m; are restricted on
the set P(r) (the set of all subset of r). As a consequence, for all s in
P(D,), the relation n(s) is the restriction of r with respect to s (see Sec-
tion 2).

P(T)
Figure 2 1’1",;-'l g i=1,2,...,n
P(D)

The basic building blocks for the specification of recursive queries are
functions of the form mn;t, i=1,2,...,n and j=1,2,...,n. It should be clear
from Figure 1 that a function of the form m;n;! goes from P(D;) into P(D;).
We shall refer to the function mn; ! as the 4 ~mapping. Under our assump-
tions, P(D;) = P(D,) = P(D) and,thus, every ij-mapping goes from P(D) into
P(D). Therefore, every composition of ij-mappings is a (well-formed)
expression of the language PL. It is precisely this property of ij-mappings
that allows for the specification of recursive queries.

When specifying recursive queries we make use of ij-mappings of order n,
that is, mappings of the form (mn; Y™, defined as follows:

()t = mynj!

(mm)m = (i) (w1, n=2,3,...
Loosely speaking, the mapping (memi*)™ is obtained by composing ;!
with itself n times.

e wm e m e e

- m e et

-ee oo me -

-9 -

Example 2 :

- Let U be a universe of three attributes AlAp,A havihg as (common)
domain the set of all latin characters. Consider a relation r over A1AzAs,
as shown in Figure 3, and the 21-mapping meni’. Let us consider a value of
the A,-column, say the value a, and let us compute mgm;(ta}). We find
that:

npmiH(fal) = i M (fal)) = g {abe,achi) = {b,c}

What this says is that the value & {of the A;-column) is "related” to the
values b and ¢ (of the Ag-columnn), or that b and ¢ are the "Ag-relatives” of

a. Now, as the values b and ¢ appear also in the A;-column, we can apply

~ again the 21-mapping rery*t on the result of the first computation. We find

that:

mpny gy H1al)) = e Y(fb,el) = myf {bda, bde, cea}) = {d,e}
What this says is that d and e are the Ag-relatives of a of "order 2. Sum-
marizing our discussion s¢ tar, we have that!

() {fal) = tb.e} are the A-relatives of a of order 1

(i)?(fad) = {d,e] are the Ag-relatives of a of order 2
In general, the function {ngey™ produces Ap-relatives of order n. Let us
note that this process can be explained through an undirected graph
defined as follows

- 11,(r) mg(7) is Lhe set of nodes and

- there is an arc between node % and node y iff xy is in mg(r).
In Figure 3, we can see the graphical representation of the (binary) rela-
tion mp(r). It is clear from the graph that b and c are relatives of a of
order 1, because there are paths of length 1 going from a to b, and from a
to c. Similarly, d and e are relatives of a of order 2, because there are
paths of length 2 going from a to d, and from a to e. Let us note that
graphical representations are helpful when dealing with only two
colurnns. However, when we deal with three or more columns, graphical

representations tand to be cumbersgme. ©

- 10 -

Figure 3
A relation r over 4,4:43 and the graphical representation of binary rela-

tion my(r).

A A As

R, 0O T o' o

® © A p oo o

0O P O S oo
\\

Two examples of recursive queries that have received extensive
attention in the litterature are "the ancestors"” and "the cousins” (see for
example in [B85b]). In what follows, we discuss the specification of these

- two examples in the language PL.

ANCESTORS: Let us begin by stating formally the definition of "relatives"”,
as suggested by our discussion in Example 2.

Definition 2: Let r be a (universal) relation. For all s in P(D) the set of ij-
relatives of s of order n (with repect to r), denoted by R3(s), is defined as

follows: Rjj(s) = (mm;)™(s) o

Intuitively, we can think of Rj(s) as the set of all "ancestors” of s, n gen-
erations backwards. It is important to note that R} is a function that goes

from P(D) into P(D).

Example 3.

Referring to Figure 3, let us compute the 21-relatives of s = fa, b} :
Order 1: B2\ (s) = (mer)i(s) = ngmy Hfa,bd) = {b,c,dj.

Order 2. Rz (s) = (meni)¥(s) = many (RA (s)) = meni(b,e,d}) = {del.
Order3: RY(s) = (meni)%(s) = meni(RE(s)) = men({d,e]) = fei.
Order 4: "Rz (s) = (mani)¥(s) = manyY(RE () = menN(fe}) = 9.

- 11 -

It follows that : F3, = ¢, forn>4 o

The first example of recursive query that we would like to define as a PL-

expression is the following:

@, : Given a set s in P(D), find all ij-relatives of s (indepenciently of

- the order).

Let @;(s) denote the answer to this query. From what we have said so far,
in order to find @,(s), it is enough to "accumulate” the ij-relatives of s of

order 1,2,..., that is,
@i =RJURGU -~
Let us define
@3(s) = Rj(s) RE(s)v - -+ URj(s), n=12,.

Using Definition 2 and proposition 1(g) we can write:

Ri(s)u -+ URj(s) = Ry(Bj(s)) v -+ v RG(RFH(s))
= Ry(Rj(s)u -+ VRGT(s))
= By(@ ()

Thus we can re-write (1a) as follows:
&(s) = Qs) VRHE (), n=1_2..
or, using equations (1a) to (1e),
Qi(s) = Ri(s)
@5(s) = Rj(s) vRj(&57Y(s)), n=R3,.
=@ Hs) v RH>(s)). n=2,3,...
For example, referring to Figure 3, we find:

Q4 (fa]) = R {a}) = menii({a)}) = {b,c}
Q% (fad) = @3, fad) v Ry (@2 (fal))

(1a)

[from Definitian 3]
[Proposition 1g}
(1b)

(1c)

(2a)
(2b)

v P m e e o onm. .-

- 12 -

= {b,e} U men({b,c}) = {b,c} u {d,e} = fb,c,d,e}
@4 (fa)) = @41 (fad) U R (@4 (fa))
= {b,c} U meni({b,c.d,e}) = {b,c] v {d,e} = {b,c,d,e}
= @5 (fa))
It follows that: @5 (fal) = @5 ({a}), for n=3,4,.... and therefore, the answer
to the query is:
Qa(fa}) = szl(faf) = {b,c,d,e}

In general, it follows from (la), that the sequence of sets: @3 (s),
Q% (s)...., is an increasing sequence (with respect to set inclusion). On the
other hand, assumning that the given relation r is finite (as it is the case, if
r is a database relation), there is a (least) finite integer ng such that:
Q§°(s)= Q§°+m(s), for all m=1,2,... Therefore, the answer &;(s) can be

defined as follows:

@s(s) = @°(s). (2c)

where ny = min({n/@j(s) = ¢*™, m=1,2...})

Another way to look at the definition of @;(s) is as the least fixed point of
the following equation:

Qi(s) = RJ(S) U Ry (@(s)) ' (3)
Equation (3) is an immediate consequence of (2a) and (2c).

COUSINS: Let us begin by stating formally the definition of a "cousin",

as suggested by our discussion of ancestors.

Definition 3. Let r be a given (universal) relation. For all s in P(D) the set
of ij-cousins of s of order n (with respect to r), denoted by Gi(s), is
defined as follows:

Gi(s) = RGRR(s) = (mymy)™ (mym) (s) a

et eme e me - .

- 13 -

Intuitively, we can think of Rji(s) as the set of all "ancestors” of s, n gen-
erations; backwards. Following the same reasoning, we can think of
Ri;(Rji(s)) as the "descendants” of Rj(s), n generations forward, that is,
we can think of the "individuals” in the set Rj(Rj(s)) as "cousins” of s. It

is important to note that ¢} is a function that goes from P(D) into P(D).

Example 4:
Referring to Figure 4, let us compute the 12-cousins of s={{} :
Order 1:
‘21-ancestors: R (s) = mem Y41 = fe,d)
12-cousins: Cfa(s) = RlaR,(s) = mmzi{fc.d}) = {f.g}
Order2: ‘
21-ancestors: R3(s) = R} R (s) = mpnY{e,d}) = {a}
12-cousins: Ch(s) = RRREA(s) = (mmz)({a)) = {e.f}
Order 3:
21-ancestors: R, (s) = R}EE (s) =mniY{a}) = ¢
12-cousins: Cii(s) = RRRA(s) = (mmz?)*($) =¢ o

Let us note that our notion of "cousins” generalizes that encoun-
tered in the literature. Indeed, using our definition we can ask for the
cousins of a set of individuals. For example, referring to Figure 4, we can
compute;

Cl(fef}) = fegfd and Ck(fef]) = fef
Similarly, we find:

Ch(iig)) =gl and CH({f.g)) = fe.f
Clearly, when the argument of C§(s) is a singleton, then Definition 3 coin-

cides with the usual definition of cousins encountered in the literature.

cheroa e

- 14 -

Figure 4 A relation r and its graph representation

A, Az

e
b a \b\

S

c a ~a
e b c/
f c f/

\‘\
f d d

' The second example of recursive query, that we would like to define as a

PL-expression is the following:

@;: Given a set s in P(D) find all ij-cousins of s (independently of the
order)
Let @;(s) denote the answer to this query. From what we have said so far,
in order to find ;(s), it is enough to "accumulate” the ij-cousins of s of
order 1,2,... until no more ij-cousins are found. This will happen when no
more "ancestors” are found (see Example 4). So, observing that

Gi(s) = R§R(s) = Ry R} 'RE ' Ryi(s) = Ry C3 7' Ry(s)
let us define

Qs)=Gi(s)uCis)v - uCH(s) n=1,2,.. (3a)

Then we can write
Gi(s)u -+ UGHs) = RyGIRx(s) U Ry GERp(s) u - - U Ry G5 Ry(s)
=Ry(Gj v -+ U CF ")Ry(s) [from Proposition 1g]

=Ry 3 "Ri(s) [from definition above]
Thus we can re-write (3a) as follows:
Qg(s) = joRﬁ(S) U Rij Qg—lﬁji(s) n=1,2 (Sb)

or,
Qj(s) = RyRu(s)
4
Qs(b‘) = Qul(s) V) R‘&J Q:;‘l.RJ‘(S) (a)

So we can conclude (as for the “ancestor” query) that:

- 15 -

Q;(s) = Q;o(s) (4b)
where ng = min({ n 7 @™ = ¢}, m=1,2,... })

And we can also see the answer @;(s) as the least-fixpoint solution. of the

following equation:

Q;(s) = Cy(s) v Ry @ Ru(s) (4c)

This equation (4c)is an immediate consequence of the equations (4a) and (4b).

4. THE EVALUATION OF RECURSIVE QUERIES

We have seen that the language PL allows specification of recursive
queries as PL-expressions. We have also seen two important examples of
such specification, namely, the ancestors and the cousins. In this section,
we discuss evaluation of recursive queries. More specifically, we discuss:

(a) Modification and optimization of recursive queries, using the
exémple of ancestors, and | _

(b) The influence of functional dependencies in the evaluation of

recursive queries, using the example of cousins.

4.1 Optimal evaluation of ancestors
Given a set s in P(D), let @;(s) denote the set of all ij-relatives of s.
We have seen that, in order to find @;(s), it is enough to accumulate the
ij-relatives of s of order 1,2,... until no more relatives are found. Thus, fol-

lowing equations (2a) and (2c), we can write down the following algorithm -

for computing @;(s):

- 16 -

Algorithm: ANCESTORS 1
Input : A set of values s
Output : The set Q of all ij-relatives of s
X:=mniY(s);
Q:=X;
repeat
L:=Q;
Q=X umni(Q)
untid L =Q

The transformation of this algorithm into a relational algebra program is -

straightforward. Indeed, the only non-relational operator that appears in
the algorithm is the inverse projection n;!(Y). However, as we have
explained in Section 2, this inverse projection can be computed as a
union of selections. More specifically, let Y={y1.32...7m}, and let P=n;1(Y).
Then P can be computed as follows:

P:=g;
fork:={ tomdoP:=Pu 04 =y, (T) |

In general, as the only non-relational operator of the language PL is
the inverse projection, the transformation of a PL-expression into a rela-
tional algebra program presents no particular difficulty. The interesting
question here is, rather, that of modifying a PL-expression, usually for
reasons of computational efficiency. The objective is to obtain an
"equivalent” expression which is "easier” to evaluate. This problem,
known as query modification, has received extensive attention in the rela-
tional literature (see for example in [MB3]). Here, we discuss modification
and optimization of a particular class of recursive queries, narnely ances-
tors. ' ' A

We have seen that equations (Ra) and (2c), define the answer of the
following query:

@y : Given a set s in P(D), find all ij-relatives of s,

However, equation (Ra) may lead to redundant computations. Let us see

- 17 -

an example.

Example 5

‘Referring to Figure 5 below, let us compute §;({a}), that is, the 21-

relatives of fa}. Following equations (2a) and (2c), we find:

@4 ({a}) = R3\ ({a)) = fa,b.c}
@5 (fa)) = Qzll(faf) U meni (@2 (fal)
"= fa,b,c} U men!(fa,b,e}) = {a,b,c} v fa,b,c,d}
. ={a,b,e,d}
@2 (fa) = @4 (ta}) v mem}(@ (a3)
= {a,b,c} u mynyi(fa,b,c,d}) = fa,b,cl U fa,b,c,d,e}
= {a,b,c,d,e}
@z (fa)) = @z (fa}) v meni (@2 (fa}))
= {a,b,c} U myn!(fa,b,c,d,e}) = {a,b,cl v {a,b,c,d,e}
= fa,b,c.d,e} = @3 ({a))

It follows that @,,({a}) = {ab,c,d,e}. However, we observe that there are
many computations that are repeated. This is what is called "naive
evaluation" in [B85]. In particular, the relatives of a of order 1 (which are
a,b and c¢) are re-computed in every step. Thus, we may remove a from
@l (fa]) before we compute % (fa}), without change in the final result.
Similarly, we may remove b and c from @5 ({a}) before we compute
@3, (fa}) and, finally, we may remove d from @3 ({al}) before we compute

Q2 (ly

- 18 -

Figure 5. A relation r and the graph representation of m(r).

>
}
0
b
@

) G
G

A / \e
/7

The above observations lead us to replace equations (2a) and (2¢) as fol-

® A oo o Ao o oW
(o]
~.

o A0 oo oY Y W
e o ATy 0D M

lows:
C@is)=s
Q4(s) = Ry(s) = mnj\(s) (52)
QL (s) =37 (s) v RHOZ(s) - §27¥s)] forn=12,3,...

Qy(s) = @5°(s), (5b)
where ng = min({ n / @5(s) = §3*™(s), m=1,2,...})

The following proposition shows that this replacement can be done safely:

Proposition 2. For all s in P(D), and for all n=1,2,... we have
Q5(s) =g (s) o

Proof To make this proof more readable, we shall write ¢* instead of &,
Q" instead of § and R" instead of R}
We can deduce from Proposition (1g) that:
BV - RY(@) c RY(-gn) ¢ RY(@™
and
(i) [Rl(Qn—l) —EI(Q"—)] u ! e Hl(Qn—l__Qn— Yu gl ¢ Rl(Qn—l) vt

. s e e .

- 19 -

Using the equation (1b), we have
(]i) Rl(Qn—a) c Qn—l -
Combining (i) and (ii), we obtain
R Hugt! c Rl(gn—l_gn—-z) ugr! ¢ Rl(Qn—l) ugr?
that is,
FTURNG) = @ T U R
and then, using equation (2b)
" =gy Rl(Qn—-l__Qn—Z)
Comparing this equation with the equation (5a), we can finally conclude that
F=¢, for n=1,2,... QED) '

Equations (2) and (5) can be seen as two different computations of
the answer @&;(s). It follows from Proposition 2 that these two computa-
tions produce the same result and, thus, they are equivalent. On the
other hand, we have seen earlier that the computation of @;(s) following
(5). is more economiical, as it retreives fewer tuples of r (see Example 5).
So let us define performance of a computation as the total number of
tuples retrieved from r during the computation. Clearly, a computation of
@&;(s) is optimal if the following conditions holds:

(a): no tuple of r is retrieved more than once and,

(b): if a tuple t of r is retrieved, then t contributes to the result of

the computation

Referring to equations (5) we observe that:
T! = n,Tl[Q_%(s)] is the set of tuples needed in the computation of g

and :

T =7 @5 Y(s) - @3 %s)] is the set of tuples needed in the com-
putation of § 2(s), for n=2,3...
The following proposition shows that the computation defined by equa-

tions (5) is optimal:

Proposition 3. For all n=g3,.., and al i=1&,..,n-1 we have
T“OT‘=¢ o

- 20 -

Proof We use the same simplified notations as in the proof of Proposition
2. Let t be a tuple in 7* for some i in {1,...,n-1} such that ny(t) = ab. From
the definition of 7* and equations (5), we have m(t) € §* and using Propo-
sition 2, we obtain that a ¢ @' and we deduce that b e "', Referring to
equation (1a), we conclude that b e §"® because n-2 2 I-1. So we obtain
that b ¢ (¢"'-¢"*) and finally that t & 7™ Q.E.D

In view of Propositions 2 and 3 the following algorithm optimally com-

putes the answer &;(s)

Algorithm : ANCESTORS 2
Input: A set of values s
Output: The set Q of all ij-relatives of s
Ll:=s;
Q:=rymy (s);
repeat
L2:=L1;
L1:=Q;
Q:=L1 u mm;}(L1 - L2);
until Q@ = L1;

It is important to note that the above algorithm computes ij-relatives of a

set of values s and not the transitive closure of a relation.

4.2 The influence of functional dependencies

We have seen that the performance of a computation can be
improved by query modification, that is, by finding a different PL-
expression that produées the same answer. In this Section, we show that
further improx}emént in performance is possible if we use semantic infor-
mation such as functional dependencies. We explain this, using the exam-
ple of cousins, that we have seen in section 3. In order to simplify the
notation (and without loss of generality) we shall work with a relation r

over two attributes.

e M s .=

f e et e e . — =

- 21 -

Definition 4. Let r be a relation over 4,4, For all n=1,2..., we denote by r®
a relation on the (common) domain D defined as follows: For all x and y in

" D, x r™ y if there is a sequence X=u,, %)...%n=Yy of n+1 elements of D,

such that: « ., is in r for i=0,1,...,n~-1 o -

The following simple facts are immediate consequénces of definitions 3
and 4: : _

Fact 1: the tuple xyisinrif and onlyifxr'y o

Fact2:y € Ch(x) if and only if there is z such thatxr®*zAayrtz ©

There is an interesting relationship between functional dependencies and

cousins, stated formally in the following proposition:

Proposition 4. Let r be a relation over 4,4z, satisfying the functional

dependency 4, -+ 4z. Then for all X in D, and for all n=2,3,... we have:
Ch(lx]) #¢ = C?a-l(fxn c Ch(fx3) e

Proof Let y € €75 ({x}). It follows, from Fact 2, that

there is z such that: x #* ! z and y ™! 2. It follows, from Definition 4

and Fact 1 that there are sequences X=xg, Xy, -.. , Tn-1=2 and
Y=%0, ¥1, --- » ¥n-1=2 such that :
x; rlz;y, , i=0,1,...,n-1 (a)
yi ' yiey » 1=0,1,..,0-1 " (b)

On the other hand, as Cl({x}) # ¢, we have: x € C%(§x}). Thus, Fact 2
implies that there is w such that x»" w. It follows from Definition 4 that

. there is a sequence X=wg, Wy, -.. , Wp =W, such that

w; r'wyy, , i=0,1,...n-1 (c)
Now, the relation r satisfies the functional dependency A; - Az, and xgx,,
wow, are tuples of r. As x=xg=wq it follows that x,;=w,. If we repeat this
argument n-1 times, we obtain that:

x, =w;, , i=0,1,...,n-1 (d) -
As x,_;=z, it follows from (d) that z=w,_;. Thus, (c) implies that z r! w,_;
and, as w,=w, it follows that z »! w. Finally, as y #1z and z +' w, we obtain
yr® w. Thus we have: xr* w and yr" w. It follows, from Fact 2, that.A‘

- 22 -

y € Chz(tx}), QED
With Proposition 4 at hand, let us look again at the example of cousins. We
are interested in the following query:
@12 : Given a set s in P(D) find all 12-cousins of s.
The answer @,2(s) to this query can be computed using the equations (4a)
"and (4b). It follows from (3a) that
(i) = ch(fxl) v - vl (i) v Ch(1x3) , n=1,2,...

Now, assume that the relation r satisfies the functional dependency
Ay - Ag. Ther_x_ according }o proposition 4, we have_: o

Cie(fxl) #¢ = Cl2'(Ix]) c R (ix]) . n=g3,...
It follows that

Q(ix)) = Ch(fx]) , if CR(ix])# ¢

=Ci2(tx3),if C3(Ex3) # ¢ and €73 ({x}) = ¢,otherwise

Therefore,if the relation r satisfies the functional dependency 4, - 4,
then there is a significant improvement of performance.

In conclusion, we have seen two ways of improving performance
when evaluating recursive queries. The first, modifies the structure. of the
PL-expression, whereas the second uses the knowledge of semantic infor-

mation, such as functional dependencies.

5. CONCLUSIONS

We have presented a purely algebraic approach to recursively
defined queries in relational databases. Our algebra is based on the pro-
duct space of all attribute domains, and its basic operations are set-
theoretic difference, intersection and union, projections and their
inverses, and function composition. The well-formed expressions of the

- 23 -

algebra constitute a language that we called PL.

The basic bulldmg block for the speczﬁcatlon of recursive querxes in
the language PL is the ij-mapping: mnt. Using ij-mappings, we have
presented two important examples of recursively defined queries: the
ancestors and the cousins. We have also discussed performance issues,
and we have given an optimal algorithm for computing ancestors. Furth-
ermore, we have shown that functional dependencies can be -profitably

used to improve performance in the evaluation of cousins.

We are currently working on two aspects ‘of our approach. The first

" is related to 1mp1ementat10n. Our ij-mapping is ‘closely related ‘o the

main operator of the relational language SQUARE. The SQUARE operator,
also called mapping, is a selection followed by a projection. In fact, the
mappmg concept is carried over into the basic syntax of the language
SQL as well. We are currently investigating the possibility of implement-
ing the language PL in SQUARE or SQL. The second aspect of our current
work is related to semantic issues. We have seen that functional depen-
dencies can be taken into account when evaluating recursive queries. We
are currently investigating the possibility of using other kinds of seman-

tic information in the evaluation of recursive queries.

[C70]

References

[B8S5]

[B85b]

[Ds8]

[G84]

[HN84]

[M83]

[Us3]

[U85]

- 24 -

F. BANCILHON, 'Naive Evaluation Of Recursively Defined Relations”
Technical Report Number: DB-004-85 MCC.

F. BANCILHON, D. MAIER, J. ULLMAN, "Magic Sets and Other Strange
Ways to Implement Logic Programs” submitted to PODS 88

E.F. CODD, "A Relational Mcdel of Data for laroe shared data

“banks” CACM 13,6 1970 pp 377-387

J. DUGUNDJI, "Topology”
Allyn and Bacon Inc 1966

H. GALLAIRE, J. MINKER, J.M. NICOLAS, "Logic and Databases:
A Deductive Approach”, ACM Computing Surveys 16,2 June 1984

L. HENSCHEN and S. NAQVI, “On Compiling Queries in Recursive
First-Order Databases” JACM, Vol31, January 1984. pp 47-85

D. MAIER "The Theory of Relational Databases”
Computer Science Press 1983

J. ULLMAN "Principles of Database Systems"”
Computer Science Press 1983

J. ULLMAN, "Implementation Of Logical Query Languages For

Databases”
ACM Transactions on Database Systems, 10:3, pp 289-321, 1985

Imprimé en France
par
I'Institut National de Recherche en Informatique ¢t en Automatique

M

'y

- &

E AR

