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ABSTRACT

The purpose of this paper is to demonsteate that, for the Verso model, nesting relations not
only provides a more’ convenient dzza representation but also leads to a more sucdat and
efficient, data manipulation. We exhibic a siple but highly expressive dass of the reladonal

es whose exoressions can be simulaed by a Verso selection followed by a Verso projec-
don We proceed in a consructive manner Using an extension of the tablean technique to
represent relationzl expressions and characterize these expressions. The work presented here is
a good basis for implementing an effident relzrional interface for the Verso D ata Base Machine.

RESUME

Ce paiie:r apour objet de démontrer que, dans le cadre du medel#é V-relationnel, la sructure de B

relation norrnomadisée ne propose pas seulement une représentation des données plus
sgréable et sucdnte mais permet également de manipuler les é;

quedrre. Nous exhibons ua sous enserctle simple de I dgdbre relationelle dont chaque expres-
sion peut &wre traduite par ure Verso-selection sutvie dune Verso-projection. Nous proposons
une caractédsation constructive de ces expressions relationnelles utlisant une extension de la

technique des tableax. Ce travail constitue également un étude en vue de la réalisation dune.

intexf ace relaticnnelle i la M achine Base de D onndes Verso.

rllNRL'\, Domaine de Voluceaun,
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1. Introduction

Since Makinouchi [Makinouchi 77] first investigated the idea of relaxing the first
normal restriction [Codd 70} and of allowing set-valued domains, nested relations (also
called non-first-normal form relations) have attracted s lot of attention, motivated by
new applications of database systems | ( [Macleod 83, Ozsoyoglu 83, Kobayashi
80, Bancilhon + Richard + Scholl 82, Bancilhon 82]). It has been enhanced that nesting
relations leads to a more natural and succint data representation and the related
théoretical aspects of non first normal relations are mainly contained in [Scheck + Pistor

82, Scheck '+ Scholl 84, Jaeschke + Scheck 82, Fisher + Thomas 83a, Fisher + Thomas
. 83b, Abitebc;ul + Bidoit 84a, Abiteboul + Bidoit 84b]. The purpose of this paper is to
demonstrate that, for the Verso model [Abiteboul + Bidoit 84a], nesting relations not
‘only provides a more convenient data representation but also leads to a more succint and

_efficient data manipulation.

In the Vers§ model [Abiteboul + Bidoit 84a] data is organized in non first normal form
relations. The recursive definition of a Verso schema induces a hierarchical organization
of data and the implicit specification of join dependencies. It also allows to représent
some simple type of incomplete information. A simple and complete algebraic language
allowing data restrucéuring as been defined for Verso relations. As mentionned earlier,
the purpose of this paper is to demonstrate the expréssive power of the Verso query
language. As claimed in [Abiteboul + Bidoit 84a], the operations proposed on Verso
instances take advantage of the semantic connection among attributs and some queries

which would typically required joins in the pure relational model can be expressed by a

-
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unique selection in the Verso .fnodel.v Here, a simple but highly expressive class of
relational queries that can be interpreted by siniple Verso expressions involving at most
two unary operations, namely projection and selection, is characterized and furthermore
a technique for recognizing these queries is developped. The advantage of our approach
is that preserving some positive features of the relational model, tools developped in the
relational framework can be used in the Verso .framework. Indeed, an extension of the
tableau technique is used here to represent in a uniform way both a subclass of relational

expressions and a subclass of Verso expressions.

We have to mention here that the Verso model is a formalization of some of the
concepts used in the Verso database Machine [Bancilhon 82]. The data structure in the
Verso database Machine is Verso instances stored sequentially and fully sorted. This
storage allows fast access and processing [Bancilhon + Richard + Scholl 82]. Indeed all
the operations of the Verso model but restructuring that requires sorting, are
implementéd by a specialized filter. In particular the Verso selection-projection
expressions are converted into finite automatas runned by the Verso filter. This directly
entails that all the relational queries characterized here to be expressable by a simple
Verso selection-projection can be processed *on the fly® by the Verso filter. Also the
technique associated with the characterization can be directly implemented to provide a
relational user interface for data base systems using nested relations as internal data

structure.

The paper is organized as follows. In the first section, we review some fundamental

issues of the Verso model, in particular the correspondence between the Verso model and
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the relational model. In the second section, we generalize the tableau tecimique to
represent relational projection-selection-join expressions defined on particular schemas,
called format skeletons. Modifications of classical results on tableau equivalence are .
obtained. In the third section, we study how to use these t'z;bleaux to characterize
relational projection-selection-join expressions on format skeletons expressible by simple

unary Verso expressions.



2. Preliminaries

We assume that the reader is familiar with the relational model [Ullman |. In this

section, we briefly review some basic concepts and present the main notations used

throughout the paper.

We assume the existence of an infinite set of attributes U, and for each attribute A in

U, of a set of values called the domain of A and denoted DOM(A). A relational schema

is a finite set of attributes. Let V be a relational schema, then a tuple v over V is a
mapping from V into U AevDO-M(A) such that v(A)EDOM(A) for each A in V. The set of

tuples over V is denuted by TUP(V). A (first normal form) relation over V is a finite set
of tuples over V and the set of relations over V is denoted REL(V).

The relational operations of union, intersection, difference, join, projection and
sglectio;x are respectively denoted by U, N, -, W, HP (where P is the set of projected
attributes) and Select, where C is a condition on a set V of attributes. An elementary
condition on an attribute A is a disjunction of conditions of the form A<a, A>a, A<a,
A>a, A=a, Aa where a€DOM(A). A condition on a set V of attributes is a
conjunction of elementary conditions on attributes in V. If C is a condition on the
attribute A (resp. on the set of attributes V) and a€DOM(A) (resp. v is tuple over V),
then a satisfies C (resp. v satisfie;'s C) is denoted a }=C (resp. v[=C). If C, and C, are
conditions such that each value (or tuple) satisfying C, also satisfies C, then we say that
C, implies. C, denoted by C,=C,. For the purpose of our discussion, we‘introduce two

supplementary conditions, namely the *empty® condition, denoted True, satisfied by all



values (or tuples) and the *full* condition, denoted False, satisfied by no value (no

tuple).

A relational database schema is a finite set of relational schemas. A relational database

instance r of some relational database schema R is a mapping from R into UVeRREL(V)

such th'at.r(V)eREL(V) for each V in R. A relational database instance r satisfies the

Universal Relation Schema Assumption (URSA) if Iy (r(Y ))Cr(X) for each X,Y in R and

XCY. Let R be a database schema, then a relational projection-selection-join expression

(PSJ-expression) on R and its target schema are defined recursively by:

1. [V] is a PSJ-expression on R for each V in R, (Vis called the target schema
of [V]),

2. Assume taht E,, E, are two PSJ-expressions on R with target schemas Vi ¥V,
| respectively; that YCV, and C is a condition on the set of attribute V,; and
that V,NV,5#0. Then: o

a. I [E,] is a PSJ-expression on R (with target schema Y),
b. SelectC[El] is a PSJ-expression on R (with target schema V.l)’
c. E,ME, is a PSJ-expression on R.(with target schema V,UV,)..

In general, we use the letters A, B,... to denote attributes; a, b,... to denote domain
values; V, W, X| Y,... to denote relational schemas; v, w, x, y,... to denote tuples; R, S,...

to denote relational database schemas and r, s,... to denote relational database instances.

We also use the classical convention of writing XY for the union of two sets of attributes . -

X and Y.



3. The Verso Model

In this section, we present the data structure of the Verso model and introduce the
_operations on Verso relations. We also include some results concerning the simple
connection between Verso relations and relational database instances satisfying the
URSA as well as the interpretation of the Verso operations ‘in terms of relational
operations. The reader interested in a complete description of the different aspects of

the Verso model is invited to refer to [Abiteboul + Bidoit 84a] and [Bidoit 84] .

Let us first consider an example. A department consists of a set of COURSEs, the
BOOKSs required for each course, the STUDENTS registered in each course and their
GRADEs. Figure 3-1 represents the information in a department. Intuitively, a
department can be considered as a relation over, say, the three attributes, COURSE, Al
and A,. The values of the attribute COURSE are atomic whereas the values of A, and
A, are simpler Verso relations. Note that in the example, there is no BOOK required for
the *"physics®* COURSE. Thus null values can be represented in a Verso relation. Also
note that an implicit connection is assumed between the attributes STUDENT and
BOOK through the attribute COURSE. In other word, a *join" is implicit between

COURSE STUDENT and COURSE BOOK.

To specify the structure of a Verso relation we use the auxiliary concept of a format.
Informally, a format f is a regular expression of the form X(f l)“"(fn)* where X is a finite
set of attributes, f,)....f, are formats (possibly empty) and no attribut occurs twice in f.

If Z is the set of attributes strictly occuring in the definition of a format f, we say that f
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is 3 format on Z. For convenience, a directed tree representation for formats is used as
shown in Figure 3-1 for the format COURSE(BOOK)*(STUDENT(GRADE)‘)‘. Verso

relations are now formally defined in terms of format instances.

Definition: Let f be a format. The set of all instances over f, denoted Inst(f) ,is defined |
recursively as follows:
1. if f=X then Inst(f)=REL(X).
2. if f=X(f,)"..(f,)" then I is in Inst(f) iff
a. lis a finite subset of TUP(X)XInst(f,)X...XInst(f ), and

b. if <ul,..I > and <uIl'...ID'> are in Inst(f) for some n,Il,...,In,Il',...,In'
then Ii=Ii' for i=1..n. /

Intuitively, the definition above states that an instance I takes atomic values on the

attributes in X and not atomic but instance values on the *attributes® f..f - The
definition also forces X to be a key. An instance of

COURSE(BOOK) (STUDENT(GRADE)')’ is represented in Figure 3-1.

COURSE ( BOOK )* (STUDENT ( GRADE )#* )»*

mgth b toto 4 A
' g ' . 8 COURSE
zZaza l I : BOOK STUDENT
" GRADE
phys I l lulu I 9 I
toto 6
9
*instance over f" , *tree representation of £*

Figure 3-1: Verso relations are format instances.
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In [Abifeboul + Bidoit 84b], we present a complete set of operations on Verso relations
on the form of an algebra. The binary operation of the Verso algebra are defined noot
only on Verso relations having same structure, but also on Verso relations having
compatible structures. The notion of format compatibility is defined using the notioix of
~ a subformat. A format g is a subformat of a format f if the tree associated with g is a
subtree of the tree assoociated with f and has same root. Intuitively, if g is a subformat
of f and J an instance over g, an instance over f, called the extension of J on f and
denoted by i containing the same information as J, can be obtainec_l simply by
"padding® at each level with empty instances. An instance J over
COURSE(STUDENT)" and its extension on COURSE(BOOK)'(STUDENT(GRADE)')"
are represented in Figure 3-2. Now, two formats f and g are cofnpatible if they are both
subformats of some third format h. This format h is the common structure on which

instances over both f and g can be represented.

The binary Verso operations are union, adding the information contents of two Verso
relations; intersection, extracting the information common to two Verso relations;
difference, removing the information contained in a Verso relation from the information
contained in a second one; join combining the information contents of two Verso
relations having compatible structures (and intersecting the information contents of two

Verso relations having same structure).

In [Abiteboul + Bidoit 84a], the binary operations are defined using an inclusion

relation on Verso relations.



counsz\ | COURSE
- BOOK 5 IENT o Cos STUDENT
GRADE
COURSE (BOOK) * (STUDENT (GRADE) *) * COURSE (STUDENT) *
*format f* *subformat g of f*
COURSE (STUDENT) * COURSE (BOOK) * (STUDENT (GRADE) *) #
< math toto math | | [toto | |
zaza _ :
’ zaza | |
o [} ]
pays | J
o phys | | L J
*izctanse I over g* . "extension of J on f*

Figure 3-2: Subformat and Extension.

Definition: Let f be a format and I, J two instances over f. Then I is included in J,

denoted 1<, iff:

if £=X(1,)"..(f,) , f,,--.f, not empty, then ¥<ul,..I >€l, 3<ul,..J >€J | LT, for

i=1..n. : : . ,

We formally define the Verso union, and difference using the inclusion relation on
Verso relations. The Verso intersection is not presented here as its definition is embeded

in the Verso join definition.

-Definition: Let { and g be two compatible formats and h a f;)rmat such that f and g
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are subformats of f. Let I and J be two instances over f and g respectively. _Then, the
union of I and J according to h, denoted I@hJ is thg smallest instance defined over h
containing I and J; the difference of I and J according to h, denoted I©,J is the
smallest instance over h, included in If such that its union with J according to h is equal

to IP,J.

As a set operation definition of the Verso join requires the former definition of
projection, a constructive definition of the Verso join is given below. In [Abiteboul +
Bidoit 84a], the binary operations are presented in both algebraic and constructive

fashion.

Definition: Let f and g be two compatible formats and h a format such that f and g
are subformats of f. Let I and J be two instances over f and g respectively. Then the
join of I and J according to h is defined recursively by:

1. if b=X then (f=g=X) I®, J=INJ and,

2. if hEX(hl)‘...(hn)‘, fEX(fl)‘...(fn)‘, gEX(gl)*...(gn)* where for each i=1..n,
f; ( respectively g;) is a subformat of h,, possibly empty. Then:

1® J={<uK,.K >| <ul,..I >el, <ul..J >€l,,
Kk=lkéhk‘lk if f; and g, are not empty,

K=, if f, non empty, g, empty and,
K,=J, if f, empty, g, not empty}

In Figure 3-3, the binary opéra.tions are illustrated using an instance I over
COURSE(STUDENT)‘ and an instance J over COURSE(BOOK)*, the common format
used to express thé result of the operations applied to I and J béing

f=COURSE(STUDENT)"(BOOK)'".



COURSE (STUDENT) * COURSE (BOOK) # COURSE (STUDENT) * (BOOK) *

math toto math b1 math toto
zaza b2

zaza
gym mimi music |b3 I phys | | b4 |

phys | |  phys b4 | R

*insgtance I*® "instance I(® J*

b1
b2

*instance J*

COURSE (STUDENT)* (BOOK)*

COURSE (STUDENT)#* (BOOK) *

il gl = e | L
gm  mimi | | | gym |mimi | | |
music | 1 (b3 | *instance I ® J*
prys | | [ |

*instance I (® J*

Figure 3-3: Binary Verso operations.

The unary .operations of our model are extension (described above), brojection,
~ selection, restriction, renaming and restructuring. The last unary operation, namely
restructuring, allows data reorganization and in [Abiteboul + Bidoit 84b] some key issues
raised by this data ‘restruct‘uring have been emphasized. For the purpose of this paj)er,
we focus here on the presentation of the two unary operations of projection and

selection.

The Verso projection defined here is slightly‘ more ggnera] than the Verso projection
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over subformat presented in [Abiteboul + Bidoit 84a]. In order to present the Verso
projection, we need the aﬁxiliary concépt of projected format. Intuitively, if f is a
format on Z, and P a set of attributes included in Z, then the projection of f on P,
denoted by flp, is obtained by removing from f all attributes not in P, as well as

parentheses and star associated with empty strings.

Example 3.1: Let f=COURSE(BOOK)'(STUDENT(GRADE)")" be a format.
Consider the  three sets of  attributes = X={COURSE,STUDENT},
Y={STUDENT,GRADE} and Z={BOOK,GRADE}.

1. f|x=COURSE(STUDENT)‘ is a format and a subformat of f.
2. fIY=STUDENT(GRADE)‘ is a format but not a subformat of f.
3. flz=(BOOK)*(GRADE)' is not a format. '

The preceding example shows that the projection of a format f on-a set P of attributes
is not always a format. The projection of an instance I over f on a set of attributes P is
only defined when fIP is a format. The instance obtained is an instance over fIP' The
constraint on the set P preserves the attribute hiercharchy induced by the format f and

leads to a simple and sound semantics for the Verso projection.
We give below the formal definition of the operation of Verso projection.
Definition: Let f be a format on Z, and P be a non-empty subset of Z such that fIP isa

format. Let I be an instance over f. Then the projection of I on P, denoted I[fIP] (or I[P]

when f is understood), is the instance over iIP recursively defined by:
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1. if f=X then I[P}={v|v€Tup(P) and JuclVAEP, u(A)=v(A)}
2. if f=X(f,)...(£,)", f;,.-.f, formats on Y,...,Y, respectively,
I[P]—-@<u1 1 >€l {<vJ J >[v=u[XNP] and J;=LIY;nP| where

o J is defmed on le AP’ YﬂP=/=0}

It is clear that the definition above generalizes the definition of the relational

projection. In Figure 34, we present an  instance I  over

COURSE(BOOK)"(STUDENT(GRADE)")’ and its projection on {STUDENT,GRADE}.

COURSE (BOOK) * (STUDENT (GRADE) *) * STUDENT (GRADE) *
math |bil toto 6 ' toto 6
b2 |9 l ‘ 9
i 10
zaza 8

2aza |8 I

gl

phys | l toto 10

“instance I over £° ' “projection of I on
{STUDENT, GRADE}*

Figure 3-4: Verso projection.

" The second important unary operation of our model is selection. This operatjon is
more intricate than the relational selection beca.us'e the structure of format instances is
richer. For the saké of clarity, we will present this operation in two step's. In the first
step we define a version of the selection that is a simple extension of the rél;tional
selection. In the second step, this definition is genergli;ed in order to take advant;ge of
the semantic connections between attributés, that is; fhe.implicit joins specified by a

format.
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We first extend the notion of condition on attributes. In the relational model, a
condition on an attribute A is an algebraic expression in which constants (i.e. elements of
the domain of A) explicitly occur. Let fEX(fl)‘...(fn)' be a format, intuitively, since‘ the
elements of the *domain®* of f. are format insfsances, it-seems natural to consider format
instances over f, as constants associated with f. in order to build conditions on L.
However, writing a condltlon on f; according to that form is cumbersome and dlfflcult to
read. We therefore choose to implicitly specify constants associated with f, in terms of

selection on fi.

We now give the syntax of an expression of Verso simple selection. In the following
definition, the notion of a condition on a set of attributes is the one given in the

Preliminaries.

Definition: Let fEX(fl)*...(fn)‘. Then an expression (or operator) S of Verso simple

gelection over f is of the form §=X:C (el(Sl)...en(Sn)) where:
1. C is a condition over the set of attributes X,
2. Si is an expression of Verso simple selection over f, for i=1..n and,

3. ¢,€{3,}}, for i=1..n. (3 is read "erists",P "does not ezist” and ? "does not
care”)

Example 3.2: Let fECOURSE(STUDENT(GRADE)*)* be a format. Consider the two

following queries:

L. Q,:"Give the list of math STUDENTs who got a GRADE greater than 10
and the GRADE: grater than 10 these STUDENTS received.*

2. Q2"Give the COURSEs in which at least a STUDENT is registered that

didn’t get any GRADE and list the name of the STUDENTSs who have no
GRADE.*
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The query Q, is expressed by the following expression of Verso simple selection over f

§,= COURSE : COURSE ="math" |
(2 STUDENT : ( 3 (GRADE : GRADE > 10))))

The query Q, is expressed by the following expression of Verso simple selection over f.

So= COURSE : ( 3 ( STUDENT : {  ( GRADE ))))

An expression of Verso simple selection § over f defines an operation on Inst(f) in the
following way:
Definition: Let §=X:C (e4(S,)---e (5,)) be an expression of Verso simple selection over
| fEX(fl)‘...(fn)‘. Let I be an instance over f. Let e€{3,},?} then I satifies e, denoted

Il=e, iff e=? or e=3 and Is£0, or e= and I=0.

Then the result of § applied to I, denoted §(I), is defined by:

SD={<u$(1,)...S (I))>|<ul,...I_>€I such that u F=C, and S(L) '=ei, for i=1..n}.

The previous definition is illustrated in Figure 3-5 using the Verso simple selection

expression §; and S, of Example3.2.

We now propose an extension of the preceding definitions which dramatically increases
the power of the operation. Consider the following | query Q, on

COURSE(STUDENT(GRADE)")":*Give the list of COURSEs, STUDENTs and
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COURSE (STUDENT (GRADE) *) * COURSE (STUDENT (GRADE) #) *
path |zaza L] math [(lulu 10 |
lulu ll—l  Jtoto 15|
- 'result; of Q1 applied §n I*
toto |15 | :
music I___l """""""
phys [rick ¢ | COURSE (STUDENT (GRADE) #) +
zoe |____J math [zaza l__l
toto (8 | phys zoe | |
*instance I over f" "result of Q2 applied on I®

Figure 3-6: Verso simple selection.

GRADES such that the STUDENT *toto* got a GRADE equal to-*15* in the COURSE
and a STUDENT (not necessarily "toto") got a GRADE equal to *10* in the course®.
Note that this query is complicated by the fact that they are several roles for the same
attribute, namely STUDENT. Such a query would typically require several joins in the
conventional relational model. What we mean by such a query is, in fact, two selections
on Grade, say $,=GRADE:GRADE="15" and S;=GRADE:GRADE="10". Now, we
also need two selections on STUDENT(GRADE)‘:

$'= STUDENT : STUDENT = *toto* ( 3(S,) ).

»= STUDENT : (3(5,) ).
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= 4

The first one filters the STUDENT ®toto® if he got a GRADE equal to "15*, and the
second one filters any STUDENT who got a GRADE equal to *10*. We can express the

&M %

complete query by:

S= COURSE : ( ? (&) | { 3(S)) , 3(S,) } ) , where §' is the identity on
STUDENT(GRADE)".

It should be noted that the expression § is not an expression of Verso simple selection
as defined above. Intuitively, when we perform such a selection on an instance I over
' COURSE(STUDENT(GRADE)")', for each element <ul;> of I, we perform §,' and §,’
“in parallel® on I, and we write <ul,> (ie <uS(l,)> ) iff $,'(I,)#0 and So'1,)#o.
N'ote that here, S,' and S, are used exclusively as conditions that validate or invalidate

the result of applying the selection COURSE : ( ? (§') ) on <ul,>.

Formally, we define an expression of Verso selection as follows:

Definition: Let fEX(fl)*...(fn)‘ be a format. Then an expression of Verso selection over

. { is recursively defined as follows:

1. An expression of Verso simple selection over f is an expression of Verso
selection over f, and ’

2. For i=1..n, let Sl be a set of expfessions of the form €(§') where e'€{ 3,}}
and §' is an expression of Verso selection over f. Then:

X:C (el(Sl)lsl,...,en(sn)lsl) is an expression of Verso selection over f, where C

is a condition over X, &, is a Verso selection over f; and eie{ 3,2}

The result of a Verso selection operator over a format f applied to an instance over f is

defined below:
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Definition: Let X:C (el(Sl)Isl,...,en(Sn)IS!) be a Verso selection over the format
f=X(f,)"...(f,)". Let I be an instance over f. Then the result of § applied to I is the
instance over f,denoted by $(I), defined by:

SM={<uS,(I,)...5,(I)>|<ul,..I >€l such that u F=C,
for i=1..n S{(I) }-‘=ei and S'(I) F=e for each e'(S‘)ESl}
In Figure 3-6, the result of the Verso selection S applied to the instance I of Figure 3-5

is presented.

COURSE (STUDENT (GRADE) *) *
math zaza L___l
1lulu 10
9

toto |15 |

'result of Q3 applied on I™

Figure 3-6: Verso selection.

As stated by Theorem3.6, the operation of Verso selection can be decomposed into
Verso simple selections involving only conditions of the form *3* (called 3-V-selection),
Verso projections, unions, differences and joins. Two preliminary Lemmas are needed

for this result.

We first decompose the Verso simple selection operation in a restricted case. A format

f is said linear if the tree associated with f has only one branch.
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Lemma 3.3: Let f be a linear format and S an expression of Verso simple selection
over f. Then, §is equivalenl;2 to a Verso expression of 3-V-selection, Verso projection

and difference.

Proof: Let f be a linear format and S be an expression of Verso simple selection over f
then, in order to show that (a) S is equivalent to a Verso expression of 3-V-selection,

Verso projection and difference, we proceed by an induction on |#(f)-#(S)| where

i. if =X then #(f)=0 and if f=X(f,)", f, non empty, #(f)=1+#({,.

ii. if § is an expression of Verso simple selection over X then #(S)=0, if
S=X:C(e($,) is an expression of over X(fl)‘, then if e=3, #(S)=1+#($,) else
#(5)=0.

...................................................

L |#(1)-#(5)|==0, then #(f)=#(S) and by definition of #($), S is an expression
of 3-V-selection. Thus (a) is satisfied.

2. Assume now that for each linear format f and each expression of Verso simple
selection § with |#(f)-#(S)|<p, (o) is satisfied. Let fEX(Yl(...(Yn)...)*,
Yl""’Yn non empty, be a linear format and § an expression of Verso simple
selection over f such that [#(f)-#(S)|=|n-#(S)|=p. Let 1=#(S), then § is of
the form X:C(e, (Y:C,(...(e,(Y,:C,)-..) where for i=1..], =3 and e {18} '
Consider the Verso simple selection over f  defined by
§=X:C(e' | (Y:C\(-..('(Y,:Cp)-)  where for i=1.14+1, e’ =3 and for |
i=l+2..n, e =e,. As |n-(141)| <p, by induction hypothesis () is satisfied for {
and §' /

Consider the Verso simple selction over gEX(Yl(...(Yl)...)*
S,=X:C(e,(Y,:C(...((Y:C))-.) . As §_ is a 3-V-selection over g, (a) is |

satisfied for g and .

a. If ¢ ,=?, then § is equivalent to (5,o[g])D(S) by definition of the
Verso union, selection and projection.

2

2'I‘he notion of equivalence between Verso expression is defined in the standard way.
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b. If e.1 =P then S is equivalent to (S,0[8])©([g]oS) by definition of the
Verso difference, selection and projection.

Thus, in both cases, () is satisfied.

This result can be extented to arbitrary formats using the following result:

Lemma 3.4: Let S=X:.C (el(Sl)...en(Sn)) be an expression of Verso simple selection
‘over fEX(fl)*.:.(fn)‘ where for i=1..n, {, is a format on Y, Let jg[l..n], P'=XUYj and
P'=XU,_; .; +jYi . Then § is equivalent to the Verso expression (S'o[flp,])®f( S"O[flpll])
where:

1. §=X.C (ej(Sj)) is an expression of Verso simple selection over fIP" and

2. '=X:C (el(Sl)...ej_l(&'._l)ej +l(sj +1)--€,(8,)) is an expression of Verso simple
selection over flpn

The proof of this result 1s straightforward from the definitions of the Verso projection
and selection. Intuitively, this result allows us to decompose an expression of Verso
simple selection over a format X(fl)‘...(fn)' on the linear subformats X(fi)‘, i=1..n. Then
from Lemma 3.3 and 3.4, we deduce that Verso simple selections over f can be expressed

by a Verso query formed of 3-V-selections, projections, unions, differences and joins.
The Verso selection operation is also decomposed in a restricted case:
Lemma 3.5: Let X:C (ey( sl)|{e1'(s;)}usl) be an expression of Verso selection over the

format fEX(fl)‘. Let 5 =X:C (el(Sl)lsl) and 5, =X:C (e,'(S,')|®) be two expressions of

Verso selection over f. Then, §is equivalent to Sa@r ([X]oSb)
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Note that by recursively applying the above decomposition, a Verso selection can be
expressed exclusively in terms of Verso simple selections, joins and projections. Thus,

from Lemmas 3.3, 3.4 and 3.5 we have:

Theorem 3.8: Let § be an expression of Verso selection over the format f, then § is
equivalent to a Verso expression involving onmly the following opera.tions:‘ Verso

projection, 3-V-selection, union, difference and join.

‘The second part of this section is devoted to some results concerning the connection
between the Verso model and the relational model. Only those results that are needed in

the discussion of section are presented.

We first associate a format with a relational database schema called format skeleton,
‘that intuitively give a non hierarchical description of the data structure induced by a

format.

Definition: Let f be a format. Then the format skeleton of f, denoted Skel(f), is the

relational database schema recursively defined by:

1.if f=X then Skel(f)={X}, and .
2.if f=X(f,)"...{f )", then Skel(f)={X}U{XY|Y€ESkel(f,), for some i€[1..n]}.

For  example the database schema  associated with  the  format
COURSE(BOOK) (STUDENT(GRADE)")" is R={ {COURSE}, {COURSE,BOOK},
{COURSE,STUDENT}, {COURSE,STUDENT,GRADE} }.
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Using the notion of format skeleton, the information contents of format instances can

be *described* by relational database instances.

e

Definition: Let f be a format and I an instance over f. The instance skeleton of I,
denoted skel(I), is the relational database instance over Skel(f) defined by:
1. if =X then skel(I}(X)=lI, and
2.9 f=X(f,)".(f,),  then  skel)(X)={u|<ul..] >€}  and,
skel(I)(XY)=U <uIl...ln>€l{uXSkel(Ii)(Y)}’ Y€ESkel(f;) for some i€[1..n}.

It is clear that not all database schemas are associated with some formats and
furthermore not all database instances defined over a format Skeleton are associated with
format instances. We characterize below the database instances over format skeleton

that are instance skeletons.

Theorem 3.7: [Abiteboul + Bidoit 84b] Let f be a format and R==Skel(f). Let r be an

instance over R. Then the following two assertions are equivalent: .

1. r==skel(I) for some instance I over f, and

2. r satisfies the URSA.

As we just defined a mapping from instances over f onto database instances over
Skel(f) satisfying the URSA, we are able now to characterize the Verso operations on V-
relations in terms of relational operations on relational database instances. The first
result give a simple interpretation of the binary Verso operations, némely union,

difference and join.

’
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‘Proposition 3.8: [Abiteboul + Bidoit 84b] Let f and g be t‘w\o compatible formats, f
‘and g subformat of h. Let I and J be instances over f and g respl;gtively. Let r#skel(lh)'
and s=skel(J). Then:

L. skel(I, J)=r Uss, . ,
2. skel(‘I@hJ) is the smallest® URSA-instance over Skel(h) containing r-s “and

3. skel(I@ J) is the largest URSA-instance over Skel(h) contained in the
instance t defined over Skel(h) by:

a. t(X)=r(X)Ns(X) if XeSkel(fjnSkel(g),
b. t(X)=r(X) if XeSkel(f)-Skel(g),
. t(X)=s(X) if XeSkel(g)-Skel(f), and
d t(X)=0 otherwise.

We now characterize the two unary Verso operations of projection and selection.

Theorem 3.9: [Bidoit 84] Let f be a format over Z, PCZ such thatvflp is a format and
let g be fIP. Let I be an instance over f, r=skel(I) the instance skeleton of T over Skel(f).

- Then skel(I[g]) is the smallest URSA-instance over Skel(g) and containing Hp(r).'

Since it has been shown earlier that the Verso selection operation can be decomposed
using the Verso operations of projection, S-V-selectipn, union, difference and join , we

only present here the interpretation of 3-V-selection.

Theorem 3.10: [Bidoit 84] Let f be a format and S be an expressionn of 3-V-selection

over f. Let I be an instance over f and r=skel(I). Then:

SLet r and s be two database instances over R, r<s iff VX€R r(X)Cs(X).
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vZeSkel(f), skel(S(I))(Z)=I1,(c) where o is the relational instance defined over UZGSkel(l‘)Z

by:

mNZeSkel(r)[Select Ayc ZCYr(Z)] with Cy is a condition on Y occuring in .

4. Schema tableau to represent PSJ-expressions

Tableaux have been successfully used to optimize a subset of relational expressions and
for testing implication of data dependencies [Maier + Mendelzon + Sagiv 79], [Aho +
Sagiv + Ullman 79a], [Aho + Sagiv + Ullman 79b], [Klug 80]. In the last section, we
shall show that tableaux can also be used to recognize relational expressions of
projection, selection and join that can be "equilalently expressed® by a Verso selection

followed by a Verso projection.

In this section, we slightly extend the standard definition of tableau:

* 1. In most of the previous studies only conditions of the form A==a (where A is .
an attribute and a in DOM(A)) are handled. We consider here conditions of
more general nature over attributes. :

2. Since our goal is to use tableaux to represent PSJ-expressions expressed over
specific type of database schema (that is, over format skeletons), the
definition of tableau has to take into account the structure of the PSJ-
expressions considered. We also have to slightly adjust the conventional
definition of the mapping associated with a tableau since the instances on
which this mapping is applied must satisfy the URSA.

In order to define a schema tableau, we need some intermediate concepts which are
now presented. In a natural way, we associate with each attribute A of U an infinite set
of symbols called A-variables. These sets of variables, denoted by VAR(A) for each A,

satisfly the following conventional properties: for each AB €U, VAR(A)nDOM(B)ib
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and VAR(A)NVAR(B)=0 if A#B. The definition of a condition over an attribute A is
the same as the definition of a condition over the singleton '{A} given in the

Preliminaries.

We define a schema tableau as a set of particular tuples called criteria.

Deéfinition: Let A be an attribute and V a set of attributes. Then

1. An elementary criterion on A is a pair <x AC> where x, EVAR(A) 2nd C' is
a condition on A. CRITER(A) denotes the set of all criteria on A. A criterion

v over V is a mapping from V to U AcvCRITER(A) such that
v(A)ECRITER(A) for each A in V. CRITER(V) denotes the set, of all criteria

13 .

over V.

In the following, we denote by c.var (resp. c.cond) the first (resp. second) component of
an elementary criterion ¢ on A. We use, in a natural way, two operations on criteria over
sets.of attributes, namely projection and join. Let v ,w be criteria over V and W

respectively. First assume that WCV , then the projection of v over W, denoted Hy(v),

is the criterion over W. defined by : -VAEW, I (v)(A)=v(A). Assume now that
VNW=0, then if VAEVNW, v(A).var=w(A).var then the ioin of v én_d w, denoted vidw,
is defined as a criterion over VUW by:

1. VAEV-W, (vMw)(A)=v(A), and
VAEW-V, (vKw)(A)=w(A)

2. VAEVNW,(vMw)(A).var=v(A).var=w(A).var and,
VYAEVNW,(vMw)(A).cond=v(A).cond Aw(A).cond;

The formal definition of a schema tableau follows Figure 4-1 that presents a schema
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tableau over R={ {CbURSE}, {COURSE,BOOK}, {COURSE,STUDENT} } on the
form of a table where each column is associated with an attribut and each row represents
a criterion. For sake of space, the conditions of the elementary criteria in the table do

not contain attribute names that are implicit by the columns they are contained in.

COURSE STUDENT BOOK
(x1, ="math") (y2* True ) } summary
(x1, ="math") (y2, True )
(xi, ="math") (y2, ="toto") (z1, ="b1") T

Figﬁre 4-1: A Schema Tableau over R.
The formal definition of a schema tableau is given below:

Definition: Let R be a database schema. Then a schema tableau T over R is a pair

(tgT) where
1. T is a finite set of criteria such that:
a. VveT , veCRITER(V) implies 3SCR | V=UyY.
b. Wv,weT, v(A).var=w(A).vai' = v(A).cond=w(A).cond

2. each elementary criterion of t, appears in T.
The set of elementary criteria occuring in T is denoted CRITER(T).

Following the standard procedure, we now associate a mapping on the set of database
instances over R with a schema tableau T over R. We consider only database instances

over R satisfying the URSA. First, the notion of a valuation of a set of variable is

introduced.
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. Definition: Let H be a subset of U AeUVAR(A). Then a valuation » of H is 2-mapping

from H to U, o ;DOM(A) such that xEVAR(A) entails o(x)EDOM(A).
Let H be a set of elementary criteria. Then a valuation p of H is a mapping from

{x[HcEH;x=c.var} toU AeUDOM(A) such that: Ve€H, p(c.var) F=c.cond.

In the-following, if p is a valuation of a set H of eleméntary criteria and c is in H, p(c)
designates p(c.var). As a straighforward generalization of the preceding definition, a
valuation p of a set of criteria T is defined as a valuation p of the set CRITER(T) of
elementary criteria occuring in T. If v is in T and v is a criterion over V, p(v) denotes
the tuple defined over V by p(v)(A)=p(v(A)) for each A in V and p(T) denotes tﬁe set of

tuples p(v) such that visin T.

We now exhibit the mapping on relational database instances over a schema R and
satisfying the URSA, induced by a given schema tableau over R. First, a containment
relationship between a valuation of a schema tableau T over R and an URSA-instance r
over R is given by the definition below:

Definition: Let R be a database schema and T=<t;, T> be a schema tableau over

R. Let p be a valuation of T and r be an instance over R satisfying the URSA. Then , is

a valuation of T into r iff the instance s defined over R by YVER s(V)=I1y,(«(T)) is

included in r.

Definition: Let R be a database schema and T=<t0,T> be a schema tableau over
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R. 'Let V, be the set of attributes such that t,ECRITER(V,). Then, V, is called the
target schema of T and T defines the mapping from the set of URSA-instances over R
into REL(V,,) as follows: L

For each URSA-instance r over R, T(r)={p(t )]s is a valuation of T into r}
In Figure 4-2, an instance r over R={ {COURSE}, {COURSE,STUDENT},

{COURSE,BOOK} } is represented as well as the instance T(r) defined over
{COURSE,STUDENT} where T is the schema tableau given in Figure 4-1.

( COURSE COURSE STUDENT COURSE BOOK
math math toto math bl
phys math 1lulu phys b2
cs phys zoe cs b1

*Instance r over R satisfying the URSA®

COURSE STUDENT

math toto
math lulu

"result of the mapping associated with the
" schema tableau T applied to the instance r*®

Figure 4-2: Mapping associated with a schema tableau.

Before showing how to build a tableau defining the same mapping as a PSJ-expression‘,
we give some results characterizing equi\"alent tableaux. Intuitively, two schema
tableaux on R are equivalent if they induce the same mapping on the URSA-instances

over R. Formally:
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Deﬁx_xition:' Let R be a database schema. Let T and T' be two schema tableau over R
and having same target schema. Then T is included in T', denoted TCT'iff
'T‘(I;)QT'(I') for each URSA-instance r over R. And T and T’ are eguivaient, denoted
T=T, iff TCT’ and TDT". o

" We first show that two tableaux are equivalent if they are "equal® modulo .some
renaming of variables. To present this first result, we use the notion of a schema tableau

version.

~ Definition: Let ¢ and ¢' be two criteria on A. Then ¢' is a version of ¢ iff

c.cond=c'.cond.

Let T=(t,,T), T'=(t6',T’) be two schema tableaux over R. Then T is a version of T" iff
there exists a 1-1, onto mapping v from CRITER(T) into CRITER(T") such that:

1. ¥ ¢€CRITER(T), {c) is a version of ¢,
2. fty)=t,’, and
3. YT)={Av)|veT}=T"

Now we have the following result:

: Theorem 4.1: Let T and T' be two schema tableaux over R. If T is a version of T

then T and T’ are equivalent.

The second result gives a characterization of schema tableau inclusion. In order to
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present this result, we need to define a mapping on schema tableau called containment

mapping.

~ Definition: Let T=(t,,T), T'=(ty,T) be two schema tableaux over R. Let ¢ be a
mapping from CRITER(T) into CRITER(T’). Then ¢ is a containment mapping from T

into> T iff:
L. 6(tg)=t,, and

2.V veTNCRITER(V) and VZER , ZCV implies: 3 V'ET'NCRITER(V’) such
that: :

a. ZCV',
b. V A€Z, v'(A).cond = v(A).cond, and
c. II;[6(v)]=I,[v].

We have then:

Theorem 4.2: Let T, T' be two schema tableaux over R. Then TCT iff there exist a

containment mapping 4 from T’ into T.

Before giving the proof of Theorem 4.2, two examples are presented here to intuitively

justify respectively conditions 2.b and 2.c of the containment mapping definition.

- Example 4.3: Let R={{COURSE},{COURSE,STUDENT},{COURSE,BOOK}} be a
relational database schem# and considt;r the two.tableaﬁx T,=(t,,T,) and Ty=(t,,T,)
over R represented in Figure 4-3. Let 8, be the identity mapping from CRITER(T,) into
CRITER(T,).
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It is easy to check that ¢, satisfies the definition of a containment mapping from
T, into T,. Note that 6, maps both the first and second *rows" of T, on the Single

*row? of Tl.

Note also here that 4, is a bijection and 01’1 is a containment from T, into Tz'
Then by Theorem 4.2 and the definition of tableau equivalence, we have: T,=T,. In
fact, we will see later that Tz is the schema tableau over R associated with thé relational
:expr%sion |

M ourselselectooursE— *math+ [COURSE,STUDENT]X .
[selectBOOK=,. b1® [COURSE,BOOK]]]]

and T, is obtained from T, using the join operator on criteria. 0

Example 4.4: Let R be the relational database schema of Example 4.3. Consider the
tableaux T,=(t,,T,) and Ty=(t;,T,) represented in Figure 4-3. Let 6, be the mapping

from CRITER(T,) into CRITER(T,) defined by:
8y((x1,math))=(x1,math),

0,((21,=*b1*V="b2"))=(z1,="b1*).

Note that 6, maps the first (respectively second) *row* of T, on either *row® of

T, (respectively on the second *row" of T,) and  that
8,((z1,="b1"V="b2")=3(z1,="b1*V="b2"). Then 4, is a containment mapping from
T, into T, and by Theorem 4.2 we have: ngTs. In fact, we will see later that Ty is

the schema tableau over R associated with the relational expression

NooursellselectcourseE=+matns [COURSE]X
[selectpq o — b1 evBOOK="b2+{COURSE,BOOK]].
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Note here that there is no containment mapping from Tz into Ta. Thus Tz and
T, are not equivalent. Neither are the relational expression given in Example 4.3 and

the relational expression given above.

o
COURSE STUDENT  BOOK COURSE STUDENT BOCK
(x1,="math") (x1,="math") : \
T,
(x1,="math*) (yi,True) (z1,="b1%")| | (x1,="math") (yi,True)
(x1,="math") (z1,="b1")
COURSE STUDENT BOOK
| (x1,="math")
T3
{ (x1,="math")
(x1,="math®) (z1,="b1* ="b2%)

Figure 4-3: Containment mapping and tableau equivalence.

We now proceed to the proof of Theorem 4.2.

Proof:

1. Assume first that T==(t;,T) and T'=(t;',T') are two schema tableaux over R
such that () there exists a containment mapping ¢ from T into T. We show .

that T(r)CT'(r) for each URSA-instance r over R. Let r be an URSA-
instance over R and let p be a valuation of T into r. Consider then ;' defined

over CRITER(T') by: '(v')=p(a(v')) for each V'ECRITER(T'). We show that
¢ is a valuation of T’ into r:
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f

a. Let v=4(v'), then by definition of a containment mapping we have
v.cond=>v'.cond. To establish that o’ is a valuation of T", it is sufficient
to use the fact that p is a valuation of T.

b. Consider now s and s’ respectively defined byﬁ

i. VZER, s(2)=I1,(p(T)),

ii. VZER, §'(Z)=I1,(,(T")). - _
Let- W be a criterion in T defined over W and let Z be in R such that
ZCW. Using the definition of a containment mapping, we have:
IVETNCRITER(V) such that ZCV and I(o(w)=IL(v), (i,
T1(o(6())=TLy{o(w)=TL {#(v)).
From this, we deduce that (a,) s’(Z)gs(Z) for each Z in R. By
hypothesis, p is a valuation of T into r, then (a,) s(Z)gr(Z) for each Z
in R. From («,) and (a,), we have s'(Z)Cs(Z)Cr(Z) for each Z in R, and
then o' is a valuation of T' into r.

We showed below that for each valuation p» of T into r there_ exists a
valuation ' of T' into r and as 4(t))=t,, #(tg)=r"(ty), this implies- that
T(r)C'T(r) as desired. |

. Assume now that T=(t,,T) and T'=(t;,T') are two tableau schema over R
such that TCT". *

It is clear that T and T’ have same target schema. It remains to exhibit a
containment mapping from T' into T. Let g be a 1-1; onto mapping from

CRITER(T) into a set K of constants such that A(v)EDOM(A) and
A(v) FFv.cond if vECRITER(A). Let r be the URSA-instance defined over R
by: VZER, r(Z)={Il,(s(v)IvET}. Then A(t)ET(r). By hypothesis, TCT’
then A(t))ET(r). By definition of T'(r), we deduce that there exists'a
valuation 4’ of T' into r such that 5'(t;)=4(t;). Thus we have by definition of
- a valuation of T into r that:

() {HZ(p'(v'))Iv'ET'}g{Hz(ﬂ(v))lveT} for each Z in R: _
Now consider the mapping 6=§"1o' from CRITER(T") into CRITER(T): We
show that ¢ is a containment mapping from T' into T. Let
VET'NCRITER(V') and Z€R, ZC V", | |
From (a), there exists vETNCRITER(V) such that (s) I (o'(v))=IL(8(v)) .
thus such that:
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a. ZCV,

b. Suppose there exists AEZ such that v(A).cond dbes not implies
v'(A).cond. Then there exists aEDQM(A) such that a|»=v(A).cond and
a FEVv'(A).cond. Let a=p(v(A))E. By (9), /' (V'(A))=8(v(A))=a. Hence '
is a valuation of T', then a=v(A).cond, a contradiction. We proved
here that VAE, v(A).cond=v'(A).cond.

¢. From (é) we deduce that: Hz(a(v'))=H((ﬂ'lop')(v'))= HZ((ﬂ'loﬂ)(v')), that
is IT,(6(v'))=I1,(v). |

We proved above that ¢ is a cntainment mapping from T into T.

’

We now exhibit three transformations on schema tableaux that preserve the mapping
they initially define (i.e. that produce equivalent tableaux). The first transformation uses

the projection operation on criteria.

Definition: Let T=(t,,T) be a schema tableau over R. Then the closure under
projection of T according to R, denoted II(T), is the schema tableau (teIU(T)) over R
where II(T)={I1,(v)|vET and Z€R}.

Note that the closure under projection applied to a given schema tableau T over R
produces a tableau with criteria over single elements of R rather than over unions of

elements of R.

The second transformation is defined in terms of the join operation on criteria.
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Definition: Let T=(t;,T) be a schema tableau over R. Then the closure under join of

Ti

==1..00

T, denoted *(T), is the schema tableau (tg:*(T)) over R defined by *(T)=U;

where T°=T and TifI#{VNwlveT,WETi and v,w are joinable}.

The effect of the closure under join is to produce a schema tableau R with as many

criteria defined over unions of collections of elements of R as possible.

The last transformation on schema tableau is defined using a partial order over

criteria. This partial order is defined as follows:

Definition: Let V,W be two sets of attributes, and v,w be two criteria defined over V,

respectively W. Then we say that v is less restrictive than w, denoted v<w, iff: VCW,

and VAEV, v(A).var=w(A).var and w{A).cond=v(A).cond.

Now let T,T' be two sets of criteria such that T'CT, then T' maximaly répresents> T
iff:

1. WeT, 3weT’' | v<w, and

2. Vv,w €T, v<wv=w.

Note here that for any set of criteria T, there exists a subset T' of T such that T'
maximally represents T but T’ is not unique. For example, {(x AA<"a"AA> *a*)} and
{(x4,A¥#"a*)} both maximally represent | {(xA,A<'a."/\A>"a'),(xA,A#'a')}.
However, if T is the set of criteria of a schema tabléau T=(t;,T) then we can easily

show by definition of a schema tableau that there exists a unique subset of T, denoted
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!

Max(T) such that Max(T) maximally represents T. Let Max(T) denote the schema

tableau (t;,Max(T)).
We now show that the three preceding transformations produce equivalent tableaux.

Proposition 4.5: Let T be a schema tableau over R. Then T, I(T), ¥(T) and Max(T)

are equivalent.
The proof of this proposition is obvious using the Theorem 4.2.

Let T be a schema tableau over R. Intuitively, the schema tableau Max(II(T)) is the
*smallest** schema tableau over R equivalent to T such that each criterion is defined
over an element of R. On the other hand, Max(*(T)) is the *smallest* schema tableau
equivalent to T. We do not formally discuss these properties here but simply use the
preceding transformation to construct the schema tableau associated with a PSJ-

expression.

Definition: Let R Be a schema and E be a PSJ-expression on R. Then the schema

tableau (t,T) over R associated with E, denoted Tp, is recursively defined as follows:

1. if E=[X] where XER then

a. t,€ECRITER(X) and VAEX,t (A).cond=True,
b. T={t,}.

2. if E=IIy[E,] where E isa PSJ-expression on R with target schema X, and
YCX,. Let TE1=(t1,T1) then:

4By "smallest® we mean here the schema with the minimum number of criteria (or rows).
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a. t,=IIy(t,), and
b. T=T,.

3. if Ex=[E,|C] where E, is a PSJ-expression on R with target schema X,, and
C=A,ex, Cp Where C, is a condition over {A}. Let Tp =(t,,T,) then:
1 1 _

a. t,€CRITER(X)) VAEX,, to(A).var=t, (A).var and
to(A).cond=t,(A).cond A C,.
b. T=Max(T, U {vMw|veT,,w=Ily(t;), YCX,}).
4. if EE[EIME2] where E,, E, are PSJ-expressions on R with respectively X
X, as target schemas. Let X ,NX,0. Let TE1=(t1’T1) and TE2=(t2,T2)
such that: |

let veT,, WET,, v(A)var=w(A)var iff AEX,NX,, v(A)=tl(A) and
w(A)=t,(A) (Note here that if it is not the case we obviously use some
version of T, or T,). Then: o

a. ty=t,Nt,, and A
b. T=Max((T,UT,JU{vMw|v€T,UT, and w=Il(t;), for some
YCX,NX,}. .

Before we give an example, note that constructing T in part 2. of the abov'e:‘definition
consists of projecting the summary of T on Y, and constructing T in part 3. 4consists of
updating the conditions on the criteria of T,. Intuitively, constructihg T in part 4. ‘

consists of building the *smallest® schema tableau containing T,UT,,.

Example 4.6: Consider the relational database schema R={ {COURSE},

{COURSE,STUDENT}, {COURSE,BOOK} } and the following PSJ-expression on R:

E=T10 nsglsects rupENT = *totes [COURSE, STUDENT]|X[COURSE, BOOK]].
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Let E,, E,, E;, E, be the relational PSJ-expressions obtaix.1ed by décomposing E:
1. E;=[COURSE,STUDENT],

2. Ey=selectgryppnT=1totor [E1):
3. ESE[COURSE,BOOK], and

4. E,=E,XE,.

The schema tableaux over R associated with El, E2, E3, E 4 and E are represented

in Figure 4-4. ' O
COURSE  STUDENT BOOK : COURSE  STUDENT BOOK
(x1,T) (y1.T) (x1,T) (yi,="toto?)
(x1,T) (y1.T) (x1,T) (yi,="toto")
*tableau associated with E1* *tableau associated with E2°*
(':OURSE STUDENT BOOK COURSE  STUDENT BOOK
(x1,T) (z1,T) (x1,T) (yi,="toto") (z1,T)
(x1,T) (z1,T) (x1,T) (yi,="toto")
(x1,T) (z1.T)
"tableau associated with E3* "tableau associated with E4*

COURSE  STUDENT BOOK

(x1,T)

(x1,T) (yi,="toto")
(x1,T) (z1,T)

"tableau associated with E*

Figure 4-4: Constructing the Schema Tableau associated with E.
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We now show that a PSJ-expression on R and its associated schema tableau represent

the same mapping on URSA-instances defined over R.

Theorem 4.7: Let R be a database schema. Let E be a PSJ-expression on R. Then

Tg(r)=E(r) for each instance r over R satisfying the URSA.

The proof is straightforward and uses an induction on the depth of the PSJ-expression

E.

5. Efficient evaluation of relational PSJ-expressions by Verso selection

and projection

In [Abiteboul + Bidoit 84b), it is showed that the Verso algebra is “"complete®. By
*complete®, it is meant that ’a,ll queries that can be éxpreésed by the relational algebra
can also be e);pressed by the Verso algebra. In this section, we inveétigate the expressive .
power of the Verso selection. We exhibit a very large set of ..relatiqnal queries which can
be simulat;d by a Verso selection followed by a Verso projection. The charécterization
of this class of relational queries uses the schefna tableau representation of PSJ-

expressions and leads to a constructive method for recognizing such expressions.

We begin by presenting a query which would typically require joins in the relational

model but can be simply expressed by a selection in the Verso model.

Example 5.1: Consider the format f=COURSE(STUDENT) (EXAM-DAY)" and the

query:*What are the COURSEs taken by the STUDENT *toto® which have an EXAM




40

| on "November first®?®. In the relational model, there would typically be two relations
COURSE STUDENT and (C)JOURSE EXAM-DAY, and the query would require a join

operation. This query can be formulated the following Verso simple selection:

4

S= COURSE : ( 3 (STUDENT : STUDENT = *toto" ),
3 (EXAM-DAY : EXAM-DAY = *November 1st* ))

Indeed, some very natural queries like *Give the list of courses with no known
exam day" can be answered by a Verso simple selection whereas they would require the

use of difference in the relational model. \ 0

We restrict our study to relational expressions of selection, projection and join. We

will successively characterize:

1. PSJ-expression that can be formulated in terms of a 3-V-selection,

2. PSJ-expression that can be formulated in terms of a 3-V-selection followed by
a Verso projection,

3. PSJ-expression that can be formulated in terms of a Verso simple selection

(with no  symbols called a 3-?-V-selection) followed by a Verso projection,
and

4. PSJ-expression that can be formulated in terms of a Verso selection (with no
7 symbols) followed by a Verso projection.

We first need to define the notion of equivalence between Verso expressions and
relational expressions. Intuitively, a relational expression E on a datab‘ase schema R and
a Verso expression £ on a format f such that R=Skel(f) are equivalent iff for each
URSA-instance r over R, the result of applying € on I such that r=skel(I) is "equal®to

the relation obtained by applying E on r. Formally, we have:
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Definition: Let f be a format and R=Skel(f). Let £ be a Verso exprvession on f and E

be a relational expression on R. Then E and £ are equivalent (or € translates E) iff :

7

V reRel(R), r satisfying the URSA, E(i’):NZeRskel( &1))(Z) , where r=skel(I).

First, we characterize the PSJ-expressions that can be iranslai;ed by 3-V-selection, and
A‘in order to do this we first consider PSJ-expressions E on format skeleton R such that
the set of elementary sub-expressions [Z] of E covers R.

Definition: Let R be a relational database schema and E be a PSJ-expression on R. Let

R/E denote the set {Z|ZER and [Z] is a sub-expression occuring in E}, then E is total on

Riff UpepZ=Uzep/Z -
We now state the first result:

Lemma 5.2: Let f be a format and R=Skel(f). Let E be a PSJ-expression total on
R. Let TE=(t0,T). Then, there exists an expression of 3-V-selection on f that translates

E iff Max(*(Tg))=(t,,{t,}) and t,€CRITER(UypZ).

Proof’
1. Assume that there is an expression of 3-V-selection § on f such that §
translates E. We show that: _
(o) Max(*(Tg)}=(ty {t,}) and tOECRITER(UZeRZ), where Tp=(t,,T) is the
schema tableau over R associated with E. _
From Theorem 3.10 for each instance I over f we have: ~ VZER,
skel(S(I)):_:HZ(a) where o=M, pselect AYCZCY[Skel(I)(Z)] and Gy is a

condition over the set of attributes Y occuring in §.
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By hypothesis, § translates E, so by definition we have X
skel(S(I))(Z)=E(skel(I)), that is =E(skel(I)) for each instance I over f.

Thus, to prove (a) we have to prove that the schema tableau T'=(t,,T)
associated with E’=NZeﬁs§llect AYEZCY[Z] satisfies Max(*(T"))=(t,'{t,'})

ZeR

where to'ECRITER(UZGRZ). Let (v,,{v,}) be the shema tableau over R

associated with select Ao C [Z] for each ZER. By definition, we have:
z7Y

Y€
al T'=UzeR{vZ} » V4ECRITER(Z),

b. VZI,Z2ER , VAEZIOZ2, vzl(A)=vz2(A), and
c. t0'=MZeRvZ'
Then Max(*(T'))=(t,’,{t,'})-

. Conversely, assume that (g) Max(*(T))=(ty,{t,}) and tOECRITER(UZERZ)
where T is the tableau associated with E. Let us construct the expression of

3-V-selection § that translates E. We naturally proceed by induction on the
cardinality of R=Skel(f), denoted #(R).

a. if #(R)=1 then f=X. Consider $=X:C where C=A Aexto(A)-cond. It
is obvious that § translates E. , '

b. Assume now that for each PSJ-expression E total on R such that

#(R)<p and (g) is satisfied, there exists a 3-V-selection over f that
translates E. Now, consider R=Skel(f) such that #(R)=p. Let E be a

PSJ-expression total on R satisfying (6). Let fEX(fl)*...(fn)*. For
i=1..n, let giEX(fi)* and consider the schema tableau T, =(t;,{t,}) over

R;=Skel(g;) defined by ti=I'Ivi(t0) where Vi=UZERiZ' _

Then it is obvious that, for i=1..n, there exists a PSJ-expression E,

total on R, such that Tg =T, We also have: (5) E=N E
1

i=lL.n

Then for each i=1..n, #(Ri)< p,by induction hypothesis, (v) there exists |

an expression of 3I-V-selection S§'=X:C(3(S)) on in such that §
translates E.. .

Consider the following expression of 3-V-selection on f:

=X:C((3(S,)---(3(S,)).  We show that § translates E. For each
instance I over f, we have (Lemma 3.4): §(I)=%) S(Ig)).

1=1..n
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For each i,j€[1..n], i%]j, RinRj=X, thus from the characterization of
Verso join in terms of relational operations (Proposition 3.8 , we have:

M cpskel( S(I))(Z)=Ni=l..n(MZ€RiSkel(Si,(I[gi))(Z))'

From (6) and (7) and by the characterization of Verso projection in
term of relational operation (Theorem 3.9) we obtain that:

NZERskel( S(I))(Z)=N1=1'_nEi(skel(I[gi))= E(skel(I)).
Thus S translates E.

We are now going to extend the preceding result and characterize PSJ-expression E
total on R=Skel(f) such that there exists a Verso expression £ on f composed of a

3-V-selection followed by a Verso projection translating E.

Lemma 5.3: Let f be a format and R=Skel(f). Let E be a PSJ-expression total.on
R. Let Tp=(t,,T). Then there exists an expression of 3-V-selection S on f and a
projected format g of f such that [g]o§ translates E iff Max(*(Tg))=(ty,{vo}) where

1. v,€CRITER(U, p2)- | ,
2. t,€CRITER(P) and fjp=¢. |

Note that in the above result, t0=Hp(v0). The proof of this result is obvious from
‘Lemma 5.2 and the characterization (Theorem 3.9) of Verso projection in terms of

relational expression. The proof is omited here.

We now consider PSJ-expression not total on R=Skel(f) .and 3-?-V-selection expressions

on f. To present our next characterization, we need an intermediate result. Intuitively,
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if E is a PSJ-expression on R=Skel(f) and E is not total on R, then there exists a
subformat h of f such that E is total on R'=Skel(g). The existence of a
3-V-selection/Verso projection over h that translates E is then sufficient to deduce the

existence of a 3-?-V-selection/Verso projection on f that translates E.

Lemma 5.4: Let f be a format and R=Skel(f). Let E be a PSJ-expression on R. Then
there exists h subformat of f such that E is total on R'=Skel(h) and if there exists an
expression of 3-V-selection S on h such that So|h] translates E then there exists an

expression of 3-7-V-selection §' on f such that [hjoS’ translates E.

Proof: We briefly sketch the proof. Let f be a format and g a subformat of f such that
g=f|P. Let g;, i=1..m be the formats associated with the branches of the tree associated

with f and cut by projection of f on P.

Consider any § which is an expression of 3-V-selection on g such that Solg]
translates E and the 3-2-V-selection S’ obtained by "padding® the expression § with

expressions of the form *¥(§ g.)" where Sg_ is any expression of Verso simple selection on
1 1

g

Simply using definition 3.2, we show that [g]o§' translates E. - 0

From the previous statement, we immediately deduce:

Lemma 5.5: Let f be a format and R==Skel(f). Let E be a PSJ-expression on R. Let
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Tp=(t,,T) .V Then there exists an expression of Verso simple selection S on f and a
projected format g of f such that [g]oS translates E iff Max(¥(Tg))=(tg,{v,}) where

1. VOECRITER(UZéR.Z), R'CR and
2. t,€CRITER(P) and f|P=g.

The proof is immediate from Lemma 5.3 and 5.4.

Finally, we enlarge our discussion to encompass the general case. The final result
characterizes a PSJ-expression that can be simulated by a Verso selection followed by a
Verso projection. (Note here that the Verso selection expressions considered are

Testricted to the ones containing no *$* symbols).

Theorem 5.6: Let f be a format and R=Skel(f). Let E be a PSJ-expression on R. Let
Tg=(t;Tg) . Then there exists an expression of Verso selection $ on f and a format g
such that [g]oS translates E iff Max(*(Tg))=(t;T) where

1. Let t,€CRITER(P), then

a. Ivy€T | ty=IIp(v,)
' b. flp=g.

2. Vv,w €T, 3R'CR, R#9 | {AlV(A)=w(A)}=UppZ.

Before the presentation of the proof of Theorem 5.6, we propose an example.

Example 5.7: Consider the format fECOURSE(BOOK)‘(STUDENT(GRADE)*)* and
the relational database schema R=Skel(f)={{COURSE},{ COURSE,BOOK]},
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{COURSE,STUDENT},{ COURSE,STUDENT,GRADE}}. Consider now the qﬁery:_
*Give the COURSEs in which the STUDENT *toto® is registered and all the
STUDENT registered in these COURSEs having obtained a GRADE greater than

llon?u

Typically this query can be expressed over R by the following PSJ-expression:

E=T1(ursE, sTUDENTIS€leCtGRADE S » 10 [COURSE, STUDENT,GRADE] M
(Mo oursElseeets T uDENT— = toros COURSE, STUDENT])).

The schema tableau T, associated with E is represented Figure 5-1. Note that Tg
satisfies the condition 1. and 2. of Theorem 5.6. We give below the expression of Verso

selection § on f such that [COURSE,STUDENT]oS$ translates E.

$= COURSE : (? (STUDENT : (3 (GRADE : GRADE> *10*)))
{3 (STUDENT : STUDENT=="toto* (? (GRADE :)))} ,

(BOOK:))
0
COURSE BOOK STUDENT GRADE
(x1,T) (y1.T)
(xi,T) (yi.T (z1,>*10%)
(x1,T) (y2,="toto")

Figure 5-1: Schema Tableau associated with E.

In order to proceed to the proof of Theorem 5.6, we need a last intermediate result.
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Lemma 5.8: Let R be a database shema and T=(t,,T) be a2 shema tableau over R
satisfying the properties 1.a, 1.b and 2 of. Theorem 5.6. Then the two following

statements are equivalent.
1. Max(*(T)) satisfies the properties 1.a, 1.b and 2 of Theorem 5.86.

2. There exists v €T such that the shema tableau Max(tg,{v,}UIKT)), denoted
Proj(v,, T), satisfies the properties 1., 1.b and 2 of Theorem 5.6.

Intuitively, the preceding result state that the closure under join, the closure under
px"ojection and the maximization preserve the properties 1.a, 1.b and 2 of Theorem 5.86.

The proof does not present any difficulties and then is omited here.

The proof of Theorem 5.6 is now presented.

Proof:

1. We first assume that [g]oS translates E. We show that () Max(*(Tg))

satisfies the conditions 1.2, 1.b and 2. of Theorem 5.6. To simplify the
discussion and without loss of generality, we assume in the following that

fEX(fl)', where f, is not empty®. Then § is of the form X:C(el(Sl)lsl). In
order to show (o), we proceed by-an induction on |#(Rl)+#(§1)|, where
#(R,) and #(Sl) denote the cardinality of R, =Skel(f,) and Sl respectively.
a. if [#(R;)+#(8,)|=1, then #(3,)=0 and #R )=1. S=X:C (e, (5)lo)
is a Verso simple selection over f and (a) is immediat from Lemma 5.3.

b. Assume now that (a) is satisfied for each format f and Verso selection
over f such that |#(R1)+#(Sl)|<p. Consider f and § such that

|#(R1)+#(Sl)|=p. Then two cases arise:
i #(B8)>0: Let B={3(S)UB, $,=X:C(e,(5))8,) and
$,=X:C(3(S,). By Lemma 3.5: (8) $=5,®([X]o$,).

5Not,e here that Theorem 5.6 is obviously-true for f=X
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By hypothesis, [g]oS translates E then [g]o(Sa@f([X]oSb))
translates E. On the other hand, there exists Ea and Eb PSJ-
expressions over R such that S, translates E, , [X]oS, translates

E, and (4 E=IL,[E XE, ).

|#(R1)+#(S o)1 <DPs thus by induction hypothesis,

Max(*(Ty ))=Ta=(ta,Ta) satisfies (@) and also
a3

Max("“(TEb))=Tb=(ta,Ta) satisfies (a).

From (5), T, is equivalent to the tableau T=(t,T) associated with

IIL[E,XE, ] and obtained from T, and T,. By definition:

t=TTp(t, Mt,)==II(t ), and

T=Max(T,UT,).

As T, and T, satisfy (), it is easy to show that T satisfies (o)

and then by Lemma 5.8, we have Max(*(T)) satisfies (a).

il. #(Sl)=0:The way to prove (a) in this case is similar as above. It
suffices to decompose . We do not proceed to this step of the
proof.

. Conversly, now assume that E is a PSJ-expression over R such that

Max(*(Tg))=(t,,T,) satisfies the conditions 1.a, 1.b and 2. of Theorem 5.6.

We show there exists a Verso selection § over f and a subformat g of f such

that [g]oS translates E.

Let Vo€T,NCRITER(V) such that Ip(vy)=t, and consider the schema
tableau T=(to,T)=Proj(vo,Max(*(TE))). By Lemma 5.8 T satisfies the
properties 1.a, 1.b and 2 of Theorem 5.6 and as T and Ty, are equivalent, T

defines the same mapping on the URSA-instances over R. In the following,
we proceed by induction on |#(R)+#(T)|.

a. if |#(R)+#(T)}=2, then #(R)=#(T)=1 and T={v,}. By Lemma 5.3,
there exists a Verso simple selection § and a subformat g of f such that
[g]oS translates E.

b. Now assume there exists a Verso selection S and a subformat g of f such
that [gloS -translates E for each PSJ-expression E over R with

" [#R)+#T)|<p. Let £=X(f,)"..(f)". Consider a PSJ-expression E
over R=Skel(f) such that |#(R)+#(T)|=p. Two cases arise:
i. #(T)=1: Again by Lemma 5.3, there exists a Verso simple

selection S over f and a subformat g of f such that [g]oS translates
E.
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ii. #(T)>1:Two cases arise: (case 1): there Vexists V€T, vsv, such
that  {A|v(A)=v(A)}=X. Le¢ T =(v,,T-{v}) and
Tp=(Iy(vg){v}). There exists E, and E;, PSJ-expressions over
R such that Ty =T, and T bETb and (¢) E=IIL(E XE,). By

a

. construction, T_ satisfy the conditions l.a, L.b and 2. of Theorem
5.6 and thus by Lemma 5.8, Max(*(T,)) does. - Tp=Max(*(T,))
satisfies the conditions 1. and 2. of Lemma 5.3 respectively. We
have:

(¢;) [#(R)+#(T-{v})I<p. Then by induction hypothesis , there
exists a Verso selection S_ over f such that [flv JoS, translates E_.
0

Let SaEX:Ca(ela(SlaMSh,...ena(Sna)lsm).
(@) There exists a Verso simple selection S, over f such that
[X]oS, translates E . Let Sp=X:Cy (e (S1p)r-r8 1, (Spp)-

Note that C,=C,. Now, using the caracterization of Verso join

and projection in terms of relational operations (Proposition 3.8
and Theorem 3.9, we deduce from (), (¢;) and (o) that

[rlp]o(([rl\,o]c,sa)ébflv0 (X]eS,)) translates E, that is
[ru,]o(saGD, ([X]o$,)) translates E.

Consider the Verso selection SEX:C(el(Sl)|sl,...,en(3n)|sn)
defined by: :

C=C,=C,,
for i=1..n, e;==e

si= sia’
for i==1. .n, Si= siaU{eib( Sib)}

ia?

-Using Lemma 3.5, we show that §=S§_ @f[X]oSb and then we
conclude that § is a Verso selection over f such that flPoS
translates E. ' —_—

(case 2): Assume now there exists no veT, 'v#vo such that
{Alv(A)=v (A)}=X. Then there exists jE[l..n] , WET-{v,},
vECRITER(V) implies V'ESkel(X(fj)*)=Rj. Consider the two
tableaux Ta=(IIvj(vo),{ij(vo)}UT-[vo]) where V5=UZeRjZ over
Rj and Ty =(t,,{v,}) over R.
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There exits E,, E, PSl-expressions over R such that T,=Tg

T ETE and (5) E=II,(E,XE,). By construction, T, satisfies

the condltlons l.a, 1.b and 2. of Theorem 5.6 and thus by Lemma
5.8 Max(*(T,)) does T, satisfies the conditions 1. and 2. of

Lemma 5.3.
(e) I#(Rj)+#(Ta)l<p. Then by induction hypothesis , there
exists a Verso selection §_  over X(fj)‘ such that [flvjo]c:sa

translates E_ where Vj0=er]V0. Let § =X:C a(eja( .S'ja‘)ls.l o)
(ay) There exists a Verso simple selection S, over f such that
[flp]o.S‘b translates E,. Let SbEXsz(elb(Slb),...,enb(Snb)).

It is clear that C 2=C}, and using the charcarterization of Verso

join and prOJectlon in terms of relational operatlons (Proposition
3.8 and Theorem 3.9), we deduce from (3), (¢;) and (a,) that

[flp]o( [flv JoS o[fIV])@ ([fjploS,)) that is [fp]e( s o[flv] é(s
tranlates E

Consider the Verso selection SEX:C(el(Sl)lsl,...,en(sn)lsn)
defined by:

C=C_ =C,,
for 1—-1 D, e=e, , S;=5,,

for i=1..n, i#j, 8 =90 and 3 ={eja(3ja)}

Using Lemma 3.5, we show that S=$ °[fIV ]) (S) and then we

conclude that § is a Verso selection over f such that f|P°S
translates E.
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