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Résumé : On présente une méthode automatique pour la conception de circuits systoliques.
Elle consiste & fournir des équations récurrentes uniformes correspondant a I'algorithme & réaliser.
A partir de ces équations, I'ordonnancement des calculs peut étre déterminé auiomatiquement, et
des architectures systoliques peuvent étre obtenues par projection. On montre aussi comment une
réalisation matérielle des cellules de I'architecture peut étre définie automatiquement & partir d'un
jeu d’opérateurs matériels que I'on associe aux symboles fonctionnels des équations.

Abstract : An automatic method for the design of systolic chips is presented. The method is
based on a description of an algorithm using Uniform Recurrent Equations. From these equations,
a schedule of the computations to be carried out is derived automatically. By some simple
transformations, various systolic architectures may be obtained. It is also shown how the detail of
the cell implementation can be obtained automatically from a set of hardware operators associated
with the functional symbols of the equations.
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AUTOMATIC DESIGN OF SYSTOLIC CHIPS

Patrice QUINTON
Pierrick GACHET
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FRANCE

" 1. INTRODUCTION | o

Recently, there has been a growing interest for systolic arrays as a particu-
lar means of implementing special-purpose VLSI architectures. Domains that
could most benefit from this kind of organization are Signal Processing
(S.Y. Kung, 1983 and 1984), Image Analysis or Synthesis, and Speech Processing
(Frison, 1984;Charot, 1984). Most of these application domains share a nice pro-
perty: the algorithms are usually expressible as numerical equations. This
makes it possible to manipulate formally these algorithms using elementary
transformations involving the index set of the equations. In the past, several
approaches to the "extraction" of parallelism for this kind of algorithms were
described by Karp et al. (1967), and Lamport (1974), in the context of SIMD-type
parallelism.” Recently, Moldovan (1982, 1983), Mongenet (1984) and Quinton
(1983, 1984a) applied similar techniques to the particular problem of systolic
array synthesis.

The DIASTOL system (Quinton, 1984b) we present here is based on the for-
mal method described by Quinton (1983, 1984a). DIASTOL is a system whose
purpose is to allow systolic architectures to be designed quickly. The design pro-
cess starts from the equations of the algorithm to be implemented. These equa-
tions are entered into the system and may be transformed until they become
so-called Uniform Recurrent Equations (URE). Then the synthesis program
helps the designer building various systolic arrays- by using..elementary
geometric transformations. This results in an abstract specification of the
design, comprising the number of systolic cells, their connectivity, the timing of
the data movements, and the cell functionality. The "abstract specification may
be used as a starting point for the functional design of each cell. Depending on
the type of the calculations performed by the elementary cells, DIASTOL offers
several design styles based on parallel or bit-serial operators. The hardware
design process consists in associating consistently operators with the function
symbols of the URE. The detailed timing of the design is then automatically
found from the characteristics of these operators.

In the following paper, we describe the organization of the system. Section 2
is devoted to the basic principles of the system. The third section concentrates
on the hardware cell design process. Finally, the perspective of such an
approach is discussed in the conclusion.

2. PRINCIPLES OF DIASTOL

In this section, the concepts underlying the DIASTOL system are presented
and examplified on the convolution product example. The interested reader may
find a more formal description in Quinton (1983). -
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2.1. Uniform Recurrent System of Equations

The basic idea of DIASTOL is to express the algorithm to be implemented as
a set of Uniform Recurrent Equations. The concept of URE is due to Karp et al.
(1967). It provides a convenient framework for expressing a great variety of
problems without any a priori knowledge of the way they can be executed. An
execution scheme for the problem can be derived automatically using the pro-
perties of the URE. '

Let Z™ denote the set of integer n-coordinate points of the space. An URE is
a set of systems of equations, each one of which is attached to a cartesian coor-
dinate point of a subset D of Z™ called the domain of the URE. To each point 2 of
D, we attach a set of g equations having the form:

¥m,lsm=<gq:
Un(2) = Fo|Un)(Z=Bm() » * + Un(p)(Z “Omp))

where f,, is a p argument function. Vectors ¥; belong to a finite subset @ of Z™,
and are called the dependence vectors of the URE. We impose that D be a con-
vex polyhedral subset of Z", i.e., the points of D should verify a finite set of
linear inequalities. Recall that such a set may be characterized by its vertices
and rays. A point s is a vertex of a convex polyhedralset Cif s € C and s cannot
be expressed as a convex combination of other points of €. On the other hand, a
vector r is a ray of C if, for all point z of C and all positive scalar W, £ + Mr
belongs to C. Intuitively, vertices are "corners” of C, and rays are infinite direc-

. tions of C. We impose, moreover that D have at most one ray.

Example 1 :

In the following, we shall illustrate all the concepts being introduced in this
paper by the convolution product problem. Given a sequence z(0),
z(1), - ,z(i)., .. and coeflicients w(0), w(l), - -+ ,w(K), the convolution
algorithm consists in computing the sequence y(0), y(1), ... . y(i), ... where
y (i) is given by the equation: :

y(i) = Swk)zli-k) | | )
k=0 : . .

This problem can be expressed‘ as the following URE. To any integer coordihate
point (i,k) lying in the domain D = { 0<i ; O<k=<K }. we attach the following sys-
tem of equations:

i, 0<i; Yk, 0sk<K:

CY(ik) = Y(ik—-1) + P(ik)
P(ik) = W(ik) x X(ik) (2)
Wi k)= Wi-1k) ‘
X(ik) = X(i-1k~1)

with the following initial conditions:
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Yi, 0<i;, ¥k, 0k <K:
Y(i,~1)=0; W(~1k)=w(k), X(i-1,-1)==z(); X(-1k-1)=0

It can be easily checked that y(i) = Y(i.K). This URE can be represented as a
graph such as that of Fig. 1. where the points represent computations and
arrows represent the dependences between the computations.

End of example.

It should be pointed out that in most cases, obtaining a URE from the equa-
tions of a problem is easily achieved by means of elementary algebraic transfor-
mations.

2.2. Automatic synthesis of systolic arrays

The system of equations that is associated with a particular point z
represents a calculation to be done in order to solve the problem. We suppose
first that the system of equations attached to a given point z is an atomic com-
putation, in the sense that all the arguments Up,(;) that appear in the right-hand
side of a equation should have been computed before all the results U,(z) are
evaluated, and also that the computation of any equation takes exactly one unit
of time. This hypothesis will be removed later on when the detail of the cell
implementation will be examined.

The task of designing any parallel device implementing the URE consists in
solving two problems:

- order the calculations consistently with the dependences, by means of a
timing function ¢ from Z™ to Z. The value £(2) is the time at which computation
at point z is performed.

- map the calculations on a finite set of processors without conflict. This is
done by defining an allocation function a from Z™ to a finite set. The value a(2z)
identifies the processor on which z is to be computed.

It is thus natural to impose the following constraints on the timing and allo-
cation functions:

- the time at which an equation is calculated must be greater than the time
at which its arguments are available, augmented by the time needed to perform
the computation. This gives:

Yz, V3€0:t(z)2t(z —8) +1 : | : (@)
- secondly, the computation should start once (recall that D may be

infinite, as it is the case in the convolution product example). - This is of course
trueif ¢ is restricted to be positive:

YzeD t(z)=0 ‘ (4)

- the number of points to be computed at a given time instant T should be
bounded. If we denote as N the set of non-negative integers, we should have:

IMeN vr20 ||z | tE)=T)l|<H (5)

where || £ || denotes the cardinality of the set .

- two different points z and y of D that are mapped on the same processor
should not be computed at the same instant, i.e.:
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Fig. 1: Dependence graph for the convolution product. The domain U of the
corresponding URE is an infinite band defined by i>0 and 0 < k < K. D has two
vertices (0,0) and (0,K), and a ray (0,1). The timing function ¢(i k) = i+k is
indicated in boldface numbers. ‘

14 Xz X’O
— Xz | i —
Y0 ¥ v2
7, 1o, DP ?
Jq Yz Yz

Fig. 2: Systolic array for the convolution product, as obtained by the allocation
functione (i.k) = k '
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Yz, y €D:

(e)
a(z) = aly) » t(z) # t(y)
- finally, the number of processors must be finite, or:
[1{a(z) | 2 € D }|]| is finite (7)

In order to obtain systolic architectures, we constraint ¢ to be an affine
function from 2" to Z, ie. t has the form t(z)=A'z +a where
A=A - M) is a vector of Z" and a is an integer (ATz stands for the dot
product of A and 2). Moreover, we restrict ourselve to the case when a is a pro-
jection from Z™ to Z™~! along a given vector u€Z™, called the projection vector.
The function a is thus a linear mapping a from Z* to Z™~! such that:

YreZt YueR a(z +uu)=a(z)

The following theorem gives conditions upon which A, a and « define a systolic
design:

Theorem 1:

Let S and R be respectively the set of vertices and rays of the domain D.
Then A, a and » define a systolic design if:

() v8 €0 ATs21
(ii) if D has a ray 7, then ATz > 0 and vectors u and r are colinear
(iii) Ws € S: ATs + a =0
(iv) ATu >0,
Sketch of the proof:

A detailed proof may be found in Quinton (1983). Condition (i) corresponds
obviously to (3) and the fact that ¢ is affine. Condition (ii) expresses that ¢ must
have a lower bound on D, that a(D) is bounded and that there is a finite number
of points having the same timing value. Condition (iii) is related to the fact that
t must be positive. Finally, (iv) implies that two points z and ¥ that are mapped
on the same processor have different timing values £(z) and £(y). QED.

Theorem 1 gives a constructive means of finding systolic arrays for the fol-
lowing reasons. It defines a set of linear inequalities involving A and the scalar a.
It is thus possible to find out automatically whether there exists a solution or
not. Moreover, each of the parameters A; must be taken in such a way that the
inequalities should be met as tightly as possible. If we denote as A the subset of
Z™ which is defined by (i), (i), and (iii), this means that vertices of A are the
only candidates to be considered, since they define solutions for which the max-
imum number inequalities become actually equalities. Very often in practice, A
has only one vertex which represents the fastest solution. When there are
several vertices, the choice depends on what parameter (delay or throughput) of
the design should be optimized (see Quinton, 1983). Once a timing function is
found, any choice of a projection vector w that meets the conditions of the
theorem gives a systolic array. The detail of the calculation of a is not given
here, but is rather simple as it consists in a change of basis over Z".

Given £ and a, the structure of the architecture is defined as follows. The
cells of the array are the points of the projected convex domain a (D). Each cell
m € a(D) is considered as one single functional element. Its operation results
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from the equations of the URE, the timing-function and the allocation-function.
First, note that, since a is linear, we have:

Yz, ¥3c08 a(z —9) =a(z) - a(d).

Thus, cell 7 takes its input Upg(y) from cell - a(d,,.(j))' (or receives Unm sy from
an external memory whenever 7 — a (%)) does not belong to a(D)). The time
between the calculation of Umu)(z—'ﬂmmyand its use is:,

t(z) -1 -t(z —‘l?m(”) = Ar‘ﬁmu) -1

This quantity defines the number of delay elements that should be placed
between the two cells, for the communication of this argument. '

Example 1 (continued) :
 Consider again the convolution product. From (i), we obtain the following
inequalities:

On the other hand; the domain D has two vertices, (0,0) and (0,K), and one ray,
(1,0). From (ii) and (iii), we obtain:

AMN>0,a>0, K +a20

The only vertex of the convex set defined by this system is:
N1l A=1,a=0

The resulting timing function, as depicted by Fig. 1, is £(i,k) = i+k.

The only way to choose « is to take it parallel to the i-axis, since D has one
ray. The projection vector is w = (1,0). This leads to the allocation function
a(z.".k) = k. The resulting domain a(D) is the segment [(0,0).(0.K)]. In other
words, the systolic array that is obtained has K'+1 processors.

Fig. 2 depicts the systolic array that results from the above defined URE,
timing and allocation functions. This design was described by Kung (1+982). This
array has K+1 cells numbered g through m. Coeflicients wy stay in cell m; as
aﬁ'@w) =0. Values Y{i,k) and X(i,k) flow from cell m to 74 as
a{dy = a(dx) = 1. However, the timing of the Y's and the X's are- different,
since AT8y = 1 whenever A7y = 2. This explains why the X's have to be delayed
between two consecutive cells. ~
End of example.

3. DESIGNING A CELL

The previous section provides a convenient method to derive quickly sys-
tolic arrays. This section describes the detailed design of each cell, taking into
account the hardware implementation aspects of a chip design. The approach
that is taken in DIASTOL makes use of a set of predefined operators, which are
characterized by a few parameters. Such operators are used to replace
corresponding function symbols of the equations. The timing and allocation
functions that have been defined in section 2 are extended in order to allow the
delays introduced by the operators to be computed automatically. Depending
on the complexity of the functions of the URE, several hardware design styles
could be used. Here, we shall consider two different types of operators: parallel



operators and bit-serial operators. In the first subsection, we describe a simple
hardware operator model. Examples of operators for the multiplication of binary
numbers are given in subsection two. The third subsection gives a theoretical
result that allows a cell to be designed from a set of operators.

3.1. Hardware operator modelization

For the purpose of this paper, we modelize an hardware operator as a
"black box" Op (see Fig. 3) having several input ports /; and one output port O
(multi-output operators are not considered here for the sake of simplicity).
Associated with the operator is a function symbol f (Op) and several attributes
that describe the timing behaviour of the operator. We assume that this timing
behaviour is expressed relatively to a reference time, in term of discrete time
steps such that clock cycles or phases. Each operator is characterized by its
type, parallel or bitserial, and three timing parameters, called its latency
6(0p). its periodicity ¥(Op ), and its bit-skew a(0p).

These parameters have the following meaning. The input values enter simul-
taneously the operator starting from the reference time. The input bits enter,
and the output bits leave the operator in parallel or bit-serially, least significant
bit (LSB) first. The latency of the operator is then the number of time steps
between the input of the LSB of the input values and the output of the LSB of the
result. The periodicity of the operator is the number of time steps between two
consecutive use of the operator. Finally, the bit-skew is the delay that separates
the input or output of two successive bits of a value.

. In a parallel operator, each input port % is n(/;) bit wide, and the output
port is n(0) bit wide. In a bit-serial operator, each port is only one bit wide,
which receives (or delivers) in turn the input or output value bits. The periodi-
city of a bit-serial operator must therefore be greater than the time necessary
to enter and deliver the values.

More precisely, let ,, - - -, z, the input values of an operator. Then:

- input J; receives the k* bit of an input value z; at time step k xo(0Op) after
the reference time, :

- output O provides the k** bit of f(Op)z, ' .z,] at time
6(0p) + kxa(0p),

- the operator may be reused for another computation ¥(0Op) time steps
after the reference time. '

A more general model could be derived in order to cover the case when the
inputs and the outputs are not used at the same rate, but this would complicate
unnecessarily the following explanations.

With the above definition, a purely parallel operator is modeled as an opera-
tor where 0(Op) = 0. The operator has pipeline stages. The case of anon
pipelined operator is covered by the particular case when 6(0p) = V(Op).

We call parallel bit-slice operator a parallel operator such that o{0Op)#0.
The name bit-slice refers here to the fact that the computation is done by slices
of hardware one bit after the other, but in parallel. '

3.2. Examples of operators

In this subsection, we show how binary multipliers can be derived from their
equation using the method described in section 2, and how they can be
abstracted using the hardware model. These examples will be used later for
designing a convolution systolic array. Consider the multiplication of two posi-
tive numbers U and T. U = UgUyz" - Uphas g bitsand T = Ty + - T has



Pl o S

A A cemeeseescses 10
N e .
"I sirniiiii " l"’"’
I o
8 1(0p) . (a) peratlel
l P
L T 10
QI DIIIIIINNT o0 LIl
)
1
'
1
[ o
9 .
1(0p) (b) bit-shice

2 1(0p) (c) bit-serial
| I 1,
--------- LS8 1 -----LSB 1
w1 Liililise é iilites 9
................. ,

3: Simple operator model.
(5 Parallel operator with latency & and periodicity ¥ = 3.
g ) Bit-slice parallel operator with skew ¢ = 1.
Bit-serial operator. .



p bits. The resultis V= V._, - V; and has v = p+q bits. In order to build a
parallel and a bit-serial multiplier, let us consider the diagram of Fig. 4. With
each point of the domain D = §{ 0sj<p ; i>0; Osi+j=r—1 |, we associate the fol-
lowing calculation:

P(i.j) = FASUM{P{i~1+1). AND[U(i j-1).T(i-15)). Cli-15) )
C(1.4) = FA-CARRY| P(i=1.,j+1), AND| U(i.5=1).T(i~1)}, C(i~1.7) )

where FASUM and FA CARRY denote respectively the functions producing the
sum and the carry of a full-adder cell. Assuming that U is extended to the MSB
by zeros up to r bits, and that the following initial conditions hold:

T(-1j)=T; forallj and U(i,~1) = U; foralli
P(-1,7) =0 and P{i,p+1) =0 forall ij
C(-1j)=0forallj

then it can be easily checked that the product bits are given by:
P, = P(i,0) foralli

In such a scheme, the bits of the product are summed along the lines i+j =r and
the carries are propagated along lines parallel to axis i. Assuming a conven-
tional two phase non overlapping clock scheme, the duration of the function
evaluation is one clock phase. Applying theorem ! gives the timing function
t(i,j) = 2i+j illustrated by Fig. 4.

A bit-serial multiplier is obtained by projecting the domain D along axis 1.
Fig. ba shows the result. The multiplier has g cells. Bits [; flow from bottom to
top and enter a new full-adder cell every clock-phase. Each bit 7; of the multi-
plier stays in cell j of the operator. Bits P; of the product are produced by the
cell from top to bottom. Notice that the full-adder cell should be provided with a
reset circuitry (not represented here) in order to set the carry and product bits
to 0 when Up enters the cells.

This operator may be abstracted according to our model as a bit-serial
operator with latency 1, bit-skew 2 and periodicity 2r. The timing parameter are
easily obtained from the diagram of Fig. 4. This design could be extended in
order to handle two's complement binary numbers using for example Booth's
algorithm. Note that our design is similar to the well-known bit-serial algorithm
of Lyon (Lyon, 1976; Newkirk, 1983), except that the latency is independent from
the length of the multiplicand. Lyon's multiplier woul
the orientation of the P flow in the diagram of Fig. 4.

The diagram of Fig. 4 may also be used directly in order to obtain a parallel
bit-slice operator. The result is depicted by Fig. 8b. This operator has the same
latency and bit-skew as the bit-serial version, but its periodicity is 2, as one data
may enter the multiplier every other clock phase.

3.3. Design of systolic cells .

The basic principle of our methodology is to associate a hardware operator
with each functional symbol of the URE. We consider first the case when these
operators have no bit-skew, then we extend the method to skewed operators.

3.3.1. Non skewed operators
Consider a URE having ¢ equations:-

d be cbtained by changilig.
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Fig. 5a: A bit-serial multiplier, with latency 1, periodicity 27, and bit-
skew 2 (MULTZ is the same cell as MULT1, but clocked on the opposite
clock phases).
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Un(2) = I |[Und(z=3m@) .+ Uni)(2=0me)|

According to the above principle, each cell has ¢ hardware operators, each one -

corresponding to one equation. The timing of the computation in each cell

- results from the following rule, which replaces the brute-force approach taken

in section 2. Each individual equation is considered to be an atomic expression:
its left-hand side term is computed only when all the arguments needed for the
right-hand side calculation are available. The equations attached to a given
point z are not computed at the same time as it was the case in section 2. How-
ever, the relative schedule of these equations are kept constant over D. In
other words, the time at which equation m,; of the URE is computed differs from
the time of equation mj by a constant.

In order to modelize this new rule, we now attach one particular timing-
function tn(z) =A7z + a, to each equation that defines when Up(z) is
obtained. Note that ail these functions have the same parameter A. The
schedule of the computation is now defined by a n+q dimensional vector
(A. ay ,.. ey aq)T

In order to design the cell, let us associate a parallel operator Op,, having
latency 6,, and periodicity ¥,,, with each function f,. We assume that the
operators are assigned consistently, i.e. that f[Opp,] = fy, for allm, and that an
argument U, is carried out by input or output ports having the same number of
bits, and the same periodicity.

Let (A\,qp " " ", aq)T be a schedule and u be a projection direction. The
constraints that must be satisfied may be summarized as follows:

- since Uj,(z) is computed when all the arguments needed are available,
and since the operator associated with f, has a latency 6ém.
tm (Z) = tmm(z - 18,,,(_,-)) + 6," for allj.

- on the other hand, the timing-function and the allocation function should
be such that the operators are used at a rate that is consistent with their
periodicity. In other words, two calculations that are mapped on the same cell
must be separated by enough time steps so that the operators are not over-
used.

The following theorem gives a sufficient condition for the existence of a
schedule and of an allocation function:

Theorem 2: :

Let S and R be respectively the set of vertices and rays of the domain D.
Assume that parallel operators Op,, are associated consistently with the func-
tions f,, of the URE. Then the schedule (A, &y, = - ,aq)r and the projection
vector © define a systolic array if:

(i) ¥Ym, ¥ji: AN Bp) + 0m — O () =0

(i) if D has a ray 7, then A7 > 0, and v and r are colinear vectors.

(iii) - ¥s € S: ATs + a,, =0,

. T u 7
WA GoDuy, ) - mak ¥m

Sketch of the proof:

Condition (i) express the new rule concerning the evaluation of the URE.
Conditions (ii) and (iii) are the same as in theorem 1. Condition (iv) neads more

u is the generator vector for the
Uy, )

explanations. The vector Z = GCD(

.13
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Fig. 6: Two-level pipelined systolic arrays for the convolution product.
Sa The add and multiply operators each take one time step.

(b} The multiply operator is pipelined (latency 3, periodicity 1).

(c) The add operator is pipelined (latency 2).

14



integer coordinate points of any line parallel to u. In other words, if L is a line of
R™ parallel to u, and if z; is an integer coordinate point of L, then
LNZ" ={zo+kiz |k €Z} As a consequence, the quantity

AT &b g ) is the periodicity of the systolic array that should be
EE ,

" greater than the periodicity of the operators. QED.

These four conditions may be used practically to synthesize a systolic
array, provided the functions f,, may be directly mapped on hardware opera-
tors.

Example 2:

- Consider again the convolution product, and suppose we want to implement
the add and multiply functions using off-the-shelf parallel pipelined components.
Assume first that both components have latency 1 and periodicity 1. Note that
the identity function is supposed to have delay ! and periodicity 1, in order to
avoid the broadcasting of data. This hypothesis is however not compulsory, and
if removed, would possibly result in what is called a semi-systolic design by Kung
(1982), where some data are broadcasted to all the cells. Denote as Qy, Op, Qy,
and ay, the scalars associatéd with the timing function of ¥, P, ¥, and X
respectively. Applying theorem 2, we have, from (i):

C

Azzl;ay—apzl;ap-—axzl;ap—d;yzl;_)\1+)\221;)\121
From (ii):
A >0

. From (iii):

ay=20;ap20;ay=20:0y20;
KAé+ay20;KAg+qP20 s Kdgtray =0 Khgtayxy =0 ;

Finally, from (iv):
M2t

The only vertex of the convex domain defined by these équatioqs is given by:
M=l x=ley=ap=0;0p=1;ay=2

The result‘ing array is depicted by Fig. 6a. This solution is to be compared with
that of Fig. 2. The only difference lies in the fact that the y flow is delayed by
one units of time in order to be synchronized with the availebility of the product
we. :

Now - assuming a three stage pipelined multiplier, i.e., with latency 3 and

. periodicity 1, constraint (i) becomes:

)\221iay“apkl‘;ap—GXESIGP—GWEBIA1+A22 1, A 21

and the solution is (see Fig. 6b):
M=A=lay=ay=0;ap=3;0ay=4

In other words, the periodicity of the design has not been changed, and maybe

15
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more surprinsigly, the delays on the z lines are the same. Moreover, as in the
version of Fig. 6a, the y flow has been delayed.

Finally, consider the case when the adder has two pipeline stages. Applying
theorem 2 gives the following new constraints:

=2 . ay—ap=2;.ap —ox=3,ap —@yg =3 A + A= A =1

and the new solution is {Fig. 6c):
M=l p=2axy=ayg=0,ap=3;ay=5

The parameter Az is now modified, as the delay between the input of a y value
and its output becomes 6 instead of 3 in the previous versions. The periodicity of
the desgn is thus doubled. End of example.

This example shows that Theorem 2 gives a very powerful means to compute
the exact timing of the data inside the cell, which is not at all obvious when
there is a large number of operators.

3.3.2. Skewed operators

When designing a systolic chip, it may be interesting to implement the basic
arithmetic operations themselves using "systolic like" techniques. The usual
implementation of an arithmetic unit for instance has the main drawback that
the basic cycle duration must allow for the propagation of the carry. Even when
using carry-lookahead or precharging techniques (Mead, 1980), this tends to
slow down significantly the clock period of the chip. An alternative to these con-
ventional implementation techniques consists in using bit-slice or bit-serial
operators. In this section, we show how theorem 2 may be extended in a
straightforward manner in order to obtain the timing of systolic implementa-
tions based on such operators.

Suppose that we associate consistently with each functional symbol an
operator possibly with a non-zero bit-skew. The following corollary gives the tim-
ing of the corresponding design:

Corollary 1 :

Under the above defined assumpiions, it (A, ay, -+, 0g)7 is a schedule for a
URE in the sense of Theorem 2 and u is a projection vector, then the time
t(z p) at which bit p of argument Up,(z) is produced is given by: '

tn(z.p)=ATz + o, +0,D

The proof is obvious ahd left to the reader. This corollary gives a straight-
forward means of implementing a systolic cell simply by replacing each func-
tional symbol by any type of operator. ‘

Example 3:

We consider here the systolic array that results of the use of parallel
bit-slice adders and multipliers. Fig. 7 shows a straightforward bi-slice
parallel adder with latency 1, periodicity 2 and bit-skew 2. Together with the
parallel bit-slice multiplier depicted by Fig. 5b, these operators could be as-
signed consistently with the URE of the convolution product. Applying
Theorem R gives the following schedule for ¥, P, and X
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Fig. 7: Parallel bit-slice adder S = A+B (latency 1, periodicity 2 and bit-
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Fig. B: A cell of a systolic convolver, as implemented using parallel bit-

slice operators.

pout = FA_SUM (yn, pin, cin)
cout = FA_SUM (yin, pin, cout)




ty(ikp)=2i +k +2p +2
tp(iep)=R2i+k +2p + 1
ty(ikp)=2i +k +2p

The corresponding implementation is depicted by Fig. B.

A bit-serial implementation may be similarly derived by using the serial
adder of Fig. 9 together with the serial multiplier of Fig. 5a. Applying Corollary 1
to the URE defining the convolution product, we obtain: ’

- from (i) of Theorem 2:

=l ,oy—ap=l;ap—ay=l,ap—ap=1; A +Az=1 A\ 21
-frém(ii):

AM>0
- from (iii):

ay=20:0p=20;0ay200y=0;

K)\#a}?. 0; Kdgtap 20 ; KApgtay =0 Kg+ay =0 ;

- finally, from (iv):
A =27

The unique vertex solution to this problem is:
M=Rr =l ay=ay=0;0p=1,ay=2

The resulting array is depicted by Fig. 10. The main structural difference
between this design and that of Fig. 2 is the 2r +1 time unit -delay on the X line,
which indeed comes from the fact that the operators are bit-serial.

4. CONCLUSION

In this paper, we have shown how systolic architectures may be designed
automatically from their specification using Uniform Recurrent Equations. More-
over, it has been shown how the detailed design of the cells of the architecture
can be obtained by associating hardware operators with the functional symbols
of the URE. A simple hardware model that helps abstracting the operators has
been presented. The DIASTOL system is based on the above described method.
It offers interactive graphics facilities for the visualization of the domain of the
URE and the systolic arrays that are designed. Further work must be done in
order to characterize what class of algorithms can be represented using URE.
Formal transformations should also be provided, in such a way that the method
can cope as far as possible with the usual equations of the algorithms. A more

-complete hardware operator model could also be defined, in order to cover the
building blocks found in a VLS] library.
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yout = FA_SUM (yin, pin, carru)

yin > yout

Fig. 9: A bit-serial adder.
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Fig. 10: Bit-serial implemention of the convolution product.

FA1 _ carry = FA_CARRY (yin, pin, carry)
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