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RESUME

Les algorithmes de résolution de collisions les plus per-
formants sont trés vulnérables aux erreurs du canal et aux pannes de
stations. Nous présentons des versions plus robustes du protocole
Part and Try de Gallager, Mikhailov, Tsybakov. Ces algorithmes sont
adaptés de telle maniére que les stations n'ont & écouter le canal
que Torsque elles ont un paquet @ transmettre. En outre les protocoles
décrits peuvent se rapprocher arbitrairement prés d'une capacité maxi-

mum de 0,487 paquets par.slot.

ABSTRACT

High throughput collision resolution algorithms (CRA) are
disadvantaged by a high sensitivity to channel or station failure. In this

~ paper we introduce robuster versions of the Gallager Mikhailov Tsybakov

Part and Try algorithm adapted in such a way that stations need to monitor
the channel only when they are active. These algorithms can be tuned to
attain throughput arbitrarily close to the upper value. 487.
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THE PART AND TRY ALGORITHM ADAPTED TO FREE CHANNEL ACCESS

Philippe Jocquet
INRIA

Domaine de Voluceau, Rocquencourt
78150-Le Chesnay {France)

High throughput collision resolution algorithms {CRA) are disadvantaged by a
high sensitivity to channel or station failure. In this paper we introduce robuster

versions of the Gallager Mikhailov Tsybakov Part and Try algorithm adapted in °

such a way that stations need to monitor the channel only when they are active.
These algorithms can be tuned to attain throughput arbitrarily close to the
upper value .487.

I INTRODUCTION

We consider the problem of organizing communication on a random access
channel. A population of transmitters (geographically distributed) shares a
common slotted-time channel on which they are synchronized. Transmitters are
constrained to transmit data in form of packets whose length is one time siot,
and the beginning of every transmission must coincide with the beginning of a
slot. When more than one transmitter sends a packet in the same slot a collision
occurs and all packets are destroyed. Thus any station is aware of the channel
feedback at the end of each slot, which may be:

blank : no transmission
success : only one transmitted
collision : two or more stations
just intended to transmit

A collision resolution algorithm (CRA) is an algorithm followed by any (col~
liding) transmitter which ensures a successful transmission of its packet. The
input of this algorithm is only the ternary feedback of the channel which is sup-
posed exempt from errors.

:

In practice, different stations will maintain a queue of waiting messages
which have to be sent in whatever priority order. But the analysis of CRA is clas-
sically made under the assumption of an infinite population. of identical
transmitters and assuming that the packet generation be a Poisson process. Let
A be the Poisson parameter. The queuing problems in each station are negligi-
ble: a station is assumed to have at most only one packet to transmit at every
time: so the generation of k packets is equivalent to the activation of the same
number k of stations.

The first algorithm proposed was ALOHA by Abramson (1970) which later

‘appeared unstable without an external control. In general the stability of a CRA

is the crucial notion: a CRA is stable if it ensures to every colliding packet a
finite delay - in the meaning of the Theory of Probability - until a successful
transmission. The Capetanakis - Tsybakov - Mikhailov tree algorithm opened in
1978 a large class of CRA whose stability was ensured when the Poisson .arrival

rate A is below some critical value. Such a critical value is called the maximum

throughput of the CRA (see [Ma81] and [Ma85], for general references).

At the time of this writirig the most efficient algorithm is the part and iry
algorithm or so-called .487 algorithm. It has been independently introduced by

-
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Tsybakov, Mikhailov and by Gallager in 1979. This protocol is a member of the
class of window tree algorithms which is of course a subclass of tree algorithms.

All known CRA’s with throughput higher than .456 ([GK85]), the part and try
algorithm and all window algorithms, require every station to continuously moni-
tor the channel even when they have no packet to transmit. This fact presents
the disadvantage that it is difficult to restore a station after either a failure or a
disconnection. A more robust class of algorithm has been introduced as so-
called limited feedback sensing algorithms or free access algorithms in order to
overcome this difficulty. In a free access algorithm a station has to monitor the
channel only when active and can switch off after its packet has been success-
fully transmitted. Uncontrolled ALOHA, and Ethernet are free access algorithms.
We know the former to be unstable and the latter poses difficulty as to analysis
and ergodicity. The only completely analysed algorithms of this class {(maximum
throughput, mean and standard deviation or higher moment of session-length,
mean and standard deviation or higher moment of delay transmission, state of
channel, state of the stack...) are the free access versions of the Capetanakis -
Tsybakov - Mikhailov tree algorithms with binary or Q-ary branching ([J83],
[FFHI85], [MF85]). None of this algorithms however has throughput higher than
.425 ([GK85]).

In this paper we describe a new set of free access algorithms directly
adapted from the part and try algorithm. These algorithms depend on a design
parameter that can be chosen so as to attain a maximum throughput arbitrarily
close to .487.

In part II we define and analyze the general class of the window tree proto-
cols as described in [Ma81]; we focus on the part and try algorithm (MT80]). In
part III we show how this algorithm (in fact its basic version) can be adapted to
the free access context. In part IV we introduce the new algorithms e-part and
try. We analyse the ergodicity of these algorithms.

I THE PART AND TRY ALGORITHM
I 1. The window tree algorithms

Every station maintains a window, representing a time interval, which is
sliding from the past to the present; all stations, having monitored the channel
continuously since its initialization, will at any given time have the same window.
The transmission proceeds by stages, called here sessions.

At session i, starting at the (current) time s;, all messages arrived between
time w; and time w'; (w;<w';<s;), will contend for transmission on the channel
using a blocked access protocol (here the Capetanakis tree protocol). Quantity
w; is defined as

w' = inflw; +71.5,] .

This means that during the i-th session all messages in the window of length T
(possibly truncated at the current time) starting at w; will transmit. Let # be
the name of the current window. Once all collisions have been resolved, session
(i+1) can start; one then takes w;,, = w'; and the process is repeated. The pro-
cess can be arbitrarily initialized, but the more natural way is to take wg =0
and sy = wq, or g = wgtl, or 55 = we+T. In the following illustration (fig 1) we
describe the evolution of the non resolved time interval [wy,s;] during an arbi-
trary i-th session (the two axis show the situation respectively at the beginning
and at the end of the session of rank ).



A session will be degenerate if no packet or just one packet is contained in W.
The length of such a session is of course exactly one slot. Note ## the number of
packets contained by the window #. In case W#=2, the session will begin with a
collision and the session will be non degenerate. Note that 7 is a real parameter
to be optimized and is not necessarily an integer number of slots. The duration
of a slot is taken as the time unit.

The resolution of packets is the tree algorithm with deferministic splitting.
according to the precise arrival dates as following.

procedure Transmission(W:time interval);
(*all packet with arrival date in W transmit in this slot*)

procedure Resolution(W);

begin :
Transmission(W); o :
if feedback=blank or success then return degenerate;
if feedback=collision then Splitting(W)

end;

procedure Splitting(W);
begin
Resolution(head(p,W));
Resolution{tail{q,W)):
end;

In the above speciﬁcatibn, we have used the functions head and tail as defined
below.

W=[ab] head(p,W) = [a,a +p(b —a)]
tail(q,W) = [b+g(a-b).b],

where p. and ¢ are positive real numbers satisfying p+q = 1. These are design
parameters called the bias of the tree algorithm. The length of the session is .
called the Collision Resolution Interval (CRI).

We give an illustration of the window tree CRA (fig 2): a, b, c and d are the
packets contained in the window; The scheme shows the successive different
splittings of the window according to the tree protocol. We first give the tree
representation followed by the stack representation with a table containing the
status of successive slots.

Wi Si time
— — —— ‘ ; —— — — — :——
- T >, axis-
wi*"l S,“,l

(fig 1)
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slots 1 2 3 4 5 6 7 8 9
channel X x X t ? X + +
abcd ab @ ab a b ed c d
stack - cd ab cd b cd - d -
- - cd - cd - - - -
(fig 2)
We have used the conventional notations:
* " blank
"¢'": success

"x": collision

The chronological order of the successive slots of the CRI can be obtained
by the reading in prefix order of the tree.

12. Analysis of tree algorithm

If we condition by W# = n, the distribution of the packets arrival times in a
random window is uniform and independent of the past and the future because
of the markovian memoryless property of the process arrival. So the deter-
ministic splitting according to the arrival date in the window is statistically
equivalent to a Bernoulli random splitting with conjugate probability p and g to
which every packet of the window would be submitted.

So, still with W# =n
Proba(head(p ,W)¥=k / W¥=n) = B;"] prqn*
= Proba(tail(q, W)¥=n—-k / W¥=n),

Note X, = E[CRI/ / W# =n] the conditional mean of CRI length; we have,
according to FH ]].

Xn 1+§[}§]p"q“"‘(Xk+Xn-k) n 22

X0=X1=1
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We could directly resolve this recursion, but we can use a more compact form by
‘introducing the so-called Poisson generating function:

. N z™ .

and we obtain the functional equation:

' X(z) =X(pz) + X(gz) +1 — 2(1+z)e %,
or equivalently: .
_ - X(z)-1=X(pz)-1 + X(gz)—1 +2 — 2(1+z)e =,
which can be resolved by iteration:

X(z)=1+ ENS”. (2 —2(1+z)e ™),

with Sf(z) = f(pz) + f (g2) being a linear operator on the space of the holo-~
morph function f(z) in the complex plan. See the appendix for convergence of
iterations. The next table shows the numerical results computed for p = g = 0.5,

n Xn
0 1.00000
1 1.00000
2 5.00000
3 7.666867
4 10.52381
5 13.41905
6
7
8
9
0

16.31306
19.20092
22.08535
24.96901
27.85318

1

13. Stability of the window tree algorithms

We know the distributions of packets in each window to be mutually
independent also W# obey the law of Poisson of parameter:

AXsize of the window .

So the discrete time process of the interval lengths s; —w; is a continuous
state Markov process with the {(irreducible) transitions:

*If s;—w,>T i
- The CRL s;,,~s; is conditioned by the distribution of the number of
packets arrived in the window, a quantity itself dependent on the’

- parameter A of the law of arrivals and by the size of the window, |
namely a Poisson law of parameter A7. C

Sip1—Wiy = 8 —w + CRI(AT)—T,

where CRI(z) is the random variable of the CRI length when the
number of colliding packets obeys to the Poisson law of parameter z.
*If 5;~w; <T '

Sie1 Wiy = CRI(s; —w;)) .
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A sufficient condition for instability of the process is:
- lirln infE[s; 1 —wiy, / s;—wy=l]~L >0

(all states are transient, the window statistically cannot reach the present if we
start the process with wg arbitrarily far from s,)

A sufficient condition for stability is also:
1'1“11_.511PE[S~;+1“W~;+1 / si—wy=l]-l <0 .
This last condition can be expressed, according to the transition conditions
menticned above, namely: :
Elsiy1—wisy / si—w>T] = X(TA)~T+8; —w; .

Thus we get stability if 7> X(7A), instabii;ty otherwise. Thus the maximum
throughput achieved by the window tree algorithm is

Amax = maxi Y(EJ; .

zeRt

Numerically we obtain Ay., = 429, with z = 1.15: the choice of the optimal T is-
2.7 (see [MaB1]).

The modified algorithm
We can improve the CRI by suppressing certain to occur collisions: if a blank

occurs after a collision that means that all packets are included in the tail part
of # and we split immediately this tail before the next slot.

procedure Modified Resolution{W);
begin :
Transmission(W);
if feedback=blank then return degenerate-or-c-o-collision;
if feedback=success then return degenerate;
if feedback=collision then Splitting (W)
end;

procedure Modified Splitting(W);
begin '
Modified Resolution(head(p,W));
if degenerate-or-c-o-collision then Modified Splitting(tail(q,W))
else
Modified Resolution(tail(q,W))
end;

For example, in the illustration (fig 3) we avoid the certain to occur collision
"ab" just after @ and we improve the value of the CRI length to 8 instead of 9 pre-
viously. :



2 6
/ \.1—-’“ c / \ g
3 by 7 8
a’/ \b
4 [_U s5{ 1]
. slots 1 2 3 4 5 8 7 8
channel x X ? * X + +
abcd ab @ a b cd c d
stack - cd ab b cd - d -
- - cd ed - - - -
(fig 3)

The modification results in a slight modification in the analysis of the condlt,xonal
mean of the CRL:

w = 14300 ptan 4 (4204 )- g ma2

whence a new equation:
X(z) = X(pz) + X(gz) +1 —2(1+2z)e™® —2P* +(1+gz)e™*
which can again be resolved by iteration

X(z) =1+ 2 S*(2 -2(1+2)e™% — e P* +(1+qz)e"')

Numerically we find now )\m= .482, and the computations gives the following
table withp =g = 0.5. , .

3

Xn

1.00000

~ 1.00000
' 4.50000

7.00000

9.84286

12.31429
14.98479 |
17.65089
'20.31407
22.97678
25.63990

QOO NN EWN=-O

[y




11 4. The part and try algorithm

The part and try algorithm is a full member of the class of window tree algo-
rithms. It is based on the following "trick” (see [Ma80]). If a collision is followed
immediately by another collision, then one has obtained no information about
the number of packets in the tail of the current window. Thus, this tail can be
merged into the non resolved interval of the time axis rather than explored as
determined in the previous tree algorithm. Put in an other way we develop the
resolution tree in prefix order until all encountered collisions have been justified
by combination a of the first encountered leave of the tree.

T

b c_- d '.’

resolved part = non resolved part

a
= /( . of the window  of the window

w;
/ \a b
4 j
a// \ b :
(fig 4)

For example (see fig 4), the isolation of a and b in respectively head(% tail(%

head(%—. W) and tail(-él‘-—. tail(%; head( %— W))) is sufficient to justify collisions in
slot {1),(2) and (4) without ¢ and d.

This means that the distribution of packets in the non resolved part in the
window is independent of the already resolved part and can be included in the
following window. Because of the memoryless markovian property of the arrival
process, the distribution of packets in the next new window remains indepen-
dent of the past and is only conditioned by the Poisson law of arrivals. The reso-
lution algorithm is:

procedure Part-and-Try-Resolution(W);
begin '
Transmission{W);
if feedback=blank or success then return degenerate;
if feedback=collision then Part-and-Try-Splitting(W)
end;

procedure Part-and-Try-Splitting(W);
begin '
Part-and-Try-Resolution{head(p,W)):
if degenerate then Part-and-Try-Resolution(tail{q,W))
end;

If it is non-degenerate, the sessionends after two consecutive successes.
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11 5. Analysis of the part and try algorithm
Let 7#, be the mean of the size of the resolved part of the window condi-
tmned by W¥=mn:

WL = Elwiy—w; / Wi=n].
We have the recurrence equation:

Wn = E[k]p q " *pWe + qmqWy + npg™” ‘an -1 n22
Wo=W,=1

So, with W(z) = Dt Lo~
W(z) =pW(pz) + qW(qz)(1+pz)eP? ,
And, fog" the CRI, the new equation:
n = 1@[7;]#%""‘)@ + 9" X, + npg X, =2
Xo = Xl =1
X(z) = X(pz) + X(gz)(1+pz)e P* + 1—2(1+z)e"' .
Resolution : we write
(X(2)-1) = (X(pz)-1) + (X(gz)-1)(1+pz)eP* + 1+(1+pz)e’?'—2(1+é)e" .
and note w(z) = zW(z),
(w(z)-z) = (w(pz)-pz) + (w(gz)- q2)(1+PZ)e"” - gz(1—(1+pz)e?*).
Then
X(z) = 1+,§NT"(1+(1+pz)e‘3"—2(1+z)e’z) .
w(z) = z+n§NT"(—qz(1—(1+pz)e Pz)) |

With T linear operator, Tf(z)= f(pz) + f(qz)(1+pz)eP?, - see again the
appendix for convergence considerations. The following table summarizes the
_results forp = q = 0.5.

Xn n Wn -1
1.00000 0.00000
1.00000. 1.00000
4.50000 2.00000
6.50000 2.50000
7.14286 2.57143
7.31429 2.52381
7.47442 2.49770
7.86859 2.49578
7.86056 2.50079
8.03335 2.50523
8.18488 2.50748

3

OBV WN O

—
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Stability
We appeal to the general condition for stability of window algorithms:
instability:
. lil'{l inf E[s;v1~wis, / s;—w;=l] -1>0,
stability:

lim sup E[sis—wie, / si—wi=l]-1<0.

- Thus we have stability if and only if 7#W (A7) > X(A7). Thus the maximum

throughput is:

)

ceR?

In fact the algorithm described is the basic part and try algorithm which
gives only (!) Apax = 453 (with a bias: p = .55). The real .487 algorithm is the
improvement of the basic part and try algorithm by avoidance of the certain to
occur collisions:

procedure Resolution-.487(W);
begin
Transmission({W); ‘
if feedback=blank then return degenerate-or-c-o-collision;
if feedback=success then return degenerate;
if feedback=collision then Splitting-.487(W)
end;

procedure Splitting-.487(¥);

begin
Resolution-.487(head(p,W));
if degenerate-or-c-o-collision then Splitting-.487 (tail(q,W));
if degenerate then Resolution-.487(tail{q,W))

end;

w
==
r--q

o
ooy
'

e

.E\

l

(fig 5)
The CRI length leads to a new equation
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= 1+§&]p"q"""}(k + g™ (Xp—-1) +npg™ "X, n=2
Xg = Xl =1 ’

and .
X(z) = X(pz) + X(gz)(1+pz)e P* — e P +1-2(1+2z)e *+(1+qz)e ™= .
X(z) = 1+"‘z€:NT"(1+(1+qz)e"—2(1+z)e'=+pze-1’=) .

By numerical computations we obtain the new table{(p = g = 0.5):

Xn
1.00000
1.00000
4.00000
5.83333
6.47619
6.66984
6.83625
7.02863
7.21804
7.38911
7.54055

3

CWB®NAOAUEWN-=O

-

Numerically we obtain A,y = .487 (.48778 with bias) at z = 1.26, and the optimal
Tis 2.3. ' ‘

I THE PART AND TRY ALGORITHM ADAPTED TO FREE ACCESS
111 1. The problem of the session end.

Modifying the basic part and try algorithm so as to make it a free access
protocol where stations only need monitor the channel when they have a packet
to transmit is made possible by the following observation: the end of a non
degenerate session simply occurs when two consecutive packets are successfully
transmitted. So a new arrival packet needs only two slots to recognize whether it
is in a degenerate session or not, and then to be ready for the next séssio_n.

We call these two slots the witness slots. The table below describes the nine
possibilities for the status of these two slots according to the ternary feedback
and shows how a station can deduce the type of the current session.

e
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blank blank degenerate: in a non degenerate
sessicn a blank is alwzys followed by a
certain to occur collision

blank success | degenerate session {the same reason)
success blank degenerate session: the success may be
is the end of a non degenerateé session
but the blank is degenerate

success success | end of non degenerate session or two
degenerate sessions

success collision | non degenerate: the collision has to be
resolved :

blank collision | idem
collision collision | idem
collision blank non degenerate session: the next slot is
a certain to occur collision

collision  success | non degenerate: the collision is not yet
justified

In summary, if a collision occurs during the witness slots there is a non degen-
erate session currently being resolved; otherwise, if no collision, the session just
ends and a new session begins in the next slot.

II12. The problem of the localisation of the window

Another problem is how to know the location of the window in the context of
a free access protocol where every packet has no knowledge of the succession of
events before its birth? :

The solution consists in permuting the role of non resolved interval and win-
dow. Instead of sliding the window from the past to the present, keep the window
two slots below present and slide through the non resolved interval from the
past to the present.

The adap'ted algorithm

The i session is the part and try resolution of the packets whose arrival
date is in the interval [s; ~2-7,5;-2] = ¥ (the packets which arrived in [s;-2,5;]
are not able to recognize that we begin a new session and have to wait until the
next one).

The part and try free access resolution is the basic part and try resolution
but with a time symmetry:
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procedure Free-Access Resolution(W);
begin
Transmission(W);
if feedback=blank or success then return degenerate;
if feedback=collision then Free-Access Splitting(W)
end; '

- procedure Free-Access Splitting(W);
begin
Free-Access Resolution(tail p W);
if degenerate then Free-Access Resolution(head q W)

end;

The non resolved part of the window is incorporated to the rerhaining of the
old non resolved interval which will be slid and merged with the new non resolved
interval {s; —2,s;4,—2] by the operation:

procedure Adjust;
begin :

if arrival date < s5;—2 then

arrival.date := arrival date + size of the window resolved part
end;

Let [; be the left end of the non resolved interval at the beginning of the i**
session (this general-system parameter cannot be evaluated by a station). The
following scheme gives an illustration of the ‘evolution of the non resolved inter-
val during a sessicn.

L,; - T __. S
o —n Ao L.
W two slots,
l S Si+
_____ -] 1 —tmekh o
non resoived resolved part CRI
part of the window of the window
s.
L, Li+‘ — i+l
S A SN
(fig 6)

At the end of the session, after execution of procedure Adjust, L;,, = ;+size of
the window resolved part..And we can begin a new session.

111 3. Conditions for stability

The behaviour of s;—I; is a discrete time continuous state Markov process
and, when §;-Il;>7, it behaves like s;—w; of the previous window algorithms.
When s;—l; <7 there is slight difference because no station can be aware of this
event and the window is always assumed to be of size 7. But, the markovian
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properties being preserved, the ergodicity conditions deal with
E[sis1—biv1 7/ Si—l =1] —! when l-»=. So the throughput is the same of the basic
part and try one: )xmax = ,453.

The reason that we cannot immediately adapt the real .487 algorithm
resides in the fact that a packet cannot decide in a deterministic finite number
of slots whether it is in a degenerate session or not. In a non degenerate session
a collision can be followed by an arbitrary number of consecutive empty slots if
the certain to occur collisions are eliminated (this event is always possible but,
of course, its probability drastically decreases with respect to the length of the
tail of empty slots).

IV THE € -PART AND TRY ALGORITHMS

We can build and analyse the class of so called e-(free access)-part and try

algorithms, e being a design parameter with integer value. These protocols

allow free access and, as e gets large, their throughputs tend to the upper limit~
ing value .487. However delay will increase withe.

IV 1. Principle of the e-part and try algorithm

The e-part and try algorithm is the part and try algorithm in which only e
eliminations of certain to occur collision are allowed in each session. So the 0-
part and try algorithm is the basic part and try algorithm and the «-part and
try algorithm is the .487 algorithm. The e-part and try algorithm, e being a fixed
integer, is adapted to free access. It has the property that a packet needs only
e +2 slots to recognize whether it is in a degenerate session or not and to be
ready for the next session. '

In order to illustrate the e-part and try algorithm take fig. 8 and replace
the two slots below every session by e +2 slots {only packets which have yet mon-
itored the channel more than e +2 slots can participate to a sessmn) The e-part
and try resolution protocol follows.

procedure Free-Access Resolution{W:time interval,e: mteger)
begin
Transmission{(W);
if feedback=blank then return degenerate-or-c-o-collision;
if feedback=success then return degenerate;
if feedback=collision then Free-Access Splitting(W,e)
end;

procedure Free-Access Splitting(W,e);

begin

Free-Access Resolution(W,e);

if degenerate-or-c-o-collision then

begin
if e>0 then Free-Access Splitting(head q W,e-1);
if e=0 then Free-Access Resolution(head q W,0)

end;

if degenerate then Free-Access Resolution(head q W,e)

end;
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IV 2. The analysis of the e-part and try algonth.m

Note X2 = E[e-part and try CRI / Wt=n]. We have the recurrent equatlon
. for e >0.

X5 = 1+§[Z]p"q""".XE +qM(XR7-1) Fpg™TIXE L n22
X =X5=1 i

n .
Note X®(z) = LX2 ;—'e‘z. We reach the functional equation.
n H

X*(2) = X*(pz) + X*"(gz)e 7 + X*(qz)preP*
—-e PPi]— 2(1+Z)e_z+(1+qz)e -z
Xa(z) =1+ 2 Rn((xu Ygz)— 1)+1—-2(1+z)e*z+(1+qz)e—z+pze—pz)

with RBf (z) = f (pz) + pze P? f(qz) (see the appendix for convergence).

With the knowledge of X%(2) (basw part and try algorithm) we can compute”
XY2), then with X(z) we compute X?(z). The next tables summarize the
numerical results for e =1,2,3,4,5 and 10, and the respective maximum
throughputs. Note the moriotonic increase of the maximum throughput with
respect toe, and Lts convergence to Aq,y = .48711.

Xz Xa X3 X
1.00000 1.00000 1.00000 1.00000
1.00000 *~ 1.00000 1.00000 1.00000

-4.50000 4.16667 4.05556 4.01852
6.50000 6.07143 5.91497 5.86087
7.14286 6.71429 8.55782 6.50373 |
7.31429 6.89800 6.74779 6.69609
7.47442 7.06180 6.91326 6.86218
7.66859 7.25505 7.10597 7.05468
7.86056 7.44559 7.29580 7.24424
8.03335 7.61756 7.46739 7.41568
8.18488 7.76886 7.61858 7.56684

44935  .47324 .48231 .48548

1.16 . 1.22 1.25 1.25

8 > '
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Xn Xz Xn® Xy
1.00000 1.00000 1.00000 1.00000
1.00000 1.06000 1.00000 1.00000
4.00617 4.00208 4.00001 4.00000
5.84256 5.83641 5.83335 5.83333
8.48542 6.47927 6.47620 6.47619
6.67863 6.67278 6.66985 6.66984
6.84493 86.83915 6.83626 6.836825
7.03735 7.03154 7.02864 7.02863
7.22682 7.22098 7.21806 7.21804
7.39821 7.39235 7.38943 7.38911
7.54936  7.54350 7.54057 7.54055

.48657  .48693 48711 48711
1.26 1.27 1.26 1.26

8
lag‘gcomﬂo:cn-hwm»-o 3
o

VI CONCLUSION

We showed that free access be possible with high throughput. We can build
such algorithms with maximum throughput arbitrarily close to the highest
throughput reached by the current versions of the part and try algorithm.

'Of course, the delay for successful transmission is slightly affected by the

incompressible e +2 witness slots and by the loss of the first in first out stra- ‘

tegy. However e = 2 already gives A,y = .4823.

e-part and try algorithms show robustness to channel errors. We know that
free access protocol can be easily restored after general or local failures, but it
is more difficult to insure relatively good behaviour during the critical time
interval when the failure occurs but has not already been detected. Massey M80
]] showed that tree algorithms which automatically eliminate certain to occur
collision can suffer deadlock due to channel errors (a degenerate session
assumed as collision should forbid any further transmission). Our resolution
algorithms, by allowing only a finite number of suppression of certain to occur
collisions, avoid such deadlocks.

L2
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APPENDIX
A- The Window Tree Algorithm: convergence of the sum LS J(z).
n
The use of the generating functions gives a more compact view of the recur-
sion to be solved. Also the accuracy of the computation is easier to control.

S is a linear operator on the space {f /f (z)=2%g(z), g analytic} with the
norm:

}
where K is an arbitrary convex compact neighbourhood of 0. So:

||Sfllx=glg§i‘lﬂz‘%p%l‘+ (qz)a }

<@*+g3)f llx-

So the norm of the operator, namely

S,
151 = maxt 1L

is not greater than p?+¢? < 1. Thus the infinite summation L.S™ converges and
n

we can extract the Taylor coefficients and the numerical values of £S™ I (z).
n

The accuracy is controlled by:

= 2, A2\N+1
iteration, we have: ]lngNS"f g < %-ﬂf e

truncation, if we note: Xgy(z) = X(0)+ - - - +X{®(0) 2 TJ—'—' then

| Xy—X||x < —mﬁlxllax

In the numerical application we have only to test the accuracy with the formula
above applied to the functions J(z) =2-2(1+z)e* and
f(z) =2-2(1+2z)e *—e P*+(1+qz)e=.

B-The part and try algorithm: convergence of the sum ;T" J(z)

We use the same line of reasoning as above except that K is no longer an .
arbitrary convex compact neighbourhood of 0. Let K=0{JCy, where

(i) O s a convex neighbourhood of 0 such that.
(P®+q°maxt|(1+z)e =) = p <1

(i) Cyr = {2/ —8<Argz <, 0<Re(z)<7} with 136[0.%—[ and r arbitrarily chosen.

We need O in order to justify the extraction of Taylor coefficients of ;T"f (z)

and we need Cy, in order to compute with suitable accuracy the value of this
summation for every non negative real z. So
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1157 llxe = maxt|p2 L2 421 4prye == L1221y

(pz)? + (g=z)?
= max{ Tgilpa%('?z(l"'}’z)e-” 'L({z)_z” ;

With rr(xa)x i(1+z)e #) =1, we get ||Sfllx<spllfllx And we . conclude like in A,
But we must take into account the fact that

X1l cpp, < eI X1

since X(z )e? has non negative real Taylor coefficients.

C- The e -part and try algorithm convergence of the sum E:R“ r(z)

* The same proof as above works: instead of (1+z)e™® we study the simpler
function ze ™ which attains its maximum norm on the right half plane at z=1.
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