N

N

Petri nets and algebraic calculi of processes

Gérard Boudol, Gérard Roucairol, Robert de Simone

» To cite this version:

Gérard Boudol, Gérard Roucairol, Robert de Simone. Petri nets and algebraic calculi of processes.
[Research Report] RR-0410, INRIA. 1985. inria-00076146

HAL 1d: inria-00076146
https://inria.hal.science/inria-00076146
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076146
https://hal.archives-ouvertes.fr

S TA LIRS

Rapports de Recherche

}

N° 410

4

SAte

SRZA

SRy

RO

e

PETRI NETS
AND ALGEBRAIC CALCULI .
OF PROCESSES :

g

b g

Kt
5
7
|
;
«
;

Gérard BOUDOL
Gérard ROUCAIROL
Robert de SIMONE

TS S e T

PN L AN

EA A

W ST ITE

R O - Sy S

%,

RS

=

i
i :
g Mai 1985 |

5
N LY 0w R TR

A

o EATNOTA: 5L L I ANLATR

3

PETRI NETS AND ALGEBRAIC CALCULI OF PROCESSES

Gérard Boudol(™®)
Gérard Roucairol(**)
Robert de Simane(®)

(*) INRIA, Sophia Antipolis, 08565-Valbonne, France
(**)BULL, Centre de recherches, 68 Route de Versailles,
78430-Louveciennes, France

Abstract

We show that, as transition systems, Petri nets may be expressed by terms of a
calculus of processes which is a variant of Milner's SCCS. We then prove that the
class of labelled nets forms a subcalculus, thus an algebra, with juztaposition,
adding condition and labelling as primitive operations.Finally we introduce
rational machines which express explicit synchronizations on nets.

Résumé) : .

Nous montrons que les réseaux de Petri, considérés comme des systémes de
transitions, peuvent €tre décrits par des termes d'un calcul de processus; le cal-
cul que nous utilisons est une variante du calcul SCCS de Milner. La classe des
réseaux étiquetés forme un sous-calcul, donc une algebre, dont les opérations
primitives sont la juztaposition, I' gjout de condition et I’ éliquetage. Enfin nous
introduisons les machines rationnelles qui permettent d'exprimer des synchron-
isations explicites sur les réseaux.

1 - INTRODUCTION

In the last few years several mathematical models of concurrent and communicating sys-
tems did emerge. One of the best known is that of Petri nets, which gave rise to a consider-
able amount of theoretical dev'eloprrients (see for example [15,4,5]). In some sense a Petri net
is a dynamic pictorial description for a non deterministic asynchronous concurrent system.
This graphical aspect involves a slight defect : it is not clear how to recognize "subgames” in
the picture, which is given as a whole, and reset the components. In other words, we may need
some syntax to build nets. Previous efforts in this direction may be found in [6,10].

We aim here at proposing such a syntax. We use as framework a more recent abstract
model, that of Milner's algebraic calculi of processes ([12, 14]). This model consists first in a
free algebra of terms : primitive operations are parallel composition, synchronization or
desynchronization mechanisms, and so on : whence the algebraic character. Second there
are actions labelled transition relations between terms. These relations are structurally
defined, that is the behaviour of a compound term is built from the behaviour of its com-
ponents by means of rules. Therefore each term is endowed with a labelled transition system
as its operational semantics. Finally an equivalence relation on terms is introduced. It is a
congruence for the operators of the algebra and respects the transitions abilities. Thus we
have equational laws, whence a calculus, and each term denotes a process: a transition sys-
tem on equivalence classes. The calculus provides this way a syntax for some universe of

processes.

H D PAPIER RECUPERE ETRECYCLE ™ -

L] .
" Milner already showed that the static (pictorial) aspect of nets can be modeled in a cal-
culus, that of (free) flow algebra. Concerning dynamics, one of his most fruitful ideas was to
realize that the set of actions should be thought of as an algebralc structure too [13,14]).
Specifically, actions will form an abelian monoid : in order to perform simultaneously two
actions one performs their product. This formalizes the idea of global actions of a system. |
Moreover some actions may have an inverse. This handles a rudimentary form of communica-
tion (handshake).

We set a relationship from Petri's to Milner's mathematical models of processes. Roughly
speaking, we translate a Petri net into a term of a calculus ; this translation is' semantically
sound in the sense that the labelled transition systern on markings generated by a net and
the operational semantics of its target term are the same. A converse study can be found in
[9], where the authors intend to provide a Petri Net semantics to CCS. The calculus we will
use, called MENE (cf ‘[2, 3]), lies on an "asynchronous” (not in the technical sense of
asynchrony developped in [14]) parallel composxtlon. together with some synchronization.
primitives. We shall present it briefly in the second se¢tion. In fact, this calculus is just an
equivalent formulation of the "finitary" version of Milner’s synchronous calculus (see [3,13]).
We show in the third section that, as far as they denote transition systems, Petri nets may
always be exactly expressed as terms of this calculus. The crucial tool here rests in the
monoid of actions which formalizes notions of simultaneity and communication. In the fourth
section we present the labelled nets as an algebra, build with the following primitive opera-
tions : juxtaposition, adding conditions and labelling, from a simple set of generators : clocks.
For instance this syntax allows us to describe things like "the addition of a new place to a
net", and so on...

In the last technical section we introduce a generalization of Petri nets that we have
called rational parallel place machines ([3]). These machines are designed for the expression
of synchronization constraints on parallel processes depicted by Petri nets. We dlSCUSS the
semantlcal aspects of our propositions in the conclusion..

2- THE MEHE CALCULUS

2.1. Actlons . , .

First we describe tbe monoid of actions whlch is the basis of our calculus. This monoid M
is the two fold product of :
(1) the free abelian monoid generated by some given countable setA of atomic actions. Thus,
loosely speaking, this monoid is that of instantaneous events. which do not interact with each
other. The product a.b means a and b happening together, or the global action composed of
a and b. Here from A we get multisets of atomic actions, with a multiplicative notation. For
instance the multiset {a,b,b,a,a,c} of atomic actions a,b,c is denoted adic. ‘
(2) The free abelian group generated by some given countable set S of signals. Each of the
element of S, say s, is a synchronization or communication action, endowed with an inverse
§: the simultaneous occurrence s.s of these actions establishes a communication, or a
handshake, which is a private act, only showing the unit. actxon 1.

. The product of a € M and b € M will be denoted by mb and the unitby 1. If B is a subset '
ofA u S we shall denote by IM\B the substructure of IM generated by (4 u S)-B.

2.2 Syntax of terms : the Meue operators

Now let X be a countable set of variables, which will serve as 1dent1ﬁers in order to deﬁne
recursive processes. The syntax for the terms of the MEIJE calculus ([2,3]) is given by the fol-

lowing : .

(i) O isa term (inaction), and any variable is a term ; '

(ii) guard or action :if @ € M and p is a term, thena :p is a term (a beforep);

(iii) morphism : if p is an endomorphism of M and p is a term, then <p>p is a term (»
renamed by @) ; '

®
(iv) restriction:if a € S and p is a term then p\a is a term (p restricted on signal a) ;-

(v) recursive definition : if z,, ...,z, are variables and py, ...,p, are terms, then for
1£i £n (z; where z,=p,, .. ., T, =p,) is a term.

These are, with slight lexical variations (but the same semantlcs. see below), among CCS’s or
'SCCS's primitives. ,

This is not the case of the following :
(vi) asynchronous parallel composition : if p and ¢ are terms, then (p || ¢) is a term ;
“(vii) ticking : if a € S and p is a term, then a * p is a term.
Free and bound occurrences of variables are defined in the usual way, and we denote by

[QI/II: e ‘In/zn]p

o Lg'e

ing bound variables of p if necessary)

2.3 Semantics : the transition rules

a
The transitions relations -» (where a € M) between terms are the least ones satisfying the
following rules :

(R1) a:p -’p

(R2) ifp - p then <¢>j> —-:) <p>p'

(R3) ifp - p and a € IM\a (that is nelther a NOor o appears as an 1rreduclble factor of
a) then p\a 5 '\«

(R4) if; for 1sj2n, g; = (z; where z, = py...2, = pn) and [§1/T1...Gn/Zn P :p
then g; - .

There are three rules defining the semantics of the parallel composition, according to the
idea that the components are mdependant '

(R5) ifp -'P' then(p || ¢) » (P' Il q)
[} b ad
(R8) ifp »p andq - q' then(p llg)— (2" |l ¢')

) b
(R7) ifqg »q then(pllq)>(plg')
Here either both or only one of two components set in parallel are assume to work at any
time. It is the notion of asynchrony we shall adopt throughout.

Finally for the synchronization primitive of MEWUE :

(R8) iftp - p then a®*p — a®*p' (51gnal a adds itself to every transition of p from
now on).

a ' :
Thus ¢ - ¢' iff this transition has a proof following these rules.
Exzamples
a - the transition graph of the term p = ((a*(a :6 :0) || a*(c D)) || aB)\a is
‘ ar((@® (60) [a* (c0)) [[ONa
S ((a*(a:b0)|a*0)]|O\a
b - With each action a we associate a clock on a

he =4¢y (z where z = a :z)

’ a T] . :
and it is easily seen that h, - h, (and moreover h, » p implies b = a and p = hg).

This example already shows the most basic way to have a loop in our transition systems.
Since recourse to no operator is limited inside recursive definitions, dynamic evolution of a
term's topology (its ||, \ and a * operators) is feasible, and bring the calculus much of its
power, see [18]. The two following examples, extended clocks, illustrate this : '

c- P =aef (z wherez =1 : (a * z))

Here the number of a actions recalls a current date :
1 a a? a®

p—-a*p=a*a®p = Pn Py
where pg=p andppss=a ® pp.. ' .
d- P =aoy (z where z = (a: 0 || z)) ;
Here a:0 is an "elementafy impulse”, 'and the term p. 'may>always exe’cute‘; an arbitréryf
number of them : - ' ’ : : o

a, -
Ve]N,n>03p,. P = Pn

where pg = p and pp4y = (0 || Pn). And in fact p, and p have the same behaviour, see the fol-
lowing section. : ‘

For those two last examples the reader is urged to try and show, in the prévious deduction
system, the adequacy of the terms in the face of their claimed behaviour.

2.4 Semantics : equivalences of terms

Let Ay .s) be the set of closed terms, that is without free variables : these are the agents
of the calculus, which denote processes, as we shall just see. Let ~ be the coarsest
equivalence relation between agents which satisfy the property of commutation (or compati-
bility) with transitions : ‘ :

: a ' Coe :
p~gandp»p =>J¢ g-q andp ~¢
It is a congruence relation over the Algebra of agents, called the strong congruence (see

[14,3]). The set Py s) = Ap.s)/~ of equivalence classes is the set of (MEIJE) processes. In this
set we still have transition relations :

iph > ip'h F3q:p 5 qandg ~p'

(where | p} denotes the equivalence class of the agent p).
Equational laws where verified somewhere else ([2]), among which :

(L1) (@ llg)~(gllp) (commutativity)

L2) @ li(gllr)~ (@ llg)llr) (associativity)
which allow one to write (py || * - || Pn)

(L3) @llp)~p (unit)
And, fora, €S : .

(14) (P\a\a~p\a

(15) G\ON\E~ (P\O\a .
Thus for {ay, . . ., G} € S we may write p\{ay, ..., ay} for (..e\a)\ " - - \an)

Another law will be of use : if, as in (R4), we let for 1sisn
g; = (z; wherez, = py,...,z, = p,) then

(L6) g ~[g1/Z1..qn/Znlp; (fixpoint).

While agents denote processes, the expressions of the calculus, with free variables,
denote functions on processes. If ¢ is such an expression, with free yvariables TyiennZy, WE

define
E(lpib, ... P b) = i [P1/Zr . .. Da/Zn)t |

for agents p,, . . » Pn- _
For example, the interleaving operator, specified on Py s) by the rules :

(1) itp > 7 then (p10) > @'lq)

b ' b
(2) ifg » g' then (plg) » (plg')
is realized through the MEIJE expression :
(zly) =(a*z | a*y | hg) \

Some other examples of such derived operators (for which ~ is still a congruence) are
given in [2,3]. We get a subcalculus by taking some of these derived operators as being primi-

tive.

3 - EXPRESSING PETRI NETS IN MEIJE

3.1, Petri Nets

Let us first briefly fix our notations (we assume here familiarity with Petri nets, see
[15,4,5]). We deal with Petri nets allowing multiple arcs between transitions and places. Thus a
net 7 is a structure (P, T,Pre,Post) where

-P = {py, ..., px} is the finite non-empty set of places

- T ={ty, ..., ty} is the finite non-empty set of transitions (with some ambiguity in the
use of this word)

-Pre : P x T » IN (N is the set of non-negative integers)

and Post : T x P -» IN are the numerical functions setting the preconditions and postcondi-
tions of the firing of transitions.

A marking u on the net r is a map from P into N : u(p)is the number of fokens in the
place p for this marking (and we note u(p;) = 1). A transition £ is enabled by the marking u,
a property noted (r,u)[t> iff

» VpeP ulp)zPre(p.t)
Under this condition, by firing ¢t we get the marking 4’ on 7 such that
Vp eP p(p)=ulp)- Pre(p,t) + Post(t,p)
We write that (r,u)[¢>(r u'), which is the transition relation between states of the net.
One may extend this relation in order to define the simultaneous firing of transitions.

Given a non-empty subset U of T, we say that U is enabled by the marking u iff
Vo €P ulp)z Y Pre(p.t)
telU

and we denote again this fact by (r,u)[U>. Then, by firing simultaneously (or : in parallel) the
transitions of U, we get the marking y':

VpeP pp)=ulp)+ EU [Post(t.p) ~ Pre(p.t)]
te

The extended transition relation is again denoted
(r.p) [U>(r.u)]

(This is the definition of [17] which seems to correspond to Petri's original idea about con-
currency).

3.2. The Translation

Now we want to find for each marked Petri net a MEIJE agent which, as far as the two
denote processes, is "isomorphic"” to this net. The idea is to consider places and transitions of
- the net as processes, and then to express them by agents and find an appropriate communi-
cation structure between them.

3.2.1. From places to Bags

) / .
A place of a net is no more than a bag, into which we can put -and there after remove-
tokens. Let us denote for a moment by a and b respectively the atomic actions of putting
and removing a token. Then a bag is a process, the behaviour of which is the following :

. one can, simultaneously

- put (performing the action a) as many tokens as one wishes

- remove (performing b) no more tokens than there is already in the bag.
Thus, if we denote by %) a bag initially containing k tokens, its specification is :

' amy”n
VmeNVneNn Sk,m+n >0, Q) —— qlism-n)
Now let w{*) be the sequence of MEIJE agents defined by

w®) = (z where z = (a :b:0 | z))
W&+ = (5.0 || w®))

If we regard a :b : 0 as an "elementary cell” (we could also have taken a cell
(z where z = a :b : z).) w'? is just a potentially infinite juxtaposition of such cells.

We shall next show that «®*) meets the %) specification requirement for a bag.

lemma 1
VeeN o n(a:b0] o®)

proof : we proceed by inductionon k
- if =0, then we apply the law (L 6) and immediately.get the result

—(a:b D] **V) = (a:b 0| (b 0| «™®)) (definition)
~ (b0 (a:b:0| o*))) (by L1,L2)
~ (b0]| w*)) (induction hypothesis)

= w®*) (definition)

lemma 2 v
W} 3 (ph iﬁ'ak €IN,k>0 c=a* and (p} = (0®}
proof : A
(1) by induction on k (k>0) we prove that'm(") a-‘: w®)
(1.1) - We bave (rule R1) a:b:0 S b0
whence (rule R5) (a :5 0 || v 5 (b 0| o) = oM

(2

a
Thus (rule R 4) wl®) 5 o)

. ak - a
(1.2) - By induction hypothesis () » o). Since a :b 0 - b :0 we have (rule R6)
’ ak+1
(@:b:0 | ol®) ——= (b 0] o®)) = L+D)
°E+l
Thus (rule R4) w(®) - ki)

We prove the converse b).' induction on the definition of the transition relations.

[
It) > {pb then (by definition of transitions in P 5y and rule R4)

Jgnp @0 g
then :
(2.1)-c=a and g = (b 0 || »®)) = &f! (rules R 1 and R 5)
or
(2.2) - (rule R7) 3 q' :w(3 gandqg =(a:b:0}q')
then by induction hypothesis

JkeN k>0c = at and ¢' ~ ()

Thus g ~ (a :b ® || «®)) since ~ is a congruence and by lemma 1 q ~ w®)

or
(2.3) - (rules R6 and R 1)
¢ .
Je aq' :w@ s g, czacandg=(b0]|q)
by induction hypothesis
alc >0 ¢ =a* and ¢’ ~ o)
k+

thus ¢ = a**! and (~ congruence) g ~ (b :0 || 0®)) = @*+1) «

We get the immediate corollary :

lemma 3

VieN {o®) 5> {ph ifdnmeNnsk.m +n>0

and ¢ = a™b", p ~ MmN

(proof : by induction on k and case anélysis, obvious).
This proves that we did correctly model the concept of bag by the MEIJE agents w(*), that is :

' m(k) D = n(k)

In the synchronous calculus of Milner {[13,14]) we should have written

oW = fizy fry = (O™ DX P " zpumn) /5 €N
nss me

where 1= hy = (z where z = 1:z).

3.2.2. From Transitions to Clocks
The second step consists in building agents for transitions. The semantics of the firing of

a transition ¢ is that, simultaneously :

- one remove Pre(p.t) tokens from the input places from ¢
- one performs ¢

- one put Post(t,p) tokens in the output places of ¢.

"
-

In order to provide this, we assume that places and transitions communicate by means of
signals. Technically we suppose with the notations of (3.1), that: ’

- f.he set A of atomic actions includes {¢,, ..., ¢y}

- the set S of signals includes {o;.f; / 151K}
Then performing a; means putting a token in _the place p;. while p; performs the action a;,
that is receives this token. When p; performs B‘. a token is sent from p;, while performing B;
means receiving this token. Thus each place p;, with some initial content (marking) is now a
bag among

'8{°) = (z where z = (a; ':*ﬁ-i Dl z)

8+ = (g, 0 || 8{*)

(1<isK)
If we denote ny; = Pre(p:.t;) and my; = Post(¢;,p;) to each transition ¢; correspond the
instantaneous action

n, . n —_—my, mK
Tj=511" ﬂ[{x"tjﬂl Lo, 1% f

And the process associated with this transition, which can repeatedly perform this action, is

therefore correctly modeled by the clock h‘T; :

T4
-3
’.L Ty h T

3.2.3. From Marked Nets to Meije Expressions

Finally for each Petri net 7 (with the notations of (3.1)) and markmg 4 on r we build the
MEIJE agent

Dty =top (o, 1] Ry 1(OP [+ 118N\ {0 6i/1515K]

Here we set an interleaving structure (which, strictly speaking, ought to be expanded in its

MEUJE code) on the transitions, according to the fact that only one at a time may fire. Restric-
tion on the signals means that tokens flow between places and transitions, so none can be lost.

Next task is to prove that the translation p(r,u) of the marked net (r.u) meets its
behavioural specification : we have to show that the process which is the semantics of p(r.2) is
isomorphic to the transition system on markings determined by (7r,12). :

lemma 4
Lpray) » Upb i 35 (155SN) such that
1~ Vi(1SisK) u; 2 nyy and
2- ¢c=t; and .
3- p ~pPru) Where V (ISzSK) [T NTHE R (VI
pﬂwf
(1) Let us assume that p() = p Since for alli (15i£K) and k € N we have
8(“) - q zmplzes ¢ ZMN\ {o0;.6;/15i5K}
we deduce ‘(using rule R 3) that
(1.1) -leither (rule 1{"5)v(h.,.1 ooo| Ry) -+ ¢ for some g such that

o = (g 1 (@] | 8N\ foy B/ 1515K)

In this case we have, by the definition of the interleaving operator (and the behaviour of
the clocks): :

37 (1575N) c = 7y and g ~ (hs || hyy)

Moreover ¢ € M\ {a;,B;/1Si<K} (rule R3) thus for all i(15isK) ni; =0 =my; and wey
get the desired conclusion in this case.

(1.2) - either (rule R8)

c’
(hey o] hey) > g and

CON - e .

(8)*q

and ¢ =cc”. and.p=(gllq)\ (a‘ Bi/1SisK}.. .. Thus 3 s (1SJSN) €l -r, cand, ...

q ~ (hfl | hfn)
Since ¢ € M \ {a¢.f;/1Si<K} we must have
c"=F - B ar - ag®d whence ¢ = Y

Thus for alli (18i£K’) such that n; ; + m4i; # 0 we have :

IA Y

Fi™

Jdi: 8‘-0“)
' . ~ b4, -

and ¢’ =(qyll- - llgx) if welet gy =8, if g5 + my; = 0.

- Bylemma3 n4; Sy andifwelet uy=p+myj;-ny; wehave ¢;~8;)

Finally, p ~ p(r.4) a8s we meant to prove.
(2) Conversely, assuming that for some j (1SiSN) we have V i (1SisK) p;2n,;, it is easy,
by means of lemma 3 and rules defining the transition relations, to show that
¢
4
d P(r.u)h - d P(r.u')h

where p's = js = ni; + myy;

Our goal is now fully achieved :

proposition 1
For any net 7, marking ¢ and transition ¢ :

r)E>(ra) F (ppuyl > 1pew)

We model the parallel behaviour of a Petri nets in a similar way, by defining

Bora =aog ((ery 1 W Ray) @V - 1| @) \ fos.81/ 1515

and we get the analogous property :

proposition 2

For all non empty set U = it,l, .. .+ 4§ 3 of transitions of 7
‘ ‘,!' t,n _
(ru)[U>(r) iff (Perwb —————- > | Brwb

This last expression seems more convenient if we think about Petri nets as modelling
parallel systems. And we get a flow expression in the sense of [11] which depicts the graphical
aspect of the net -taking marked places’ and transitions® agents as primitive nodes.

We should also emphasize that these results are actually more accurate : they are true

for the semantics of agents given by an equational congruence. We find among the equational
laws we use the "laws of flow"” of Milner [11].

The translation is rather stralghtforward : each element of the net translated first, then
reverything stuck together. Thus in the following example (taken from [18]) we shall anticipate
our next aim, the modular construction of Petri net expressions. The so called multiple

producer/multiple consumer problem (n producers, k consumers) 1s modeled by the Petri
net given in [16]

produce ’ d remove

producers ‘consumers

t Ignoring for a while the ir_xtermediate place which models the bufler, we translate the
marked nets "producers"” and "consumers" in :

Prod ='¢.,> ((Rey [Rep) 11 (B | 0M) \ fa1.B1.002.82}

thh Ty = By . produce . &y and Tp = fa. put . ay

Cons =gep ((he, || hep) || (85%) || 05)) \ six,.m.'aa.-ﬂa;

w

with 7'y = B, . remove . Gz and Tz = fz. consume . @

In both terms one recognizes the two transitions and the two places.

The next construction shows how one may build the whole system of producers and con-
sumers commuticating through a buffer by adding a.new place. The only thing to do is to say
that in fact a "put” (resp. "remove") action have to put (resp. remove) a token in (from) the
new place. This is done by means of renamings of actions:

Syst.em‘zl,w (((<’El . put / Put > Prod || < B . remove / Temove > Cons) || 8{) \ fa1.81}

We could also have given the expression which is the translation, by p, of the whole Petri
net. However the structure of the problem is less visible in this last expression.

@

4 - THE ALGEBRA OF LABELLED NETS

So far we have only used a restricted syntax (a subcalculus) from MEIJE to express the
behaviour of Petri nets. But even in this restricted syntax (inaction, action, parallel composi-
tion, restriction and recursive definition) we could write agents which do not represent Petri
nets (see [2,3]). In this section we face the question of whether there is (inside MEIJE, that is
by means of derived operators) a syntax which describes exactly the processes determined by
Petri nets. A further would be that these new operators correspond to appealing easy struc-
tural constructions on Petri nets.

We do this for a slight extension of these nets, to be precise for labelled nets. The idea
behind this is that the set of transitions merely is a set of (spatial) occurrences of actions.
Thus a labelled and marked net is

-asin(3.1) anetr = (P,T,Pre Post) with T C A
-amarking g on 7 ‘
- a labelling, that is a mapping A : T A
For a transition ¢t € T, X(t) is the actual action performed when ¢ fires. Thus the transition
relation is modified in an obvious way :
A V> rud) iff 3U T G U> ()
and V is the multiset A(U).

A labelling uniquely determines an endomorphism on M such that X(a) =a for
e € (S YA)-T (and we do not distinguish in between both in notation). A labelled marked
net is modeled, in the same sense than before, by a MEUE agent

<A >P(r.u)

10

Let L, be the set of such nets’ expressions in MEIJE. We may thus define the set of processes

determined by labelled marked nets by
R‘ = LA /~
This is the universe of processes which we want to present as an algebraic calculus.

In the sequel we will note a; and §; by a« and 8, and a marked "typical place” will be an
agent from the sequence {8%) / k € IN} where 8*) = 8{%).

There exists an operation on marked nets which consists in "adding a condition", that is
which adds a new marked place and extends the Pre and Post functions in a specified
manner. Thus such an operation is fully determined by

- an integer k € IN which is the marking of the new place p
-amap f :4 » IN x N which for each transition { gives

(Pre(p.t), Post(t,p)) = f(t).

We have seen an example of this construction in the producers/consumers problem : the
new place added to the system {Prod || Cons) was marked by 0 and subjected to the condi-
tions

f (put) = (0,1)
" f (remove) = (1,0)
(and f(t) = (0,0) for any other transition).
We do not formulate the precise definition, but merely indicate the MEIJE expression of
the operation associated with such a "marked condition” {(k,f) :

ey (Z) =doy (<y>z || 86\ a,f

where ¥ is the morphism determined by
Vaecd y(a)=g"aa@ if f(a)=(n.m)

(and ¢(s) =s fors € S)
Here we simply call such a derived operator a constraint.

In the producers/consumers example we could have built the whole system using this
construction :

System = n(p) (Prod || Cons)

with the condition f given above.

proposition 3
Let N, be the least set of MEIJE agents containing the set Hy = {hy / o € A} of clocks (on
A) and closed under parallel composutlon labelhngs and constramts Then Ry =Ny / ~.-

proof (outline)

(1) In one direction we have to prove that each labelled marked net expression < A >Piru)
may be translated, up to strong equivalence, into a term of the algebra N,. It suffices to
show that p(,) is equivalent to a term build on clocks using parallel composition and con-
straints. And here we simply follow the idea that, in order to build a marked net one

- sets together some transitions,
- then adds one by one plabes and appropriate arcs.

We use here a slight extension (concerning morphlsms) of Milner's laws of flow (which are
valid in MEUJE, see [2]) together with :

- for all morphism ¢ < ¢ Shy ~ hyq) -
- if @ is the morphism given by ¢(a;) = a and

@(B:) = B then < ¢ > 8 ~ gk
We sketch the proof that, with the notations of (3 3)
Boray = e 1+ 1 Ry 11(8F - 1| 8N \ o / @ SisK)
we have . -
Beran ~ 7O (m DRy 1 - - I ey D))

where V) = W AD Fi(ty) = (niy, my)

By induction on K :
(1.1)-If K = 1, we let

W) =69 @
for 15jSN. ‘T_hen.
(el Ml Rgy) ~ (Y Shy Lo [<Y Shyy)
~ <Y She, b L Rey)

(1.2) - At the induction step, where K = L +1, we let

-for 1SjSN
n -
- Y(ty) = B Y ax ¥ and
m 1
,r,j:ﬁ;‘ld B”t,a bUo.ow

(thu; ¥('y) = T4)

11

T =l e 1 OF - 10PN o / 15051
We have
By ~ (< ¥ R - 1 <Y >Ry 1(OF 11+ 1 8] \ e B/ 151 K3
~ L€ S Il (e T @F 1 - 1| 887\ fo b/ 1515K3

— (1)
~ (<Y > P i exﬂx)\ ax.Bx

~ ”(K) (/T(r' M))

(the last two steps might have to be detailed).
And we apply the induction hypothesis

12

(2) Now in the converse direction we have to prove that each clock is equivalent to a '’

(labelled marked) net expression and then that the operations preserve this property.
Here again, apart for the generators, we essentially use laws of flow.

(2.1) - Intuitively a clock h, is nothing but the net

And in fact one can prove {by induction on the definition of transitions) that adding such
an implicit condition has no effect : :

if f : A » IN x Nis such that, for some a €A
(1.1) if t =a

f ()= (0,0) otherwise

then for all net expressionp 7 z) () ~P

(2.2) - The parallel composition of net expressions represents the operation of jurtaposi-
tion (and here appears the labelling). Thus the proof that it preserves the property of
being equivalent to a term of L, follows the idea that to juxtapose two labelled nets, one

- renames (by injective labellings) their sets of transitions, in order to disjoin them ;

- puts together these two new disjoint unlabelled nets, obtaining a net ;

- resets the labelling (composing the original one with the inverse renamings).
We omit the technical details.
(2.3) - Applying a constraint to a labelled net we have

)< A > Bra) ~ < A > () Blra))

At) if teT
where g = foX', N(t) = otherwise

And as in the point (1):
) = e g) Br) ~ Plrw
(2.4) - The case of labellings is trivial since
' <y>(<p>p)~<yop>p =
We may rediscover the interleaved transitions behaviour of labelled Petri nets since
if f:4A ;»INX NN is such that

Vaed f(a)=(11) then m(y) (<A >2’—(7‘-M)) ~ < }\.> Plr.u)

A remark about the proposed syntax for labelled nets : we could improve the readability
of structural descriptions by allowing some naming facilities. For instance the
producers/consumers problem could be wrltten

System = (r(0.7) (Prod || Cons) where ‘ »
' Pmd = Ttn.z,) (0.7 5) (Rproauce || g))
Cons = g gy ((0,9,) (Rremove || 2 o))

with

£ (put) = (0,1)
(remove) = (1,0)
[_:,(produce) = (1,0)

i(put) = (0,1)

"and so on ..

_Obviously much more work remains to be done if one claims a convenient concrete syn-
“tax. R S

5 - RATIONAL PARALLEL PLACE MACHINES

. Various’ extensions or restrictions of Petri nets have been proposed in order to increase
either the modeling convenience or the efficiency of their analysis (see [18]). These
modifications mainly affect the state space and the firing,rule. We could model in'Meije vari-

ous kinds of modified nets, for instance nets with bounded or coloured places, or nets where.

places are fifo files, and so on. We focus in this section on a particular extension. Here the
generalization concerns the "transition space".

So far we did not exploit much Milner's idea about the action monoid. It was an essential

tool in the modeling of the internal mechanism of a Petri net, but the notion of global action
hardly shows in the external behaviour. However this notion allows one to take into account
the synchonism of some systems (a similar idea can be found in [1]). Let us consider the fol-
lowing typical example : the matter is to model the behaviour of a "box” which transmit syn-
chronous and asynchronous inputs. This box may be depicted as : k

--->| * synchronous inputs

outputs -—>

--->| asynchronous inputs

The following requirements must be fulfilled :

1/ the 1nput/output behaviour is cyclic on a two phases pace : synchronous input followed
by output. But furthermore : , : :

2/ at any time the box may accept and store an asynchronous -inpht

3/ a synchronous input is either full or empty. The box can output an asynchronous stored -

input only immediately after an empty synchronous input.
Let us name the atomic actions (or events) :

'f a full synchronous input

1 : an empty synchronous input

1, : an asynchronous input

oy, 0, and o, are the corresponding outputs,

13

To model the states of the box we use three pllacespl. P2 P3:

p; : input/output phase-interlacing. Whenever this place is marked (always by at most
one token) a synchronous input may and must take place ; otherwise it is an -output that
must occurs.

Pe: marked iff the previous synchronous input was full.
ps : a counter of still handling asynchronous inputs. ’

We shall denote by (i.j,k) a marking which sets i,j and k tokens into p,,p» and pg respec-
tively. The initial state of the box is (1,0,0). Then the following set ® of transitions provides a
model of the above requirements :

For all n € IN (the number of previous asynchronous inputs)
For m 2 1 (in presence or absence of an asynchronous input)

i.4m
(1,0,n) ~———- - (0,1,n+m) o

o qm receiving phase
(1,0,n) ~———- -» (0,0,n+m)

op-i3"

" :
(0,i,n) —~——- -+ (1,0,n+m) (2 full synchronous input to send)

0g-ig" (a stored asynchronous input is sent :
(0.0.n+1) =—--~ 2 (LOn+m) g previous synchronous input was empty)
0,.{" : » :
(0,0,0) ———-- -» (1,0,m) (nothing to send)

We shall show this to be an example of a certain kind of transition systems : those deter-
mined by Boudol's rational parallel place machines (cf [3]). As for Petri nets, the states space
in such a machine is the set of markings on places, that is IN’ if we call P the set of places.
Let us remark that this space IN? is an abelian monoid for vectors' addition :

If P = {p;.....px} then the sum of two markings

u=(ny,..,ng)and ' = (Mmy,....my) is

p+u =ngtmy, ..., ng+my).
Therefore the transition space -the cartesian product IN® x M x IN° where M is the abelian
action monoid- is an abelian monoid too. We shall take a multiplicative notation :

The product of two transitions ¢ = (uy,a,.';) and ta = (u2.b u'z) is

t. t2= (1 + Mp a.b, W'y + p'p)
(sum of markings, product of actions. This is the synchronous product of [14]).

The neutral element is ‘
1 = ((0,...,0), 1, (0,...,0))

There is a well-known remarkable family of subsets of a given monoid, namely the family
of rational subsets. Let us recall the definition (cf [7,8]) :

the family of rational subsets of a multiplicative monoid (X, «, 1) is the least family which

includes the singletons (denoted z, for z € X) and the empty set, here denoted 0, and

closed under the rational operations which are :

- union U+V=§x/:;_éUorz€V}

-product U .V=fzy /z€lU &yeV]

- star, or generated submonoid U* = |y U™
’ nelN

where U® = {1} and U™*! =/ . U™. As usual, we shall denote U* = U . U*. Thus the rational

14

SUbSt_Ets of X are exactly those denoted by regular expressions. When X is a product monoid, .
as it is the case of N x M x IN®, a rational subset is often called a rational relation.

Definition : a Rational Parallel Place Machine is a structure
Q= (P,M.8) where ‘

-P = {py....,px} is a finite set of places

- Mis an abelian action monoid

- The set 8 c N’ x M x IN? of transitions is a rational relation.
Such a machine @ leads to a transition system, which is simply

Z(a) = (N", M, 8)

Example : a bag is such an object produced by a one place machine. For if we consider the
transitions ' ’ o '

\ .
e=(1)=(1) (an ineffective transition)
a .
ty =(0)~ (1) (putting a token, cf. 3.2.1)

b .
te = (1) - (0) (removing a token)
and if we let '

8=¢". (ty + tp)*
then we have
ﬂbm

0= (k) ~——>(k+n-m) /n+m >0, m S k|

It is well-known (see [8]) that a rational relation such as 8 is always a rational subset of a
Jinitely generated submonoid. A finite set U ¢ INP x M x IN? of generating transitions such
that 8¢ U' may be represented by a labelled Petri net ; for a transition
t ={((ny...,ng)a,(my...mg)) is an element of a labelled net such that A{¢)=a and

Pre (p;.t) = ny, Post (t,p;) =m,. .
For instance the generating transitions ¢, ¢4, ¢; in the previous bag's example can be drawn :

a

b

What is not shown by this representation is the firing rule ; this is expressed by the rational
" relation on transitions, which .indicates the synchronizations. It must be seen that the
behaviour of a rational machine @ given by Z (@) is essentially synchronous : a transition
(u.a,1') € 8 can only be fired from the marking u, where there is ezactly the required number
of tokens. Differently stated, in a transition all the tokens must be removed. However it is
pos_sible to desynchronize such a machine :
Let A= (P, M, 8) be a rational parallel place machine. For each place p; € P let £; be the
"ineflective” transition which picks a token in p;, performs 1 and puts the token back in

p; -
&5 = (pj, 1..p4)

16

where

Pj)= 1 otherwise

Then the asynchronous transition system determined by Ais
A(@) = (NP, M. {e; / p; € P}*. 8)
(obviously A(Q@) is also E (@) for a "desynchronized" rational parallel place machine).
In this system A(®) a transition of 8 may be fired as soon as there are enough tokens in the
marking, for
(oo, w)€ te; /P €PY.8<=> 3 p,p (pa,p)eB,psp
| and p'=p—-p+ '

Now it is easily seen that the rational parallel place machines generalize Petri nets..
Indeed, if one keeps with the notations of 3.1 wherer = (P, T, Pre, Post), :
for each t; € T :let ¢; = (1, &, p's), where ui(p) = Pre(p, t;) and u'sy(p) = Post (t;, p).

Then the transition system determined by the net r is exactly the asynchronous transition
system determined by the rational machine

(P M, (E+ -+ t“;.,))
(where M is the abelian action monoid generated by T).

Let us return to our motivating example : the behaviour of the box mixing synchronous
and asynchronous inputs is that of a rational machine, with an "asynchronous place" Pa The
generating transitions are

Y
I, = (1,0,0) -~ (0,1,0)

I, =(1,0,0) —» (d,o.o)

Lo = (0.0,0) ~> (0,0.1)

3
)

0, = (0,1,0) -5 (1,0,0)
0, = (0.0.0) — (1,0.0)
2 = (0.0.1) - (1,0,0)

e = (0,0,1) - (0,0,1)

This may be drawn as:

17

Q@

pane
3

. ’ i .
e .
G ' I‘

.”'N
-~

-Then the required set 8 of transition is described by a rational expression :
| 8= (Iy+ W) (U, + 1, + 0y + 0g)+ 0,)
(we recall that 3 = ((0,...,0), 1, (0....,0)) is the neutral transition).

Finally one may remark that Petri nets with inhibitor arcs are special caSes of rational
machines. For instance the basic "zero testing" situation (cf. [16]) is depicted by

LY

s Now let
e .
ty = (1,0,0,0) = (0,0,1,0) .and

b
tz = (1,1,0,0) — (0,1,0,1) N
and &,, €5, €3, £4 be the "ineffective” transitions, as before. Then the rational expression

’ (€l+ 55+E4).t1+(81+82+83+24). tz

describes the following transition system :

a ' b ’
8 = {{(n+1,0,m,k) = (n,0,m+1,k) ,(n+1l,m+Lk,h) > (nm+1k,h+1) /n, m, k, h € N}

6 - CONCLUDING REMARKS

In order to build a true calculus of nets, it remains to find expressions of other interest-
ing operations preserving {(or extending) the proposed algebra and, perhaps more important,
to discover algebraic properties of these operators. Eacli equational law may be seen as the
validation of transformations or simpliﬁcations. It also remains to see to what extent a struc-
tural algebraic description can be combined with analysis techniques. Obviously we. cannot
‘Y, derive any benefit from rational machines with regard to questions about the state space.

Nevertheless rational transition systems are certainly not all effective systems. :

We would like to conclude with a brief discussion on semantic options. The informal pos- -

tulate underlying the strong congruence is that nothing can be said about a "state” (of a pro-
cess) unless it results from the observation of the performed actions. Thus one may disagree
with the fact that our semantics is right for Petri nets. For instance the k-boundedness pro-
perty is not preserved. Nevertheless, this question requires more careful examination : what
is the exact meaning of our strong congruence, that is how can we describe our "states" of a
net (obviously all that concern transitions is preserved) ? Moreover we could have proposed a
stronger equivalence : we may find a set £ of equational laws (among them the laws of flow,

together with laws concerning the dynamics of generators and primitive operators) so that we ‘

may present, with the same proofs, the algebra of labelled nets as L, /=g (where =p is the
least congruence containing the instances of the equalities of F'). Here again, to what extent
do we get a right semantics for Petri nets ? Certainly such an equational congruence
preserves some structural aspects. On the other hand, observational equivalences or bisimu-
lations (see [12,14,3]), which allow one to forget about some transitions, may be better suited
for some purposes. Thus the equivalence appears as a parameter of an algebraic calculus of
processes, one which may be chosen according to the intended semantics.

We leave all these semantical questions for future research, which may bring forth a new
point of view on Petri nets and modelisation. ' '

REFERENCES

[1] C. André, P. Armand & F. Boeri : "Synchronic relations and applications in parallel com-
putations"”, Digital Process 5 (1979), 99-113

[2] D. Austry, G. Boudol : "Algébre de processus et synchronisation”, Theoret. Comput. Sci. 30
(1984) : ‘

[3] G. Boudol: "Notes on algebraic calculi of process”, Advanced Course on Logics and Models
for Verification and Specification of Concurrent Systems, La Colle-sur-Loup (1984), INRIA
Res. Rep. to appear

[4] W. Brauer (editor) : "Advanced course on general net theory of processes and systems",
Hamburg 1979. Lecture Notes in Comput. Sci. 84 (Springer, Berlin, 1980)

[56] G.W.Brams : "Réseaux de Petri : théorie et pratique”, (Masson, Paris, 1983)

[6] R.H. Campbell, P.E. Lauer : "Formal semantics for a class of high-level primitives for
coordinating concurrent processes”. Acta Informatica 5 (1975), 247-332

[7] S. Eilenberg & M.P. Schutzenberger : "Rational sets in Commutative monoids", Journal of
Algebra 13 (1969), 173-191

[8] S.Eilenberg: "Automata, Languages and Machines" VoLA, Academic Press (1974)

[9] U. Goltz, A. Mycroft : "On the relationship of CCS and Petri Nets", ICALP 84, Lecture Notes
in Comput. Sci. 172 (Springer, Berlin, 1984), 196-208

[10] V.E. Kotov : "An algebra for parallelism based on Petri nets”, MFCS 79, Lecture Notes in
Comput. Sci. 84 (Springer, Berlin, 1879), 39-55

[11] R. Milner : "Flowgraphs and flow algebras", JACM 26 (1979), 794-818 _

[12] R. Milner : "A calculus of communicating systems”, Lecture Notes in Comput. Sci., 92
(Springer, Berlin, 1980) .

[13] R. Milner : "On relating synchrony and asynchrony”, Tech. Rept. CSR-75-80, Comput. Sci.
Dept., Edinburgh Univ. 1980 .

[14] R. Milner : "Calculi for synchrony and asynchrony”, Theoret. Comput. Sci. 25 (1983),
287-310 :

18 .

19

[15] J.L. Peterson : "Petri nets", Comput. Surveys 9 (1977), 223-252
[18] J.L. Peterson: "Petri net theory and the modeling of systems”. Prentice Hall (1981)

[17] G. Rozenberg, R. Verraedt : "Subset languages of Petri nets", Part I, Theoret. Comput. Sci.
26 (1983), 301-326

[18] R. de Simone : "Higher-Level synchromzlng devices in Meije-SCCS", INRIA Res. Rep. n°® 360
(1985). To appear in TCS

Imprimé en France
par :
I’ Institut National de Recherche en Informatique et en Automatique

