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SOME USES OF THE MELLIN INTEGRAL TRANSFORM
IN THE ANALYSIS OF ALGORITHMS

Philippe Flajolet, Mireille Regnier and Robert Sedgewick.

Abstract: We informally survey some uses of the Mellin integral transform in
the context of the asymptotic evaluation of combinatorial sums arising in the
analysts of algorithms.

Résumé: Nous donnons une présentation générale des utilisations de la
transformation de Mellin en analyse d'algorithmes. Cete transformation
apparait dans le contexte de 'evaluation asymptotique de sommes combina-
toires décrivant le comportement moyen de nombreux algorithmes.
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ABSTRACT

We informally surbey some uses of the Meuin integral transform
in the contezt of the asymptotic evaluation of combinatorial
sums arising in the analysis of algorithms. :

1. blntroduction

The Mellin transform is an integral transform that is part of the working kit
of analytic number theory where its use is to be traced to Riemann’s famous
memoir on the distribution of primes. Its usefulness in asymptotic analysis
comes from the fact that it relates asymptotic properties of a function
" around 0 and = to the singularities of the transformed function.

We propose here to informally explore the uses of the Mellin transform in
the context of the average case analysis of algorithms. '

Average case analysis of algorithms starts with a counting of certain
combinatorial configurations like permutations, words, trees, finite functions,
distributions etc... One then computes certain weighted averages of the
counting results to determine the expected cost of algorithms. Depending on -
the particular problem under consideration, the counting results are either
obtained explicitly or indirectly accessible through some generating function.
Mellin transform techniques are especially valuable when number-theoretic
functions “(divisor function, functions related to binary representation of
integers) and/or periodicities appear. )

The Mellin transform of a real valued function F(z) defined over [0;+=[ is
the complex function F”(s) of the complex variable s given by: ‘

F*(s) =}F(z)z';1dz 1)
A .

also written sometimes:



F(z) F(z) | 1

T1. e I'(s) O<Re(s)
e %-1 T'(s) ~1<Re(s)<0
e *—1+x . T'(s) - ~2<Re(s)<~-1
e"—1+z—£z—_ I'(s) —3<Re(s)<~-2
1 .
T2. Tiz ncos;:cns. | O<Re(s)<1
T3. log(1+z) 5 si{ms | -1 <3e(s )<0
T4. é(z) Py O0<Re(s)
5. | logzé(z) = O<Re(s)
- I'(s)['(m )
T6. | (1—x)™"18(z) T(ssm) O<Re(s);0<m

Table 1: Some bdbasic transfan'n.s (6(z) is defined by &(z) = =1 if z<1 and 0
otherwise.)

M[F(z):s] or M[F]. 4
The interest of the Mellin transform comes from the combination of two types .
of properties:
P1 Asymptotic properties: under fairly general conditions, one obtains an
asymptotic expansion of F(z) from the singularities of its transform:

F(z)~ ¢ 2 Res(F*(s)z™% ; s=a) (2)

where H is either a left (z -’O) or nght. (z =) half- plane Expansmn (2) is
an asymptotic expansion.

P2 PFunctional properties: somewhat intricate sums often have 81mple-

transforms. An important paradigm is that of harmonic sums. A har-
monic sum is of the form:

F(z) = DA f () ~ (@)

and its transform has, at least formally. the factored form

F(s) = (EM#&’)! (s) | (4)

which is simply the product.of a (generalized) Dz.mhlet series and the
transform of the base function f.

The combination of (2) and (3) allows for derivation of very many asymptotic
expansions. The generality of expansions (2) permits in particular to attack
expressions whose expansions involve non trivial periodicity phenomena
which correspond to poles of the transform function in expansion (2) that
have a non-zero imaginary part. :
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2. Basic properties of the Nellin transform

Let F(z) be piecewise continuous on [0;=] and assume F satisfies:
F(z) = 0(z%) (2-0) ; F(z)=0(z) (z+=)
Then the Mellin transform of F(z) is defined in the strip:
—-a<Re(s )<-p

This strip is called the funda.menta.l strip of F* and is sometimes denoted by
<a;B>. It is empty unless f<a. Thus the Mellin transform of a function 1s only
defined if its order at infinity is smaller the: its order at zero.

Table 1 summarizes some basic transforms while Table 2 describes the
main functional properties of the Mellin transform

F(z) __F(s) .
P1| = F) | [F(z)z*~'dz | definition
0
P2 2 S F"(s)s ds F'(s) inversion th.
1 %44 C-‘- .

P3 |\  F(az) - a~sF'(s) a>0

P4 ZVF(z*) | -;?F‘ ( s—:"») '

Ps | -fz—F(-z) | s —1)F‘(s -1)

lipe F(z)logz TF (s)

P7 - ZAE'.[ (ugz) (CAppi®)f (s) | _harmonic sum

Taele 2: Basic functional properties of th.e Mellin transform.

2.1. Direct properties

‘The characteristic property of Mellin transforms is: local properttes at 0 and
= are reflected by the singularities of the transform function.

Theorem 1: Assume F(z) has the following expansions:
F(z)~ Toiz™  (2-0)
E>0

F(Z) ~ 2 d,,z" (z'—»w) V
k>0

where the a, form an increasing sequence that tends to += and the §, form a
decreasing sequence that tends to —oo.

" Then th.e transform F* (s) of F(z) is meromorphic in the whole camplez plcme
unth simple poles at points —a, and —ﬂk with:

F‘(s) ~ s+

(s»>—ap) ,



F(s)~ ~sar (s==fe) .

Proof: (Sketch) To translate the expansnon at 0, consider the transform
Fi(s) = f F(z)dz .

Formally applying this partial transform to the asymptotic expansion leads to
(see the transform of the § function in Table 1)

Fo(s)~ D —%

E st+o,

Theorem 1 admits a number of extensions: the a, only need to be complex-
numbers whose sequence of real parts tends to +=. Also partial asymptotic
expansions may ‘blse similarly translated: then the transform function is
meromorphic in an extended strip (not necessarily the whole of the complex
plane). Finally generalized expansions of the form c;(logz) for a sequence of
polynorma]s cx(t) may @ be allowed. The meromorphy result still holds but
then F*(s) will have a pole of order deg(c,)-1 at —a, (obvious analogues are
true for expansions at ). . ’
In other words the asympt.otlc behaviour of F at 0 (resp. =) is reflected
by the singularities of F* in a left half-plane (resp. right half-plane) w. r.t. the
fundamental strip.

Another important property of Mellin transforms is their smallness
towards i=. From the Riemann-Lebesgue lemma, one has:

‘Theorem 2: [f F(z) is infinitely differentiable over [0;+=[, then for s in the
Jundamental strip, one has for all m>0-
lim s™F°(s)=0

Iz |

2.2. Inverse properties

One can come back from F* to F by means of the following important inver- v
sion theorem:

Theorem 3: For any real ¢ inside the fundamental strip, one has:
. c+ico :
1 S F'(s)z*ds .
2 c—ies

f'(z) =

This theorem is crucial for proving a converse of Theorem 1, namely:

Theorem 4: Let <—a;—f> be the fundamental strip of F*, and assume that F'
is small towards iw. If F°(s) is merommphu: Jor —LsRe(s )=—a with finitely
many simple poles at -—a1>—a2> - >=L, with residue c; at —a;, then F(z)
admits the asymptotic expansion: ' ‘ B :



s
F(x) ~. Ec,,:c“‘ + O(z")

If F*(s) is meromorphw for -ﬁsRe(s )s—M with ﬁm.tely many szmple poles at
~B1<—B,< - - - <—M, with residue d, at =B, then F(z) adm‘l.ts the asymptotw
expansion: :
C(z)~-Y e,z + 0(z¥) .
k=1

Proof: Start with the inversion theorem to express F(z) and evaluate the
integral by shifting the line of mt.egrat,xon to the left until the lme Re(s) = —L
only taking residues into'account. '

In this way. one obt.ams a form :
—L#ie

F(z) = ERes(F'(s)z s, s——ak) + - S F’(s)z"ds
—L—do

The other result about the expansion of F at += is proved smnlarly by moving
the line of mt.egratxon to the right.

»

~ Observation: The same process can be applied t.o multlple poles and be
extended to cases where F' has infinitely many poles in a finite width strip,
provided F' remains small along some horlzontal lines ‘towards iw=. One -
observes that:

1. A simple pole of the form s = o+iT will give a term in the asympt.ot.xc expan-
sion of F of order
: =t = z—az-i-r = g~ Og~irlogz

Poles of F* farther west contribute smaller terms to the ‘expansion of F
at 0. Poles of F* Jarther east contnbute smaller terms to the expansion
of F at =,
Poles with non-zero imaginary parts carrespcmd to asymptottc fluctua-
tions.
2. A pole of F* of order k at s contnbutes a term of the form (Pg-, bexng a
‘polynomial of degree k—1): : :
P _(logz)z™* .

Or:

Mulhple poles introduce factors tha.t are powers of logz in asymptotic
expansions.

3. Full asymptotlc expansions may or may not be convergent (for sums of
residues in either a left or a right half plane). In most of the cases dealt with
here, they are not convergent, thus only asymptotic.

3. Harmonic sums

Let f be a smoot.h enough funct.lon Then a.sum of the forrn

F(z)-zw(mz) <)
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is called a harmonic sum. Function f is called the bdase function; the
coeflicients A, are the amplitudes and the u; are the frequencies. Applying
the basic functional property of the Mellin transform to (7), we find formally:

F*(s) =w(s)f*(s) | . (8)
where w is the (generalized) Dirichlet series:
w(s) = %:M#-E' *. (9)

The transformed equation (8) is valid inside the intersection of the funda-
mental domain of f~ and of the domain of absolute convergence of w.

A pair of sequences {A;], {u;] is said to be an arithmetic pair iff the series (8)
is meromorphic in the whole complex plane. _

Mellin transform techniques are well suited to the treatment of harmonic
sums associated to arithmetic pairs amplitudes-frequencies when the base
function is smooth (the exponential function in many applications).

‘ From the preceding sections, we see that provided w(s) is not too ill
behaved at i=, the asymptotics of harmonic sums can be easily determined.

Example 1: Harmonic numbers.

Harmonic numbers are particular harmonic sums. The n-th harmonic
number is classically defined by

a1
H,. = E 'E- .
It can be extended to a smooth real function by introducing:

= 1__-1 4
h(z)—-’Eo[F z+k

so that h(n)=F,. The fundamental strip of 2* is <=1;0> and rewriting A (z)
under the form: :

h(z) =T - (H+E5)~

we see that it is a harmonic sum. The Dirichlet series associated to ampli-
tudes and frequencies is:

o(s) = ¥ ()

nz1* N

that is w(s)=¢{(1-s) where ¢ is the classical Riemann zeta function. The
transform of the base function is obtained from Table 1, so that:

. - n - .
A*(s) = =T—¢(1-s) (10)
for —1<Re(s)<0. Thus we can choose ¢=1/2 in the inversion theorem and get:

-1/ 2+ie )

=_1_ L -
h(z) 2”_1,/_{_‘. ———¢(1-s)ds

The asymptotic behaviour of h towards += is obtained by moving the line of
integration to the right. One first encounters a double pole at s=0
corresponding to a logarithmic dominant term and then poles at some of the
integers; whence the classical expansion (the B, are the Bernoulli numbers):



.-7_

, h(z) élogz--f--r.,. _%n__', > (-1)*B, (11)

2n 5 knt

. Example 2: Spectial Fuler-Maclaurin summations.

Assume f (z) is exponentially small towards «, and admits around 0 an expan-
sion of the form: -

f(z)~ Teez™ (12)
where ag=0<a,< - Cons1der the sum: ,
F(z) = Z;)lf(nz) | : (13)

for which an expansion as £ -0 is sought. The transform of F is:
F'(s)=71"(s)¢(s)

for Re(s)>1 From Section 2.1, the poles of f° are at the -a,; ¢(s) has a
unique pole at s=1 with residue 1 so that:

F*(s)~ o 17(1) (s1) 9

thus putting everything together, we find an Euler-Maclaurin-Barnes expan-
sion: '

F(z) ~ %{f(t)dt + 21 (0) + Det(-a)z™.  (19)

Cases where the expansion of f also involves ldgarit.hmic terms can be dealt
with similarly (multiple poles appear that introduce the derivatives of the
zeta function at —a; ), yielding formulae of Gonnet.

Example 3: Powers-of-two sums and periodicities.
Assume here for f the same conditions as in the previous example and con-
sider the sum:

F@) = $1(2*2) ()

20
for which an asymptotic expansion is sought as 0. The transform of F is

for Re(s)>0
F'(s) = I°(s)
1-27¢

It hasa double pole at s=0if f (0)#0 so that we need two terms in the expan-
sion of f° at 0. Wnt.mg

1=t Lo, f(f (@)-7 @) =*taz + ff (2)2* dz

we. see that around O:
. [ (0)
176y = vy, 4 00),

where:

= fU@sO) E+ [1@)E an
[ 1. :
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2ikn

Function F* élso has simple pole'svat; s =), k€Zs {0} with x, =

log2 " as well
as at the points —a;, whence the general expansion as z-+0:
1 _7[ > Cp va.:;, .
F ~—f(0)logzz + 5f(0) + + P(logpaz ) ¢ ¥ 2aL AR R
() ~ s (0)logzz + 51 (0) Tog 2 ( B2 ) Z 1o
with: .
Pu)= s 3 gt (ERemeumsinz, (18)

1082 pez710) log2

Example 4: Perron’s and other number-theoretic formulae

The framework of harmonic sum is also a natural setting for formulae relat-
ing ordinary generating functions to Dirichlet series as well as for Perron’s
formula expressing partial sums of coeflficients of Dirichlet series. This last
formula follows from the application of our methods to sums of the form: |,

F(z) = ¥ Ay6(kz)
ka1

“where function delta is defined in Table 1.

4. Harmonic power sums

We only give brief indications here on the idea underlying the asymptotic
treatment of harmonic power sums referring the reader to M. Regnier's thesis
for a precise statement of theorems, and validity conditions. o :

A harmonic power sumis a sum of the form:
F(z)= AT ()™ . - (19)
kx1

We assume here that f and g are smooth enough functions. From (19), taking
transforms, we see that one has at least formally:

F'(s) = El A% 7, (S) | (20)
where f is the transform: . ‘ .
15(s)=[17(z)z* "t dz . (21)

[

Our treatment concerns cases where the 7, -+%. In that case, it is hatﬁrél to
expect from (21) that the behaviour of the sum F is determined by the
behaviour of (21) as y gets large.

Rewritting (21) in an exponential form, and assuming without loss of gen-
erality that f (0)=1, we should expect

f;(s) = fe’7l°8f(3)zs"ldx .
) o
to be approximable for large 9 by the Laplace method for integrals. If

log f (z) admits around O an asymptotic expansion of the form —c¢ z%+0(z¥),
then one can prove under certain conditions that F* is "approximated” by a



function _ _
wy(s) = —T‘(—)c"’" 2 LV Thet Tl

in the sense that F°(s) ~w,(s) is analytic in a larger strip than F*(s). Whence,
for F an asymptotic expansion of the form: v
F(z)~ T Res(uy(s)z™ ;s=sq) o (22)

80€S
where the sum is extended to poles sg in some strip S of the complex s-plane.

With these techniques one can estimate sums appearing in the analysis
of the Ertendible Hashing algorithm used for storing large files on disk while
maintaining direct access in a dynamic context. For instance, under a Pois-
son model, the expected size of an Extendible Hashing directory formed with
n records is D(n) where:

D(z) = T (1-fp(z27%)?").
k=0

b Lk :
and fy(z)ise™ )} %'— Function D(z) is reducible to a harmonic power sum.
’ k=0 " : : S

" 5. Other methods

We only merxtion‘brieﬁy here two other uses of Mellin techniques:

A. Complex Mellin inversion and singularity analysis of generating func-
tions.

B. The so-called "Rice” formula, actually a classical formula from the cal-
culus of finite differences.

A. 1t is known in many cases ‘that the behaviour of a function around its
(dominant) smgulantws determines the asymptotic behaviour of its
coeflficients. However in most cases (except for some scarce cases of apphca-
tion of Tauberian theorems) an asymptouc expansion of the function around
its singularity in the complez plane is required. For instance it is knovm that
the generating function of the quantity E, representing the total number of
registers to evaluate optimally all binary trees of size n is:

1—u? u?
E’-(z = —
) u ;éi 1—u?

(23)

where:

1-Vi-4z

1+V1-4z ~ S
The singularity of E(z) is at z=1/4, where u~»1 as z-+1/4. The asymptotic
behaviour of (23) when z is in a neighbourhood .of 1/4 in the complex plane

(v in a neighbourhood of 1) determines the asymptotxcs of the E,. Setting
u=e %, the sum in (23) becomes: '

F(z £
©)= L

u =u(z)=

e—zz’

(24)
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typically a harmonic sum. whose transform is:

I'és )¢(s '
. 2% -1 -
The asymptotics of F for z in a complex neighbourhood of 0 can still be
determined by appealmg to complex Mellin inversion formulae, from which"
the asymptotics of E, is found. (See a forthcoming paper of Flajolet and
Prodinger for details).

The method also applies to the analysis of the expected helght of general
planted plane trees and of odd-even merge sorting networks. It allows deriva-
tion of full asymptotic expansions rather easily. .

B. Let a,, be a'sequence of numbers; their Poisson generating function is
defined as:

a(z) = e~* };Joa,.’;'f- o (25)

Many applications réqulre determining asymptotic properties of the a,, from
their Poisson generating function.

One way of proceeding is to consider the Mellin transform. of (25) which
is easily found to involve a Newton sertes:

a’(s) =I(s) 3 a, s(s+1)(s+2) ' - (s +n—1) .

nz0 n:
Thus if everything goes well, a, is nothmg but the n-th difference of
a(s)=a’(s)/T(s): :
ag=a(0) ;: a; =a(0)-a(-1) : a, = a(0)=2a(~1)+a(-2) --- . (27a)

From there, the a, can be recovered by a classical formula from the calculus
of finite differences and the theory of Newton series:

_mn' ra *(s) ds
ey = 21.1!"{ I'(s) s(s +1)(s+2) - - (s+n) _ (27b)

(26) )

for a small contour around points Q,— 1 -2,-3, ---. This method ‘was used by
S.0. Rice as pointed out by Knuth. Ve call it the Poisson-Mellin- Newton cycle.
A similar method is used to analyze digital search trees (see a fort.hcommg
paper of Flajolet and Sedgewick). Notice that Knuth's use of the method is
restricted to cases where an explicit form for the a, has been obtained (by
expanding generating functions) while our approach is more general since it
accounts directly for the shape of the mt.egrand in (27b). (See below an
example of application to "trie sums").

6. Sample applications

We shall rest.nct. ourselves here to presentmg a. few apphcatxons of the above
methods: to carry propagation, to interpolation search, and to trie sums.
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6.1. Interpolation searcﬁ

Interpolation search is a way of searching an ordered table using the value of
the record to be found in order to calculate an address at which it is likely to
be found. It has been shown by several authors that the expected cost of
such a search in a file of size n is logzlogzn + O(1). We propose here to reex-
amine some of the steps of a derivation of that result by Gonnet.

, By a sequence of analytic and probabilistic arguments. Gonnet proves
that the probability that more than k probes are required is majorized by the
quantity:

Pk(t) = H(l-—‘ et

where e~t = ;r%t_ (t =logmn/ 8) Thus the expected number of probes is 1t.self
majorized by the function:

F(t) = EP&(") .
To evaluate F asympt.ot.ncally for small ¢, introduce the infinite product:
Q) = [T1-2e2%

=1
so that F(t) becomes:

F(t) = Z Q(t2™*),

(t) k=0

and the sum is a typical harmonic sum to which methods of Section 2 apply.
One obtains in this way an asymptotic expansion of the form:

' F(t) = Klogat + P(logat) + -+ (t==) ~ (28)
where P is a periodic function whose Fourier coeflicients have simple expres-

sions in terms of the values of @° at points x; = 1;:;

Equation (28) leads to the loglog result for interpolation search since t
increases as logn.

6.2. Carry propagation

The following problem arises in a work by Knuth relative to certain binary
adders. What is the expected length of the longest sequence of (consecutive)
ones in a random 0-1 string of length n?

Let p, : denote the probability that this longest sequence has length k.
- Thenitis known (see Feller’ s book) that:

l_z-t—1zk+1

It is easily seen that p,,(z) has a unique pole of smallest modulus t.hat.
satisfies:

pi(z) = Epu =

pp =1 +27%2 4 0(k27%%)

Numerically tight approximations for “the probabilitieé that also prove
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sufficient for asymptotic analysis are obtained by retaining only the contribu-
tion in p, , coming from the dominant pole. This leads to the approximations:

-n -1
Pni &Pk

~ (1+2-k—2)-ﬂl—l

Using the above approiimation in the expression R, = }}1—p, , representing
: k

the expected length of the longest run of ones in a random binary string of
length n (this use can be justified rigorously), one is led to the approximation
R, ~F(n) where F(z) is a familiar harmonic sum:

F(z) =Y 1~e—=2""
k

to which previously developed methods apply.

6.3. Trie sums

We refer the reader to vol. 3 of Knuth's The Art of Computer Prograinming for
the origin of the problem (see the analysis of radix exchange sort, pp. 131 et
sq. and the analysis of trie searching).

The question is to determine the asymptotic behaviour of a sequence of
numbers {a,] whose exponential generating function Y @,z™/n! satisfies
, n=0
the functional equation:

a(z) = 2e”2a.(-g-) +z(e*-1). | (30)

Given the initial conditions @ag=a; =0, one can solve (30) by iteration and
take coeflicients of the solution from which there results:

a, = nbgo[l—(l—-z-lr)""]. | (31)

One can also notice from (30), that the Poisson generating function b(z) of
the a,, satisfies the simpler equation: ;

b(z) =2b(%) +z(1-e7%), (32)
from which an alternative expression of the a,, follows by identifying

coeflicients.

We propose now a brief exposition of three different approaches to the
asymptotic evaluation of the a,,. ' '

Classical approach based on exponential approximations

This is Knuth's approach following suggestions by De Bruijn. it starts by using
repeatedly the exponential approximation: :

(1—-a)* ne—on | (33)

which in the context of (31) leads to (after somewhat unpleasant real
analysis): '

an =nF(n) +o(n) ; F(z)= 3 [1-e—*2"] (34)
- 20 . _
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Function F(z) béing clearly a’narmomc sum ‘an asympt.otlc expansxon mvolv-'-
ing penodlcmes appears. as usual: . _
' F(z)-logzz +P(logzz)+ cee P f(35)

This method does not seem to allow for derivation of full asymptotxc expan- -
sions, due to the limitations of real analysis met.hods involved in the deriva-
tion of approximation (34)

Direct approach

This consists in observing that the the a,, are simply expressible in terms of a .
harmonic sum; one has a,,ﬂ/n+1 =1+G(n), where Gis gwen by: '

G(z) = 2 [1‘91‘?('#1;2)] ; = log(1-o R (36)
Thus G* (s) = y.(s )1"(s) for -1<Re(s)<0 wuh
o Cu(s) = Tuet. ' ' (37)
To obtain an analytic cOntinuation of u(s), notice that:
w? ud
=1)=$ = 4, =S uw ou- u- -3
(log(l—u),)‘ u (1+z+3+4+ )
-u"’ PN, (s)'u.J .
3&0

Thus using thls expansion in the deﬁmtxon of u, we find the meromorphxc -

approximation of u:

N

uer o) Fr (38)
(convergence is not implied by thls equation; only taking k terms of the sum
will give a function that differs from u(s) by a function analytic for Re(s)<k).

Thus we see that u(s) is meromorphic in the whole of the complex plane,
with singularities that obtain from (38). Hence G(z) admits a full asymptot.xc
expansion of the form:

G(z) =logaz + ¥, Pj(logaz)z™ ' (39)
j=0

where the P; are periodic with period 1 and with Fourier coeflicients expres-
sible in terms of values of the gamma function and the polynomials ;.

The Poisson-Mellin-Newton cycle

One starts there from Equation (32) giving a functional equation for the Pois-
son generating function of the a,; the Mellin transform of b(z) is defined for
—2<Re(s)<—1 and satisfies the the transform equation:

b*(s) =21*5b"(s) —sI(s), ' (40)
so that solving, we get.: ,
' o _sI(s
b (S) = 1—_—2(1—*% . . (41)
From the "cycle” explained above, we see that:
- . ds :
sz“ —pleeyl T _ (42)

(s+1)(s 1—__2)..(5 +n)
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the integrand being gxactl?r b°(s)/I(s) multiplied by the standard weight
function [s(s+1) - - - s(n)]™"; there A is a skinny curve encircling the points
-2,---.,~n. Moving the contour of integration and taking residues into
account leads to closed form expressions and asymptotic expansions of the
a, that have a lot of similarities with Mellin inversion expansions.

7. Conclusion

We have presented here some applications of powerful Mellin transform tech-
niques, trying to show that there are a few well recognizable cases of applica-
tions. ' .
Applications to analysis of algorithms can be found in the following
domains: ‘ : .
Tree parameters: height of trees; register allocation; height of random
walks and analysis of dynamic data structures (stack "histories").
Trie parameters: radix exchange sort; trie searching; digital search
trees; dynamic and extendible hashing; communication protocols.
Carry propagation and binary adders; odd-even merge sorting networks;
interpolation search; longest probe sequence in hashing; probabilistic
counting; approximate counting etc...
We do not have space here for a complete exposition or an even partial
bibliography, for which the reader is referred to a forthcoming paper [1].
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