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- Abstract

A simple queulng system, known as the Fork-Joln queue, Is considered
with baslic performance measure deflned as the delay between the Fork and
Joln dates. Slmple bounds are derived for some of the statistics of this quan-
tity under standard renewal assumptions. These bounds are obtalned, in both -
translent and steady-state reglmes, by stochastically comparing the orlginal
system to two other queuelng systems with a structure simpler than the orlgi-
nal system, yet with ldentlical stablllty characteristics. In steady-state, the
computation reduces to standard GI | GI |1 calculations and the obtalned
approx!matlons thus constitute a first slzlng-up of system performance. The
bounding methodology s of Independent Interest to study varlous other
queueing systems. '

Résumeé

On établit une borne supérieure et une borne inférieure pour chaque
moment du temps de réponse dans une file d'attente "FORK-JOIN". Les hy-
potheses sont celles de processus de rencuvellement et les résultats :
s'appliquent aux régimes transitoire et.stationnaire. La méthode d'ana-
lyse consiste en une comparaison stochastique de cette file avec deux
réseaux de files d'attente a forme produit qui possédent la méme condi-
tion de stabilité, si bien que le calcul de ces bornes se raméne & celui
des caractéristiques de simples files GI/GI/1l. Cette méthode de compa-
raison est d'intérét général pour 1'étude d'autres systémes de files
d'attente. ’ | ' :
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1. INTRODUCTION:

A simple queuelng system, known as the Fork-Join (FJ) queue, Is con-
sidered 1n thls paper. Rouhgly speaking, a K-dimenslonal FJ queue Is a queue-
Ing system operated by K servers working In parallel; each server is attended
by a buffer area of infinite capacity and Individually operates according to the
FIFO disclpline. Customers arrlve Into the system In bulks of slze K and are
processed according to the following disclpline:

Upon arrival, a bulk Is iImmedlately split so that each one of the K cdsto-
mers composing 1t, Is allocated to exactly one server (the so-called Fork
primitive).

As soon as all the K customers constituting a bulk have been serviced,
the bulk Is Immedlately and Instantaneously recomposed (the so-called
Joln primltlve) and leaves the system at once. This synchronization con-
stralnt Is achleved by parking already serviced customers In an auxlllary
buffer of Infinite capacity, where they awalt belng reunited to not yet ser-
viced customers of the same bulk.

Such queuelng models arlse In many application areas, Including flexible
manufacturing and parallel processing (e. g. the cobegin and coend structures
In concurrent languages), with a wide varlety of Interpretations. In the con-
text of productlon systems, a bulk customer can be Interpreted as a
customer’s order with several components, each component or suborder belng
attended by a separate productlon device. An example very simllar to thils one
Is obtalned by consldering the production of multipart items. In computer sys-
tems with a parallel architecture, a bulk customer can be viewed as a program
composed of several subroutines, each one to be executed on a different pro-
cessor.,

For this type of applications, the determination of bulk response time
(defined as the delay between the Fork and the Joln dates) 1s of cruclal Impor-
tance 1n quantifylng system performance. In two dimensions (K =2), the sta-
tlonary distribution of this response time was derived by Flatto [3] under
Markovian assumptions, via uniformization techniques. In more dimenslons
(K > 2), the problem seems to stlll be completely open.

In this paper, simple computable lower and upper bounds are derived for
varlous statistics of this response time, Including 1ts moments. These bounds
have both transient and steady-state verslons, and are obtalned by a direct
stochastic comparison of the FJ queue to two other systems with K parallel
servers, that exhiblt stabllity conditlons ldentical to the one for the FJ queue.
The steady-state bounds are computable In the sense that thelr evaluation
reduces to standard calculations for D | GI |1 and GI | GI |1 systems, respec-
- tlvely Although the results reported here are obtalned under renewal type
assumptlons, they hold for a much wider class of systems; this Is discussed In
a lenghtler verslon of this paper [1].

The paper Is organized as follows: The model for the FJ queue, the nota-
tlon and working assumptions are glven In Sectlon 2. The lower and upper
bounds are derlved In Sections 3 and 4, respectively; the results and some of
thelr consequences are discussed In Section 5.



2. THE MODEL:

The model dlscussed in thls paper Is Introduced In thls sectlon, together
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with the notatlon and the varlous assumptlons enforced throughout.

The model emphaslizes sample path representatlon for the quantities of
Interest and as further developments will demonstrate, thls approach is qulte
frultful in establlshing bounds. To that end, an underlylng probabllity triple
(@, F, P) Is glven on which all the random varlables (RV) mentionned In this
baper are deflned. A posltive Integer K s glven and held fixed hereafter. As-
a conventlon, the k-th component RV of any R¥-valued RV Is denoted by the
same symbol as thls RV but superscripted by k; a slmllar conventlon Is
adopted to denote the components of any vector In R¥. This probabliity tri-
ple (2, F, P) 1s assumed to simultaneously carry an RX -valued RV w,
together with the sequences of RV's {r,,,}¢° and {oa }o° which are R ,- and
RX -valued, respectively. .

In the context of the FJ Queue, these RV's are glven the following
Interpretation: Each one of the K parallel severs composing the system Is
attended by a buffer area of infinite capacity and operates according to the
FIFO discipline. The customers to the system come In bulk of size K. The
sequence {r,,,}¢° represents the bulk Inter-arrival tlmes, 1. e., the customer
bulks arrive Into the system at times {A, }¢°, defined by :

: -1 ’
Ap = Y Th 4 n=1,2,...(2.1)
m =0

with A, := 0. Upon Its arrival in the system, the n-th bulk Is split into 1ts K
constltuting customers; the type k customer of the bulk requlres an amount of
processing time of from the k-th server and Is thus routed directly to the
buffer area of thils k-th server, 1 <k <K. At time t=0, an Initlal load is
already awaltlng service In the varlous buffer areas; the RV Ww* then
represents the amount of time required by the k-th server to clear this Inltlal
load from the k-th queuelng area. .

In order to deflne a reasonable performance measure for the FJ queue,
conslder the sequence of RX -valued RV’s {W,}s° generated by the recurslons .

W:'fl = [Wlk + a: - l+l]+ » 1 S k S K: n=0,1,-.-(2.2)
with W§ = W* |1 <k < K. The RV W} Is the waiting time of the k-th custo-
mer from the n-th bulk and lts response time, denoted by R}, 1s defined by

R=W! + o} 1<k <k ' n=0,1,...(2.3)

Global FIFO is enforced 1n this systqm In the sense that the n-th custo-
mer bulk Is declared serviced tf and only if each one of its K constituting cus-
tomers has been serviced. It Is then natural to deflne the system response
time for the n-th customer bulk as the RV T. given by _

To = Jax R.. n==0,1,...(2.4) -

In this paper, the task of evaluating varlous statistics of system response
time 1s taken on, be It In transient or In steady state. The discusslon Is con-
ducted under the following basic assumptions.



(A1l): The RV W and the sequences of RV's {ra +1}¢° and {o, }& are mutu-
ally Independent.

~ (A2): The RV's {r,,,} form a finlte mean renewal sequence with com-
mon probability distribution function A (s).

(A3): The sequences {0}, 1<k <K, are mutually Independent
sequences.

(A4): The sequence {a,f o’ 1s a flnlte mean renewal sequence, with com-
mon probabllity distribution By (s),1 < k¥ < K. ' '

Most of the results reported here can be obtalned under a much weaker
set of assumptlons, as shown In [1]. To fix the notation, the arrlval rate ) and
the service rates u,, 1 < k < K, are defined as usual by

~

..;_ = Elray] = [tdA(2), ' (2.5)
A |

and

’

7‘- =Efo} = [tdB,(t), 1 < k < K. (2.8)
k /]

Under the assumptlons (A1)-(A4), the queuelng system assoclated with a
processor operates llke a standard GI | GI | 1 queuelng system. However, these:
K GI'|GI'|1 systems are not Independent In general since they have identical
Inputs. It Is this very lack of Independence that makes the computation of the
statistics of the RV's {T, }s° extremely hard, not to say Impossible.

In view of these difficulties, It seems relevant to seek ways of generating
bounds and approzimations to the varlous statistics {T.}s°. The present paper
s devoted to the derlvation of simple computable bounds through direct
bounding arguments that explicitly, and in a crucial way, explolt the sample
path nature of the recursions (2.2).

At this polnt, it Is appropriate to observe that the stabllity condition for
the FJ queue can be easlly obtalned from standard results on GJ | GI |1
- queues. Here, stabllity 1s understood as the convergence in distribution of the
sequence of RV's {W, }¢* to a proper R¥ -valued RV, independently of the ini-
tial condition W, and Is equlvalent to the existence of a RX -valued RV W,
defined on the sample space 3 with the property that

UImP[Wi<z* 1<k <K | W =P[Wh <z*,1 <k <K] (2.7)
R =00
for every z In RX point of continulty for the probabllity distribution of W,,.
Of course, If (2.7) holds, then necessarily :
lim P[R{<z*1 <k <K | W] =P[R, <z* 1<k < K] (2.8)
% =00
for every z In a dense subset of R% , with R :=W* + ot 1 <k < K. By

virtue of (2.4), this last remark readlly ylelds that for all z In a dense subset
of R ,, ‘

lm P [T, <z | W]=P[Ty<z] | (2.9)

with T, := | Jnax KR;, . Moreover, under additional finlteness conditions on



second moments, 1t can be shown [1] that | _

Proposition 2.1. Under the assu’mptiohs (A1)-(A4), the FJ queue is stable if |
and only if ‘ _

pi= ;i”é (P <L : o (2.11)
where '
pr = ;‘—k—‘, 1<k <K \ ‘ - (2.12)

The Intultion behind the result Is that the FJ queue Is stable 1ff each
queue In Isolatlon Is stable. A formal proof Is avallable 1n [1] where 1t is shown
that the k-th component of W, can be obtalned as the a.s. llmit of the
Loynes sequence [8] assoclated with the k-th GI | GI |1 queue generated by
wk ATas1}e® and {a:}ow- _ : . : .

The next two sectlons are devoted to the derivation of lower and- upper
bounds on system response time statlstics. The key 1dea Is to construct two
queuelng systems that In the sense of some stochastic ordering, bound the orl-
ginal system, from above and from below, respectively and that are more
tractable analytically than the original system. The approach Is mottvated by
the ldea that Increased varlablity In some of the stochastic components of a
queuelng system should results In a greater varlablllty of the walting times.
Many results in that veln have appeared In the litterature and the reader s
refered to the work of Stoyan [8] and WHhitt [9] for an Introduction to this
topic. .



3. ALOWER BOUND:

The discusslon glven In this sectlon finds its origin In a folk theorem of
Queuelng Theory stating that determinism minimizes waiting times in many
queuelng systems. For G | G |1 queues, such results have been established
under a varlety of assumptions by a number of authors, Including Hajek [4],
Humblet [5] and Rogozin [7], to name a few. ‘

Here, following this 1dea amounts to constructing a new FJ queuelng sys-
tem from the orlglnal one that 1s of the same type but has a determinsstic
Input stream. More precisely, on the same probabllity triple (0,F.P), a second
FJ queuelng system Is generated that has same Initial system load W and
same service time sequences {0}, 1 < k < K, as the original FJ queuelng
_system, but with deterministic Inter-arrival time sequence {z,,,}&. For this
last sequence to be a renewal sequence, as speclfied by (A2), It Is necessary to
have

 Lap = % n=o0,1,...(3.1)

The walting times for this new FJ queuelng system can be grouped into
K sequences {W}*}& of R ,-valued RV's which are obtalned through the recur-
slons

Wi =W} + o} - )% 1Sk <K, n=0,1,...(3.2)
with Wi = W', 1 <k < K. In analogy with (2.3)-(2.4), the corresponding

response times {Rf}&, 1 < k < K, and {Z. }o° are then defined simply by

Bi=W!+o}, 1<k <K n=0,1,...(3.3)
and
I, = mx B n=0,1,...(3.4)

It 1s noteworthy that the FJ queue with determinlistic Inter-arrival stream
(3.1) Is stable Iff the original FJ queue Is stable; Indeed, according to Proposl-
tlon 2.1, stabllity Is completely characterized by the coefliclent p wWhich coln-
cldes for such systems owlng to (3.1). The next proposition contains the key
comparison result for generating lower bounds to the system response tlme
statistics.

Theorem 3.1. Let § be the o-field of events generated on the sample space 0
by the RV’s W and {o,}s°. Under the enforced assumptions (A1)-(A4), the
tnequalities »

W<EW}!|S).1<k LK, n=0,1,...(3.5)
and '
+<ER}NS)1ZKkLK, n=0,1,...(3.6)
hold, whence A
I, <E[T, |8]. n=0,1,...(3.7)



The arguments glving these results are simple and use In a dlrect way the
sample path recursions (2.2)-(2.3) and (3.2)-(3.3), together with Jensen's Ine-
quallty applled to the conver monotone . non-decreasing function
R—-R:z o2+, ' : ~ '

Proof: The proof proceeds by Inductlon. First fix &, 1 <k < K. Since the
RV W* Is $-measurable, (3.5) 1s obvlously true owlng to the fact that in both

FJ systems, the inltlal loads at the k-th server, and thus the Initial clearing

times, are 1dentical and equal to W*.

Take as Inductlon hypothesls that (3.5) holds true for some n — m >o.
Now, for such m, Jensen’s Inequallty glves

EWaiy |SIZEIWE|S] + 0k - Elrn,, | S)* (3.8)

since the RV o, 1s $-measurable. Moreover, assumption (A1) Immediately
lmplles that .

Ery 4 |§] = E [ty ] = ';‘— Il=.0,1,...(3.9)

Substltution of (3.9) into (3.8) and use of the Inductlon hypothesis eaélly yleld
that ,
1. : -
E[W£+1 |81 > Ws + om - Y] * ="_Vy:+1- (3.10)
where the last equallty follows from (3.2). This shows that (3.5) holds for
n = m+1 and slnce 1t holds for n = o, It holds by Inductlon for all n 2o

The lnequalitles (3.8) are now easy consequences of (3.5), and of the
deflning relations (2.3) and (3.3), together with the S-measurabllity of the ser-
vice tlmes. To get (3.7), observe that

E(T.|8)2 mex EIR!|S). n=0,1,...(3.11)

<

by standard propertles of conditlonal expectations. The first part of the proof
and the defining relation (3.4) now Imply that :

E(T,|512 max B'=T, n=01,..(3.12)

and (3.7) thus readlly follows. e

The following corollary Is an easy qoﬁseQuence of Theorem 3.1. and of

Jensen's Inequallty.

Corollary 3.2. Under the enforced assumptions (A1)-(A4), the inequalities
| E(TL,] < E[T,]. n=0,1,...(3.13)
hold, more generally, for any convex monotone non-decreasing mapping
R = R:z — ¢(z), ‘
E$(Z.) < EY(T,)] n=0,1,...(3.14)
whenever E(T,] < oo and E[| §(T,)|] < oo. '

. The bounds (3.13) and (3.14) are essentlally transient In nature; as they
- stand, these bounds would be of limited Interest If 1t were not for the fact
-that they easlly carry over to steady-state and that In that form they are



computable. To see thls, observe that In the FJ queue with deterministic
arrlval stream (and In that case only !), the K processors operate llke K
independent D | GI |1 queuelng systems. As a result, the K sequences of walt-
Ing times {W}!}*, 1 < k <K, are mutually independent (glven W), and <> are
the sequences of response times {BX} 1 <k < K. Hence, for all z In a dense
subset of R ,, the definlng relation (3.4) readlly Implies that

X |
PiLw <z | W)= nPR!<z|W) n=0,1,...(3.15)

owling to the enforced Independence assumptlons and therefore
0o K
ElL)=[|-E(0 PR} <z | Wn]dz. n=0,1,...(3.18)
° =

When p < 1, the FJ queue with deterministic arrlvals Is also stable and
the convergences (2.7)-(2.9) apply. It thus follows from (3.15) that for all z 1n
a dense subset of R ,,

K
PlIw<z]=lUmP|[, <z | Wi=TPR: <z] (3.17)

(with the notatlon Introduced at the end of the previous section) and conse-

quently .

PRG <z]=1umPRF< 2 | W)= [PW! < z-0]dB, (o) (3.18)
. =00 o

for all 1 < k¥ < K. Under additlonal finiteness conditions on second moments,
the convergence (2.10) takes the form

00

Efo)= UmE[T,]= [ [1-,'5]13 RY < z]]dz. (3.19)
B 00 0 -—

»



4. AN UPPER BOUND:-

In this sectlon, upper bounds to the response time statlistics are esta-
blished under an addltional assumptlion on the arrlval stream {r, ,,}s°, namely,

A(5): The RV's {r,.,}¢° are divisible ,gn the sense that the representation
Ta+1 = E Tn+1 . n=0,1,...(4.1) .
k—l :

holds, where the sequences of RVs {r,,,,l o1 <k <K, form mutually
Independent renewal sequences with common probablllty distributlon A (o).

In the language of Laplace transforms, thils concept of dlvisiblilty Is
equlvalent to the exlstence of a probabllity distributlon A () on R , such that

At ()= 1A (N - (4.2)

with the superscript * denoting the corresponding Laplace transform. A typi-
cal example of such divisible distributions Is glven by the class of K-stage
Erlangian distributions. Observe that the renewal assumption Imposed on.the
sequences {7F,.}&. 1 < k' < K, necessarlly Implles that

Bl =EFfa] = 5. 1<k <K n=0,1,...(4.3)

The baslc 1dea of this sectlon Is to used the representation (4.1) to con-
struct on the same probablility triple (Q,F,P) a new queuelng system composed
. of K parallel GI |'GI |1 queues. In this new system, the k-th queue has an inl-

tial system load W* and service times sequences {a ® 1dentlcal to the ones It

Vhad in the original FJ queue, but with lnter—arrl_val time sequences
{7, )&, 1 <k < K. The key feature of this new system Is that arrivals are
"not synchronlzed anymore; in particular, arrivals Into the k-th queue take
place at times {Af}¢° defined by

E T 415 - n=1,2,...(4.4)

wlt,hAo——01<k<K

The walting times for the k-th queue In thls new system form a sequence
{Ws}s® of R ,-valued RV's which are given by the recurslons

W:-«H [W: +“7: - n-n] , : D=0,1,...(4.5).

with W! = w*, 1 <k < K. As usual, the corresponding response times
{R5}¢°. 1 < k < K/, are then deflned simply by

RE=W! + o}, 1<k <K : n=0,1,...(4.6)

Now, In analogy with (2.4), define the global system response time
sequence {T, }¢° by

| T. = max Ry n==0,1,...(4.7)

For this parallel system to be stable, 1t Is necessary and sufficlent that all

components be stable; 1t then follows from standard GI | GI' |1 theory (and
from (4.2)) that this happens if and only If p <1, 1. e.,, the same stabllity
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condition as for the FJ queue! The next proposition contains the key com-
parlson result for generatilng lower bounds to the system response time statis-
tlcs.

Theorem 4.1. Let § be the o-field of events geherated on the sample space 0
by the RV's W and {(o, .74 11)}s°.Under the enforced assumptions (A1)-(A5), the
inequalities :

We < EWS|8], 1<k <K, n=0,1,...(4.8)

and v v
RF<E[R}S). 1<k <K, n=0,1,...(4.9)
hold, whence ,
T, <E[T, |5). n==0,1,...(4.10)

These ’results are established by arguments very simllar to the ones glv-
Ing Theorem 3.1 when comblned to the followlng fact.

Theorem 4.2. Under the enforced assumptions (A1)-(A5), the following
wdentity .

EfiulSi=rm1<k <K n=0,1,...(4.11)
holds.

Proof of Theorem 4.2: First, observe that
EFu|SI=Efu|nal. 1<k <K n=0,1,...(4.12)

owing to the independence assumptions contalned In (A.1) and (A.5). More-
over, for each n=0,1,.., the RV's {7},,},X are 1..d. and the joInt probabllity
distributlon of the palrs of RV's7),, and r,,,,1 < k < K are thus independent
of k. Consequently, ’

Efin|tanl= " = E[?DK-H | 7o 4] n=0,1,...(4.13)
and therefore
Tat1 = E[Tayy | Tnsil , (4.14)
1 K_[ .
=E [?Efn-n | 7a 4] (4.15)
=1
=Efnlfnl 1<k <K, (4.16)

by elementary arguments. This completes the proof of (4.11).

Proof of Theorem 4.1: The proof proceeds by Induction. First fix
k,1 <k <K. Since the RV W* Is S-measurable, (4.8) Is obviously true
owing to the fact that the Initial loads at the k-th processor, and thus the inl-
tlal clearing times, are identical and equal to W* In both systems.

Take as Induction hypothesis that (4.8) holds true for some n = m >o0.
Now, for such m, Jensen's lnequallty glves
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E\Wn, |512 (E(Wr |5) + ot - EF,, 15" (417)

Slnce the RV o, Is S-measurable. Owing to Theorem 4.2., this inequality
takes the form ' ' .

EWan |S12 E(W|5) + 0k - 10" - (4.18)
and the Inductlon hypothesls now éaslly ylields _
| E(We |512WE + af = 1pp]* = Wk, (4.19)

where the last equallty follows from (4.5). This shows that (4.8) holds for
n- = m+1 and since 1t holds for n = o, 1t holds by Inductlion for all n 2 0.

- The second part of the proof Is now ldentical to the second part of the

proof of Theorem 3.1; detalls are omltted for sake of brevity.
The followlng corollary Is now easlly thalned from Theorem 4.1.

Corollary 4.3. Under the enforced assumptions (A1)-(A5), the inequalities

E(T,) < E(T,]. n=0,1,...(4.20)

hold,; more generally, for any convezx monotone non-decreasing mapping
&R - R:z > ¢(z), ‘ '

E[4(T.)] < E(H(T,)] , n=o0,1,...(4.21)
whenever E(T,] < oo and E[| §(T,) |] < oo.

Agaln, as In the previous sectlon, these bounds obtalned on varlous
statlstlcs of the system response times are essentlally transtent In nature but
readlly carry over to steady-state by the usual llmiting arguments. This would
be of limlted Interest If 1t were not for the fact that thelr steady-state verslons
are more easily computable than the original quantities. Indeed, the K paral-
lel GI' | GI' |1 queues with asynchronous arrlvals that compose thls system,
operate independently of each other. Therefore, the K sequences of waltlng
times {W}}®, 1 <k < K, are mutually independent (given W), and so are the
sequences ‘of response times {R:}o°°, 1.< k < K. Hence, by the same reasoning
as the one glven at the end of the previous section, 1t follows from (4.7) that
forallz nR ,, .

—— K — )
PIT, <z |W]= I PIRF<z|W), n=0,1,...(4.22)
=1
and

E[T,)= [ -E [fl PRF< 2 qu]dz. n==0,1,...(4.23)
0 =1

When p <1, It 1s easy to see from (4.22) (é,nd standard results on
GI | GI'|1 [2] ) that for all z In a dense subset of R , , ’

- K o
P{To<z]= 1mP[T, 5:|W]=‘HP[R§° <1z} (4.24) -
8 —$00 . =]

where
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. .
PRy < 2)=mP[R{ <z | W] = [P[W < 2-0)dB, (o) (4.25)
: (1]

for all 1 £ k¥ < K. Here the RV’s W’o‘o. 1 < k <K are defined \vla the appropri-
ate version (2.7) and Ri = W% + o},1 <k <K. Agaln, under additional
finlteness condlditlons on second moments, the relations

[« ]

= = K _
E[Ty = “IE?”E[T.] = [ [1-"1111’[}2;, < z]]dz (4.26)
o -

are obtalned.

»



[

. addressed In some detalls In [1].
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5. DISCUSSION AND CONCLUSIONS:

Both bounding systems introduced In the previous sectlons have a stabli-
Ity behavlor identical to the original FJ queue, a highly desirable property
when generating approxlmations. In all three systems, Stablllty is obtalned 1If
and only iIf p < 1,.as explalned in previous sectlons. : Co ‘

Under the assumptions (A1)-(A5), the translent bounds ,
| “E|L] S ET.) < E(T,] " n=0,1,...(5.1)

are readlly obtalnéd by combining (3.13) and (4.20). Now. if the origlnal FJ -
queue Is stable and addlitlonal finitness assumptlons are made on second.

moments, then the convergence : » ‘
lim E(T,] < lim E[T,] £ lim E [Tn 1 : -(5,2)
n 400 - T A—00 8 =00 )

‘takes place owlng to (2.10), (3.19) and (4.26), with ’ ,
Ello) SE[Tw S E(Ty" . n=0,1,...(5.3)

In the llmlt. As polnted out In Sectlons 3 and 4, the quantities E(T,) and -
E[Ty] can in princlple be evaluated through calculations on ‘Independent

GI | GI | 1 systems. The tightness of the bounds (5.3) will be reported in [1].

More Interesting 1s the following observation: The rate at which {E [T, }}&
and {E(T,]}s° converge to E[T,] and E|(T,], respectively, can: be obtalned

~ from corresponding rate of convergence results for GI | GI |1 systems. - This
fact and the chaln of Inequalltles (5.3) provide an easy way to obtaln Informa-

tlon on the rate of convergence of {E[T,)}¢® to E {T,). This question s

Flnaily, it Is hoteworthy that the corollarles 3.2 and 4.3 are really state-

‘ments on the stochastic ordering between response tlmes, as understood. by

Stoyan [8], Whitt [9] and many other authors. More precisely, let X and Y be
any two R ,-valued RV's defined on n1. The (distribution of the) RV X is sald
to be greater than the (distribution of the) RV Y In the. stochastic convex
increasing order \ff :

E[¢(Y) < E[¢(X) : (5.4)

_ for any convex monotone non-increasing mapping ¢:R . —R for which (5.4)

makes sense; thls 1s denoted In short by X <, Y. With this notatlon, corol-
larles 3.2 and 4.3 can be restated stmply as saylng that

Iu'Su‘ Tu Sa‘ Tu -A ' ) n=0,1,...(5.5)
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