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RESUME

Les relations existant entre une famille géné&rale de schémas nodaux intro-
duite récemment (J.P. Hennart, SIAM J. on Scientific and Statistical Computing,
3 paraitre) et les formulations en &léments finis mixtes Hybrides étudiées par
D.N. Arnold et F. Brezzi (RAIRO - Numerical Analysis, & paraitre) sont explo-
rées dans cet article : on montre en particulier que les schémas nodaux proposés
sont les extensions les plus naturelles en géométrie rectangulaire des €léments
finis mixtes—hybrides de Raviart-Thomas-Nédélec, et qu'ils sont de plus en
relation directe avec les schémas aux différences finis de type bloc-centrés,

fournissant ainsi incidemment une classe utile de. préconditionneurs.

ABSTRACT

The relationship between a general family of nodal schemes introduced
recently (J:P. Hennart, SIAM J. on Scientific and Statistical Computing. To
Appear) and mixed-hybrid finite element formulations as studied by D.N. Arnold
and F. Brezzi (RAIRO - Numerical Analysis. To Appear) are explored in this paper
it is shown in particular that the nodal schemes proposed are the most natural
extensions in rectangular geometry of the Raviart-Thomas-Nédélec mixed-hybrid .
finite elements, and that they are moreover directly related to block-centered
finite differences schemes, providing incidentally a potentially usefull class

of preconditioners.

MOTS~CLES

Eléments finis ~ Différences finies - M&thodes nodales .

KEY WORDS

Finite elements - Finite differences - Nodal methods.



1. INTRODUCTION

Modern coarse-mesh or nodal methods were developed in the
1970's in numerical nuclear reactor caléulatioh. (See for
instance the recent review paper by J. Dorningl). Roughly
speaking, nodalbmethods are fast and accurate methods which
try fo combine the attractive features of the finite differ-
ence method (f.d.m.) and of the finite element method (f.e.m.).
From the f.e.m., they borrow a piecewise continuous, usually
polynomial, behavior over a. given coarse mesh. With the f.d.m.,
they have in.common the fact that the final algebraic systems

are usually quite sparse and well structured, at least over

domains not too irregular like unions of rectangles: in the

same situation, classical conforming finite elements would
typically lead to much more coupled systems of equations. Nodal
methods can thus be viewed as fast solvers, amenable‘to recent
techniques of vectorization and (or) parallelism. They are
specially suited to all physical situations which have been
traditionally modelled by finite differences, and for which
the domain as well as the coefficients of the equation are

not known with sufficient accuracy: it is then t;mpting to
use a regular rectangular grid to discretize the domain and

to assume that over each "bldck", "cell",'hnode" or "element"
of the grid the physical parameters are not known with great
accuracy, Sso thaﬁ a constant or méan value only 1is available.
This situation is prevailing for instance in groundwater
hydrology, 0il reservoir simulation, air pollution modelling

problems, etc.



In the reservoir simulation field for instance, where the
industrial simulators are almost exclusively based on the
f.d.m. over rectangular grids, it would be quite attractive
to develop fast, accurate and mathematically well-founded
nodal schemes over such grids, especially for three-dimensional
situations. Recently?, we analyzed some early‘nodal scheﬁes
and related them to nonstandard nonconforming finite element
schemes. We also explained why ;hesevsimplest original schemes
are not quite satisfactory, in the sense that‘they do not climb

3

correctly in degree. This was corrected later when a new and

more general family of nodal schemes was introduced, which do

not exhibit that defect. General considerations typical of the

3

analysis of nonconforming schemes led us to the conclusion

that the nodal scheme of type (k) for some index k€N should

: k+2

exhibit errors in norm L of 0(h ), as numerical experiments
2

did confirm ?. The corresponding error estimates will be proved

here rigorously in a somewhat indirect way.

Most of the experimental computer codes which tried during

the last few years to convince the petroleum engineers of the

536 are based

merits of finite elements in reservoir simulation
on the mixed finite eleﬁent formulation. In such a formulation,
the unknown function (here the‘pressure p) and its current (the
corresponding Darcy velocity v) are computed simultaﬁeously

~

without differentiation of p and multiplication by a rough



coefficient. This is particularly suitable; since énly the
velocity and not the pressure appears in the concentration
(resp. saturation) eduations, if the displacement considered
is miscible (resp. immiscible). Moreover the velocity field
varies more slowly in time and space than either the pressure
or the concentration (resp. eaturation) fields, and is there
fore the correct variable to pick up. The trouble wifh the
mixed formulation is that it generaily ieads to indefinite
algebraic systems. As discussed in a recenf paper by Arnold

7, a standard way to remcve this difficulty

and Brezzi
consists of using aﬁmixed—hybrid formulation, wheréby the
interelement continuity is imposed through the use of
Lagfange multipliers. The resulting systems are positive
definite. Arnold and Brezzi show moreover that the computed
multipliers can be used in an elementwise postprocessing

operation, which enhances the accuracy of the original ap-

proximation.

In Section 2, we shall introduce some notations and recall
the general familylof nodal schemes we introduced earlier 3,
presenting it as a nonconforming f.e.m.ﬂ In Section 3, the
mixed and mixed-hybrid formulations are introduced. For
rectangular meshes, a set of basis functions is given, which

turns out to be particularly convenient when later it is

proved that the nodal schemes introduced in Section 2 can be



obtained through the postprocessing operation mentioned earlier,

8,9

if the Raviart-Thomas-Néd&lec spaces are used in the mixed-

hybrid formulation. As in Arnold and ﬁrezzi 7, this fact is
exploited to provide error estimates in Section 4. In.SeCtion
5, this mixed-hybrid formulation with podtpiocessing is com-
pared with the original nonconforming one in the rectanguiar
case and some details of implementation are discussed. Final-
ly, Section 6 explores the relationship between thé nodal

schemes of Section 2 and block-~centered finite difference

schemes.

It is fair to say that mosﬁ of the technical details are
adapted from the excellent paper by Arnold and Brezzi ', which
~-was restricted to the friangular case. In this paper, the
emphasis is on the rectangular case, where it turmns out that

the extensions proposed by Arnold and Brezzi ’

of the mixed-
hybrid approximations within the Raviart—Thqmas—Nédélec spaces
are directly related to the nodal schemes we introduced 3.
Realizing it leads us easily to error estimates and also to

an implementation which is intrinsically easier and more

robust than the original one.

In the following sections, we shall restrict ourselves to

the typical second order elliptic equation



Lu:= —div(gvgrad_u)+bu=f on QCR? , (l.la)

subject to homogeneous Dirichlet boundary conditions

u=20 on T R ‘ (1.1b)

‘where I'=Q-Q. In (l.1la), the diffusion tensor a is a two by two
matrix-valued function on Q assumed to be positive definite,

i.e. there exists @>0 such that

Y | o
T oa . (x)E.E.> allgll? , vy x€Q & y (ER? . (1.2)
i,j=1 3~ 13 ~ ~ . ~ -

We shall denote by ¢ the inverse of the diffusion tensor:

no
]
e

-1 . (1.3)

Finally £ and b are given functions in.Lz(Q), b being moreover
nonnegative. In the following, we shall always assume thaf
the coefficients of the equations and g in particular are
sufficiently smooth to ensure that u has enough reguléfity,
depending on the particular context considered. -A last
function we shall often use is the flux p associated to u,

~

némely

p := - a grad u. . (1.4)



The classical primal variational formulation of ﬁroblem (i.l)

consists in finding u€v é-H;(Q) such that
a(u,v) = £(v) , WYvEV , - (l.5a)

where a(°;°) and f(+¢) are the following bilinear and linear

forms .
"2
a(u,v) = J (i_ilaji Qiuajv + buv)dx , (1.5b)
0 sJ
and

f(v) = j fvdx. . (1.5¢)
Jo o

A conforming approximation of u is obtained by looking for u

€v, C '-H;(sz) with dim V, <= such that

a(uh,vh) = f(vh) f VvaVh . (1.6)



1

2. .NODAL,SCHEMES‘ASVNONCONFORMING FINITE ELEMENTS

For the sake of simﬁlicity, we shall conéider a domain QCRf
which is of the type "union of rectangigs", in other words it
can bé discrétized exactly by a réctangular grid Rh with cells C
whose boundary 3dC consists of four edges denoted especifically
by L, R, B and T (for Left, Right, Eottom and zop), or by E
generically. Each particular cell will be referred by.a unique
invertible affine ﬁapping to the reference cell EE[—1,+1]X[-1,+1],
which we will not distinguish from C when no confusion is possi-
ble. |
The general family of nodal schemesnintroduced earlier 3 is

in fact a family of nonconforming elements in H!' (Q) defined by:

K a domain which will always be in our case a rectangular
A

cell C or rather its affine equivalent square cell C;
S a space of polynomials p on K of dimension N;

D a set of N degrees of freedom which are linear func-

tionals £ acting on S.

A finite element of this family is said to be unisolvent if

K(p5= 0 , wyi€Dd and PES = p = O . (2.1)



Let us introduce the following elementary spaces of poly-

nomials:

9% l(xyz{x*yI,0<i<k , 0<j<1} on <k , (2.2a)
ok my= k) | : (2.2b)
- and
k - i j <. s < ‘ ' p
P (R)E{x"y’ , 0<i+j<k} ~on K s (2.2¢)

as well as the linear forms associated to the cell C

- méj(u) = J Pi(X)Pj (Y)U(st)dxdy/Ni'Nj ’
; C

i,j€EN , yu€L®(Cc) ~(2.3a)

and to its faces L, R, B and T

i,y S
mL(u) = IL Pi(y)u(—l,y)dy/Ni 3
i, ’ .
i .
mB(u) = fg Pi(x)u(x,-l)dx/Ni ,
- i _
and mT(u) = f Pi(x)u(x,+l)dx/Ni .
T
| +1
where Ni=2/(2i+l)= f P;dx is a convenient normalization

factor while Pi is the normalized Legendre polynomial over [ -1,+1]



For a nodal scheme of type (k), kEN

on K

s = N5(R)y:= Qk+2,kUQ§,k+2

dim N¥ = (k+1) (k+5) , (2.4a)

D=DNk(K):= {mihﬁg,miﬁﬁg,mé@ﬁg,m;(uh)_, i=0,...,k 3
mid ) 5 1,350,005k} om K,

card DNk = (k+1) (k+5) . (2,4b)

“.
It has been shown ° that the finite elements of this family are
unisolvent for any k: this was done by exhibiting the correspon

A

ding basis functions. Thanks to the choice of C as a reference
element and to the use of normalized Legéndre polynomials,

these basis functions can be expressed in an especially simple

3

and compact form, which was given’in one, two and three dimen-

sions, as well as in the case where different degrees of ap-
proximation are considered in the different directions. We
refer the interested readers to Ref. 3,‘Section 3 and

Appendices A, B and C for more details. Here, for the sake
of simplicity, we shall only recall the basis functions for

the 2D case. Corresponding to the degrees of freedom m;, m;,
nr ms and m-J of u

g’ U c h’ we have the following basis functions



1o.

— -

dey =5 D L @ @ e, 10,0k, (2.52)

ui(x,y) =-% Pk+1(x)+Pk+2(x) Pi(y) . i=0,.;.,k‘ . (2.5b)

e,y =3 DM e @ [Pk+l(y)—Pk+2(y)J , 420,000k, (2.5¢)

u%(x,y)' =—;— Pi(’f) [Pk+1(y)+Pk+2(y) oy i=0,...,k '(‘2.5d)
and

ij - -

ug (x,y)—Pi(X)Pj (y) - Pk+1(i) (X)Pj(y) P_i(X)Pk+1(j)(y) R

1,3=0,...,k . , 1 (2.56)

where 1(i) (resp. 1(j))=1 or 2 and is such that i and k+1(i)

(resp. j and k+41(j)) have the same parity.

Let us define

u

k . 2 ek
NS (R = suh hS L@, uy | VIO, rERy

i .
the moments m . ] i=0,...,k are

i
L T’

continuous across the interfaces

between different cells and are 0

on boundary edges . (2.6)




11.

The elements of this space are nodal functions of type (k),

which are clearly nonconforming in H' (Q), since only their

moments are continuous at interelement boundaries but not
the function itself (whence the subscript -1). On the other
hand, the moment continuity conditions ensure that the

10511

"satch test" is passed at its lowest order for any k

and that a super patch test is passed if k>0

Let us mention fimally that

"k+2-6ko K . :
P CN y v KEN 8 (2.7)

where Sk is the usual Kronecker symbol.
0

Since Vh:=Nk1(Rh) (A AH:(Q), a nonconforming approximation

uy of u based on the primal variational formulation (1.5) is

now obtained by slightly modifying (1.6), namely we look for

u, €Vv. ¢ H! (R) such that
h h 0
ah(uh,vh) = f(vh) s v thVh S (2.8a)
where
2 .
a, (u,v) = 2 J ( ¥ a,,0.ud . v+buv)dx . : (2.8b)
h c i3=1 31 13

C



In the following this approximation of u will be referred to

as the mathematical nodal method (m.n.m.) of index k.

To each m.n.m. corresponds a é.n.m. (for physical nodal
method) which is obtained from the same Vh as abéve, but
where the final algebraic equations are derived from physical
considerations; namely, one expresses that weighted balance
equations are sAatisfied over the cell for all wéizhts
w(x,y)fok(K) ((k+1)? equations) and that the ﬁean values
and moments up to order k of the normal fluxes Pp are contin-
uous through the faces of the nodes (4(k+1) equationsj, the
mean values and moments of uy bei;g already continuous by
construction. In Ref. 3, we proved that the p.n.m. of index k
was in fact a m.n.m. of the same index where the matrix ele-
ments are calculated in an approximate way by using a numer-
ical quadrature of the Radau type 4n a nonstandard way. 1In
view of the importance in the next sectiohs of these arguments,
we shall repeat them here. fixst of all, we should clarify

what we mean by nonstandard Radau quadrature: for a given

index k€N, the Radau quadrature points x

R are thé (k+2) zeros

of (x)xP (x) including x=¥1. In 2D, a product Radau

P42 K+1

quadrature would be exact for polynomials belonging to Ql
where 1=2k+2, and would in particular integrate exactly the
stiffness matrix, provided a is piecewise constant. For mass

matrices, each time an edge basis function appears like Ups

12,



13.

where E=L,R,B or T, the opposite Radau qua‘dr_ature points should be '

used, namely xR, xi, Y§ and. yg, so that the elementary mass
matrix only has nonzero entries for the cell moment elements

kil
c

inherent to the Radau rules is restored by using“tﬁe relation-

like (uéJ,u ). For these matrix éleménts;Athé asymmetry -

ship
PLGOP (y)EP) (x,7)=(=1)Tu] (x,y) + uR(x,y)
+ DPupGoy) Fupey)

I

+ uém(x,y) . 1L,m=0,...,k , (2.9)

so that with Radau quadrature points

(uid gkl 4

yusty=(p..,p, )= §..6.. (2.10)
C c 1j ‘kl (24i+1) (25+1) ik j1
since the Radau rule is correct for xayB, a,f <2k+2. 1In

the case k=0 for instance, the Radau quadrature leads to

(u°°,u%° = 4.0 . (2.11)

C

and not to 5.6 as analytical integration would do. An inter-
pretation of this in terms of some L?- projection will be

giﬁen bellow.



14,

The following general theorems can be proved:

THEOREM 1 The p.n.m. of index k is equivalent to the m.nm.m.

of the same index if nonstandard Radau Lintegration is used.

a.

Proof:
The m.n.m. consists of finding uhEVh such that
ah(uh,vh) = f(vh) y ¥ VhGVh R (2.1?)
where
2
a, (u,,v.) = 2 j ( £ a,, 0.uy d.v, + bu, v, )dx , (2.13)
hhh'cci’j=131,1uh3h “"h |
and
f(vh) = f fvh dx . (2.14)
Q .

Let us take as Vo the cell basis functions uzn, m,n=0,...,k,

associated to some cell C. Eq. (2.12) becomes

2
[ ( Z a,.d0.u 3.u™ + bu u®" - fuzn)dx =0 ,

C i,j=1 ji ih jC »h C

m,n'—'o,...,k Y ) (2.15)

or equivalently



15.

aji'%Phlj « ds

+'] ugn(—div(g grad uh)+buh-f)dx=0 , m,n=0,...,k . (2.16)

Let us first show that the boundary term [ is zero:

' aC
with (2.9), it is easy to rewrite u EVh as -~

h

k ‘k
u, = Z z mgq P (x,y)
p=0 q=0 i

k .
4 * * * *
b P* P p* P P* P P* P (2.
+ [mL uL(x,y)i-mR uR(x,y)-!-mB.uB(x,y)+-mT uT(x,y) , (2.17)
so that the contribution of the qu terms to . the normal
gradient on the boundary will be proportional at most

to Pq(y) and'Pp(x), p,qﬁgk.

From (2.5e), it is easily seen that on dC, uzn reduces to

mn
ue (x,%1)

® Prti(m) ¥ o

and ‘ (2.19)

mn oo
l}C (i-l.SY) Pk+ll(n)(Y) s



where 1{(m) and l(n)=l or 2. If we assume that aji is
constant over a given cell, ﬁhe corresponding boundary
terms are zero as ugn is orthogonal on the bgpundary to
Pq(y) and .Pp(x), p,q<k. The Radau quadrgture rule
would integrate exactly these products and give the
correct zero answer. Notice that the same result would
be obtained Lndépendentﬂg 04 the aji'é if we were to use

on the boundary a Gauss quadrature rule with k+1(m) or

k+1(n) Gauss points.

The contributions of the edge basis functions to the
normal gradient on the boundary are eésily seen to be
. < . +
proportional to Pp(x or y), pSk or to Pk+1 Pk+2(x or

y). 1In the first case, tlie corresponding boundary terms

are zero for the same reason as above while in the second

case they disappear thanks to the Radau quadrature rule.

Eq. (2.16) finally becomes under Radau quadrature.

f le(-dlv(g grad un) +b9
C

h

which is the equivalent to the cell balance equation with

respect to all weights w(x,y)EQk(K).

16.

-f)dx=0 , 1,m=0,...,k , (2.20)



17.

b. Let us now take as v, the edge basis functions uz,

h
m=0,...,k where E=L,R,B or T. For the sake of simplicity,

. m . n
let us consider ug reducing to up on K 'and to u? on K
_ 1

i=i MK . For this particular example; -Eq. (2.12)
12

2

with I
© 1

becomes

2
m m ‘m
[ (-Ag_ ajiaiuh 8juR + bu up - fup)dx
K 1r3—1 ] )

1

2

m m m -

+f C ? ajiaiuh ajuL + bu u, - fuL)dx o ,
i,j=1 -

2

m=0,...,k , (2.21)

'\‘.

or equivalently after Radau quadrature

: 2 2
m m
Zz ; .*ds + .. 0, .*ds=
L up a .alu 1J ds JuL i,§=1 aJl ;U 1J ds=0 ,

m=0,...,k . C(2.22)

. m . . -, m . - m
Since u 1is either zero (uR on L and uL on R ) or because
1 2

or Radau quarature on B , T, B2 and'Tz, (2.22) teduces to
1 1 ,

. 2 '
[ Py ['?1 2353 9i%
r LE K
12 1 2

n=0,...,k , (2.23)



.18,

and is therefore equivalent to the continuity conditions of the

mean values and moments up to order k of the normal fluxes Ph".

Let us introduce

) : .
U l(Rh)—{uh

uhGL’(Q),uh

ey, v KR}, (2.24)
K .

which turns out to be the space where u shall be looked for in
the next section when mixed finite elements will be introduced.

We have

THEOREM 2 The nonstandard Radau integrafion introduced hereabove

is equivalent to an L’ projection from N%}(Rh) onto Ukl(Rh)'

Proof:
Evident when one realizes that the use of the Radau
points filters out all the components outside Qk(K), like the
. . + . .
edge basis functions *® Pk+1 Pk+2 The way the quadrature is
used for the cell basis functions with (2.9) shows moreover

component GQk(K) are kept. "

th?t only the le
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3. MIXED AND MIXED-HYBRID FORMULATIONS

The basis of mixed formulations for prdbieﬁ"(f.l) consists
in rewriting (l.l1a) as a coupled set of lower order equatiohs,

namely

It
o

cp +.gradu on £ s (3.1a)

on § . (3.1b)

]
L}

div p + bu

Notice that we could have used (1.4) directly instead of (3.la)
but that (3.1la) is definitgiy prefefred for reasons which will
be clear Later. Egqs. (l.1) are thus replaced b§ Eqs. (3.la),
(3.1b) with (1.1b) and the unknowns are now p and u. Intro-

ducing the space

n(div;9)={p|peL2(njxnz(n), div pE€L? (Q)] ,  (3.2)

the classical mixed variational formulation of (l1.1) written in

the above form is then to find (p,u)€H(div;Q)xL?(Q) such that

f c peq dx - J u div q dx = 0 , VqEH(div;Q) ,‘ ‘(3.3a)
o 7 Q - - '

- [ v div p dx - I b uv dx =-[ fvdx , YvELZ(Q) . (3.3b)
0 - 0 Q -

The classical discretization'of H(div;Q) is due to Raviart
and Thomas ® in 2D and N&d&lec ° in 3D. In 2D, the Raviart-

Thbmas'spaces congtitute a conforming finite element
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approximation of H(div;Q). Over a rectangular mesh (K=C), the

Raviart-Thomas space of index k€N is defined by

= Rk(K)r=Qk+l’kXQk’k+l n K,
X _
dim R (K)=2(k+1) (k+2) ’ - (3.4a)
(k) 1= (n i=0 k
D= DR (K)'é‘mH(plh) | y 1=0,..., ,
ij .= —-— * =
m, (plh), i=0,...,k=-1 3 j=0,...,k ,
i s =
mV(th) ’ 1_0"-°sk ]
mij(p ) i=0, k j=0 k-1} on K
C 2h y 9 o0 oy 9 g e o g } ANy
card DRk(K)=2(k+1)(k+2) . (3.4b)

i | i i i . i e dy
where my (resp. mv) stands for n, and me (resp. my and mT), n

is some unit normal to 9C and ph=(plh,p2h). Instead of choosing

~

das parameters P, °M at some (Gaussian) points on 90C as in Ref. 8,
we preferred to use moments as in Ref. 9, and we modified
slightly their definition in accordance with the normalization

adopted in Eqs. (2.3).

Let us now introduce a (conforming) finite element'approxi—

mation of L2()) over the same mesh and for any k€EN by

s= %) , dim QN(R) = (k+D)? I (3.5a)
p= D0*(K):={mii(u) , i,3=0,...,k}on K ,

card'DQk(K) = (k+1)? : : .  (3.5b)



Finally, define the following spaces

RS (R

{v|VEL2 (Q)xL2(R) ,

I €R“(X) , ¥ KER ) , (3.6)
- {v|ver: (R)

ven is continuous across the interelement

~ A~

boundaries } . (3.7)

The continuity condition transforming ng(Rh) into Rk(Rh),which
- o :

is a conforming approximation of H(div;Q) can be expressed

equivalently by imposing the continuity of the moments

mi mi
L2 omy

i=0,...,k of v'n across the interfaces between

different cells.

21.

The classical RTN (for Raviart-Thomas-N&délec) discretization

of problem (3.3) consists in looking for

| K K . 2 e
(gh,uh)ERo(Rh)XU_l(Rh)C;H(dlv,Q)XL (Q) satisfying

J ¢ Py q,dx - f u div q,dx =0 , ¥ thRf(Rh) , (3.8a)
Q 0

k

- iv - = - ' €
f vy div Ehdx .J b uhvhdx f £ vhdx > ¥ vy U;I(Rh) .(3.8b)
Q

Q Q
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The idea here is thus to approximate u and p simultaneously,
instead of obtaining Rh'by differenfiatign of uy (an operation
where one order of convergence is lost) and multiplication by

an eventually rough tensor a. The>finite dimensional subspaces
Wh of H(div;Q) and'%lof 12 (Q) used need to satisfy certain prop-

erties for the convergence analyses of Raviart and Thomas 8,
Falk and Osborn 12 45y Douglas and Roberts!?® to hold. One of
them is that div Wﬂ:vh, clearly satisfied by Rf and Ukl and

under which the following results’ are known:

THEOREM 3. For any k>0, problem (3.8) has a unique solution.

Moreover there exists a constant c>0, independent of -h, such

that
k+1 R
“Efgh"o < C|h "E"k+1 - (3.9a)
fu-ul < cln e, (3.9b)
"P:u—uh”o< clh k+2"u"r , (3.9c)

where r=max(k+2,3), |h| denotes the maximum diameter of the cells

of Rh while Pi is the orthogonal projection of 1L? onto Ukl(Rh).'

In the rectangular case and with the choice of parameters
made in (3.4b) and (3.5b), it is particularly easy to exhibit

explicit and compact expressions for the corresponding basis

functions. Corresponding to the degrees of freedom mi, m; and
méJ of Pip® ¥e have the followihg basis functions



23.

PiL(-‘x,y) = %(_l)k‘[Pk(x)'Pk+1(x)] P.(y) i=0,...,k , (3.10a)

i . |
P g{x»¥) [Pk(x)+Pk+1(x)] P.(y) , i=0,...,k, (3.10b)

ij N _ . i
Plc(x,y) = ?ij(x’y) Pk—l+m(i)(x)Pj(y) , i=0,...,k-1,
j=0,...,k , (3.10¢)

where m(i)=1 or 2 such that i and k-1l4m(i) have the same parity.
Similar expressions hold for the corresponding degrees of freedom

of p., with the roles of x and y exchanged and L, R feplaced by
. >

B,T. For the degrees of freedom méJ

of u the basis functions

h’
¥
are much simpler and reduce to '
ol (x,y) = P (x,y) i,3j=0,...,k (3.11)
C H] ij ’ b4 ? 3 9 L] .

The main problem with the mixed -element formulation is that

it normally leads to linear systems of the form

0

>

=)
+

=

[+

it

(3.12)

=
o3
+
o
=]
n
Hh

which are generally indéfinite (if b=0 so that C=0). This 1is
clearly the case iﬁ 0il reservoir simulation applications. In.
numerical reactor calculations on the other hand, b is in gen-

' 14

eral positive everywhere and such complications do not appear

Recently, Arnold and Brezzi 7 have shown how these problems



24.

could be avoided by the use of the so-called mixed-hybrid formula-

tion, whereby the continuity constraints upon ph'n inherent to
the conformity conditions in H(div;R) are relaxed and enforced
instead through Lagrange multipliers defined on the interelement

boundaries (Rkl(Rh) is issued instead of R:(Rh))'

To introduce these Lagrange multipliers, we shall need some
further notation. Let Eh denote the set of edges E or rectangles
in“Rh, which do not belong to‘the boundary T of Q. The space of
Lagrange multipligrs we shall use is the space Mfl(fh) of all
functions on UE which restrict to polynomials of degfee at most
k on each EGEh (and1vanish on the edges beldﬁging to I'). On our
rectangular mesh, the multipliers space M%l(Eh) is defined 4s

follows

k _ 2
mo (B ) = {ux or y) |ueL® (£)

ul er®m) , v ESE.} (3.13)
E

where for any index kEN

S = Mk(E):= Pk on E ,
dim Mk(E) = k+l s (3.14a)
p =0M5(E):= =i (1) i=0 K} E
= ' = mH or V uh R i=0,..., on .

card DMk(E)=k+1 ' , (3.14b)
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where thé moments of the W, are horizontal or wvertical depending
on the orientation of the edge E. With the normalization (2.3b),

the corresponding basis functions are simply Pi(x_or y), i=0,...,k.

The mixed-~hybrid formulation of our originél broblem can now

be defined as follows:

k k

i : k -
Flnd(ﬂh’“h’“h)eR;l(Rh)xu_,(Rh)xM_,(gh)

such that

f < Ph'qhdx - Z-{f uh div qhdx - J uh qh.ds-§ =0 -

Q ~,-. ¢ Uy = ; 0C =
¥ q e»Rk (R.) (3.15a)
9, ER- Ry .
-? f v, div thx - f bv,u, dx = - I v, fdx ,
C Q )
¥ v. €% (R.) (3.15b)
h -, h ’ :
and
z v, p,.*ds = 0 V‘v eMk (R.) (3.15c)
R h ~h 4 h -1 h 9 .
C %e¢ '

which gives rise to an algebraic system of the form
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A £ Bu* =

Ap + Bupr o+ Tuy 0

Bipx + Dup = f . (3.16)
~h h ? T

Tl % =

C Ehv 0

7 proved that (3.16) has a unique solution

Arnold,aﬁd Brezzi
(Eﬁ’“ﬁ’“h) and that moreover Rﬁsph and uﬁEuh where (Eﬁ’uh) is

" the unique solution of (3.8). The idendity symbol = here means
that corresponding camponents are identical even if the discrete
vectors have different sizes (diﬁ gﬁ:>dim Eh . whereas

dim uﬁ=dim uh). The advantage of (3.16)-is that A is block-
diagonal, each block corresponding to the flux unknbwns in a
single glement. It is therefore trivial to invert A elementwise
to get

p¥ = -K"(fuﬁ +'E“h). . (3.17)

~

so that (3.16) becomes

BIAT!T

3731 5-5) u 1Ty, = -
(B"AT"B-D)uf  + AT Cu, £

T , (3.18)

. * CT'aA lc =
C'A™'B  u*y + TCA'Cy, =0

which can be shown to be symmetric positive definite even if

b=0 (D=0),

In fact, the first equation (3.18) can be solved easily for

the ug's as again the corresponding matrix is block-diagonal
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and we finally rémain with a cougled system in uh, which can be
»greatly 51mp11f1ed 1f we organlze the correspondlng unknowns in
horizontal and vertical ones, leadlng quite naturally to iterative
schemes of the ADI type. In Figuré i, Wé show forvillustration
purpose the structure of the algebralc systems arising with the
mixed and mixed-hybrid formulatlons respect1vely in a 51mp1e 2D

case.
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4., POSTPROCESSING OF MIXED~HYBRID FORMULATIONS

The postprocessing of the above mixed-hybrid formulation as
proposed by Arnold and Brezzi 7 is based on the fact that the

Lagrange.multipliefs do in fact yield additional information on

. . s . k '
u which can be combined with the approximation uhEU . to
provide an "extension" or "enhancement" u of greater accuracy
.than u; .

With the choice of parameters which we made for several of
the spaces introduced earlief, the postprocessing operation is
h and My s

the pieces of information we have at our disposal are the fol-

particularly simple. After solving (3.16) for Py Y

lowing ones: uy provides us directly with (k+1)? cell moments
nid,

m;, i=0,...,k ; E=L,R,B,T. With these (k+1)(k+5) moments, it

i,j=0,...,k, while Uy gives us 4 (k+1) edge moments

is trivial to build up u

hicC
k
l(Rh).

in Nk(C) cell by cell to come up

finally with u €N

This operation can be formalized by introducing two

orthogonal projectors of L? onto U

k k ~
Ph and Hh' then u

k (R,) and Mk,(E ), namely
-1 h -1 h
h is the unique element of Nk](Rh) such that

£
]
[

-

(4.1)

=i =
=
=2

=N
=
I
)=
=2
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Needless to say, this postproéésSing operation does not cost
anything with our choice of parameters, since knowing the
(k+1) (k+5) edge and cell moments of uy yields us direcfly up -

The fact that u, converges to u faster than uy is reflected

by

THEOREM 4; Let u be the solution of (1.1) and (ph,uh,uh) the
solution of the mixed-hybrid discretization (3.15). Define

moreover :hENk (Rh) by (4.1). Then

k+2

|lu-;hllo< cln]**2dlull Mol ) . remax(k+2,3) , (4.2)

k+1

with C independent of u and h.

Proof:

“ .
As in Arnold and Brezzi 7, let us introduce

zﬁeNk](Rh), the nonconforming interpolant of u such that
k ~ .
—u*) = .
Ph(u Uh) 0 ’
and
X (u-ux) = 0 (4.3)
h h *

~

ug clearly exists and is unique. Standard approximation arguments

using (2.7) lead moreover to



Kk+3-6 |
k ) .
%1 ull . (4.4)

nu-5§u0< c Inl
k+3-6ko

Combining (4.1) and (4.3), we get

k~ ~
Ph( ﬁ—uh) = Phu—uh .
and
k ~, =~ k
ﬂh(uﬁ-uh) H_hu—uh . (4.5)

A simple scaling argument leads then to

I i”
* -
uf-u i

k k
< - 1/72 N
£l o < ¢, Uzkumuyll | o il e

’C C ‘SE W

and we need a last technical result (Eq. (1.21) of Theorem l.4

by Arnold and Brezzi '), namely that

k k-
cy- <c 1724 C 4pl/? . . .
1wl < (ag/2lp-pyll - +0/ 2 IRy umuyll ) (4.7)
Then with
gl < llu-a* akeu
[l u uhHo\.Hu uhHo-+ Huh uh"o,C ) R (4.8)

(4.2) is easily proved by combining (4.4), (4.6), (4.7) with

(3.9a) and (3.9¢).



Before leaving this section, a'iast comment seems to bé'of
order;_ The convergénce rate t§ u has been increased as we have
seeﬁ‘by énéyﬁﬁen we buiid'up uy from.3£vand ﬁh; a cost free
operation with our éelection of paramgters. 'This enhancement
of uh‘is éssenfiall§ due to (3.9c) (and not to (3.9b)). (3.9&)
is in fact a superconvergence result.for.uh saying that conver-
gence of 0(hk+2) is vélid at the (k+1)x(k+1) Gguss poihfé,

while only O(hk+1) is felt in L? norm.

31.
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S ,
5. RELATIONSHIPS WITH DIRECT IMPLEMENTATIONS OF .NODAL SCHEMES

After showing in the last section how a trivial postprocessing
operation could 1eadvus easily to a more rapidly convergent approx
imation ;h to u, it is.interesting to try to relate this apﬁrox+
imation EN%I(Rh) to more direét implementations of nodal schemes.

That is what we plan to do in this section.

Let us go back to the mixed-hybrid equations (3.15) .and re-

place u and L by P::h and H§;£ following .(4.1). Eq. (3.15a)

h

leads to

Kk~ . | k~ i
I c Eh°ghdx-§ {[ Phuhdlvghdx - J Hhuhgh ds —}0
9] c aC

¥ 9, ER° (R)) , (5.1

. ~ k~ k,~ k.~ .
or after expressing u, as Phuh+(I-Ph)uh, where (I-Ph)uh. is

orthogonal to diV'thUksRh),‘we finally get

~ . k _
f c Eh.qhdx-z {I uy div ihdx- J nhuh Eh.ds _}0

Q - ¢ e dc
¥ 4, ER" (R,) (5.2)
~h -1""h ’
which after integration by parts of the J terms leads to
C

—_—
1o

~ k
. : . , = (= .
] Eh_ghdx + i [ Eh grad uhdx - 0, ¥ Eh R-l(Rh) , (5.3)
Q C



A similéf operation withlEq. (3.15b) Supceésivgly‘

- 2z f vh div Ehdx - f vh(buh—f)dx =0 ,
cC ‘'C
Q
k
€
¥ vy U—I(Rh)

. k~- ~~k~
or with P Yh—vh and vh—Ph vh

is orthogonal to div

k ~
HI-P vy
o

leads to

’ (5.4)

where the last term

- E . v . ® ’ E . ~= - - =
f v Py ds + . J“Eh grad vhdx ‘j vh(buhxf)dx .wQ 3

€ %c , - B C )
; : . Coy K BRI
e .
A" U, Ry

or taking into account (3.15c) to
? j gh.grad vhdx - f vh(buh—f)dx = 0
C Q
ST
€

which can be replaced by

~

. N 4 ~ k
z J Py grad vhdx - f vy Ph(buh-f)dx = 0
€ Q

k
c
»V Vh U-I(Rh )
" provided (buh—f) is replaced By its L? orthogonal

onto Uk(Rh). The final equatiohs are thus

, (5.5)
. (5.6)

s (5.7)

projection

33.
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. ~ . y k
f c ph'ghdx”+ ) I , grad u,dx = 0 , ¥ a4y R

34-

, (Ry) (5.8a)

z I zh°grad vhdx - I vy Ph(vuh f)dx = 0 , ¥ vheN-;(Rh)’ (5.8b)
c
C Q
Let us first assume as in Arnold and Brezzi ’ that ¢ is of
the form cijéc(x)éij, where ¢ is piecewise constant, and
constant in particular on each'cERh. Eq. (5.8a) then means
that gph.is the Lf projectibn of -grad G% onto Rkl(Rh), or
¢ : ' ' -
denoting by Q: this projection operator
¢ p. = - Q¥(grad u,) (5.9)
- 21’1 h 8 h ’ ' .
and since g:=2'ﬂ,(5.8b) becomes
z a Qkkgrad U, )egrad V¥ dx + Pk(bu -f)V.dx = 0
c = “h h h h h h ’
c f
v v, en* (R:) . (5.10)
h -3 h

In many practical applications (see Ref. 14 for instance), b is

also piecewise constant, so that (5.10) can be rewritten as
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g f a Qh(grad uh) grad vhdx
Cc - -
o~k

¥ fﬁ(-b»Pk‘:' -PXE)V dx = 0 , y v €N (R

b Un L h)' ie Lo (5.11)
Q . ,

Solving the mixed—hybrid equations (3,15) for (ph, U uh) and
_bu11d1ng up the enhancement uh of_uh_from the data uy and My is
thus equ1valent to flnd uheNk (R ) such that (5 11) be satisfied

for all thNk h)' As Nk (R ) ¢ H‘(Q), this 1s in fact'e

primal nonconforming finite element formulatlon of the orlglnal'

(R
1

problem (1.1) within the nodal space Nk (R ), whlch exhlblts two

§ .

nonstandard features:

a. the gradient of ;h is projected onto Rk'(Rh),wf

and

b. in the mass-like terms, a projection onto UF (Rh) appears.
N - -1

In many important applications, f is replaced by its nonconforming

interpolant ;ﬁGENfl(Rh) such that
k ~
-f%x) =
Pplf-f) =0
and
My (£-£2) = 0 (5.12)
h h ' R
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k
S RD

is from Nk‘(Rh) only: as mentioned in Theorem 2, this is exactly

Consequently, the projection of the mass-like terms onto U

what the Radau quadrature does to the mass-like terms, and to
them only since it dées not affect the stiffness-like terms.
In other words, the enhahced RTN mixed-hybrid apﬁroximation is
clearly related to the p.n.m. (aﬁd not to the m.n.m.). In 1D
applications, where QEEIA(and where the nonconforming aspect

14

disappears byithé way), we have reported elsevhere calcula-

tions where clearly the enhanced mixethybrid resulté is iden-
tical to the result obtained directly with the primal p.n.m.

The othef nonstandard feature is the projection of grad E; onto

l" .
Rkl(Rh): this c¢peration only appears in multidimensional calcu-

lations. In 2D for instance,

4d u. C U .
grad uy C(Q .y WY 4y a2 Qg k1Y% ke 1)

K

L if k>0 |, (5.13a)

¢ 'Jhen

or

~ 0
grad ug c QI,O x QO,I R l(Rh)

V‘Then°‘ , if k=0 . (5.13b)

Except for k=0, grad ;; T Rkl and the projection is required.
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As we shall see below, this projectién cén be rélated to an
operation well-known by the nuclear engineers who developed the
first nodal schemes, namely the transverse integration leading
to dimensionally réduced nodal échemes. See e.g. Ref. 1 or
" Section 5 of Ref. 3. The basic idea is to éroceed to some
vtransversé averaging of the given equation:in all dimensions
minus one, in order to stay with only 1D equations. 1In 2D,
for instance the originél equatfoﬁ (l1.la) with g:=a(x)‘6ij is
successively multiblied by pjl(y), 1=0,...,k and integrated
in ﬁhe y direction between yBj and yTj’ j=1l,...,J as Q@ is di-_
vided into J horizontal slices, pjl(y) being the modified 1'

the Legendre polynomial

2(y-y.)

Py () = By {— , (5.14)

where the notation is that of Figure 2. The same operation is
then performed in the x direction between X, and Xpio
i=l,...,I after multiplic;tion by pil(x), 1=0,...,k. The result

of the transverse integration procedure is a set of 2(k+l),

N(k+1) in RN, one-dimensional equations, hamely
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1

d?u,
-
2

(x)

U

-a + buij(x) fij(x) s 1=0,...,k , (5.15a)

dx

a*ul (y) )
—a —2F & bu: (y)
dyz 1y

fiy(y) , 1=0,...,k , (5.15b)

" where a and b have been assumed constant for the sake of simplicity

and where

Yo
Tj
J pjl(y)u(x,y)dy
1 IBj ~
uxj(x) = , 1=0,...,k , (5.16a)
y
M (x)d
. P, (x)dy
j
Y33
fl"
X
Ra1
) ,y)d
1 IxL.le(X)u(x yidx
uiy(x) = = , 1=0,...,k . (5.16b)

*Ri . |
fx le(X)dx

Li
In (5.15a) for instance, fij(x) is an effective source term
including the 1'th 1D moment of f(x,y), fij(X) defined analo-
gously to uij(x), as wvell as a transverse leakage term, lij(x),
arising from the cell boundary values of the y integral of the

differential operator with respect to y. For more details, sece

Ref. 3.
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As such, the transverse integration procedure appears ‘to be
' no more than a combutafional trick leading to sets of 1D equa-
tions, which will then be solved iteratively in an ADI way.
This reduction to 1D ?roblems was especialiy needed in connec;
tion with the so-called analytical nodal methods .', where the
basié functions were taken to be fundamental solutions of the
(1D) equations, plus some particular solutions corresponding

to simple second membérs (polynomials of low degree). These
fundamental solutions are easy to find in 1D with piecewise
constant a and b: they are basically combinations of hyperbolic
sines égd cosines. This is not so-in multidimensionaifsitua-

tions.

If we go back to Eqs. (5.,15) and put them in a weak form
(by multiplication by some test function and integration by
parts), it is easy to realize that if u is looked for in NE‘(Rh),
the transverse integrated form projects the gradient of u onto
R%I(Rh). If moreover, a p.n.m. is used instead of an m.n.m. to
solve the resulting 1D equatiohs, tﬁe mass—like‘terms‘ére pro-
jected onto U%l(Rh) (while the stiffness-like terms remain

unaffected by the corresponding projection operation as it 1is

done under Radau quadrature). The final result is expressed in
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THEOREM 5. The enhanced RTN mixed-hybrid approximation to u
is equivalent to the primal nonconforming nodal approximation
obtained through physical arguments (the p.n.m.), when

moreover transverse integration is used {f§ kR>0.

Before leaving this Section, we would like to make a few
comments. As we have seen in Section 4, it is fairly easy to
obtain convergence results for mixed-hybrid approximations,
if all what is known about mixed approximations is used.
Deriving such convergence rates directly from the nonconform-
ing primal formulation is somewhat more tricky: in a previous

3 . L k+2
paper 2, we mentioned that rates of 0(h ) were guaranteed by
k+1 . . k .
the fact that P was included in N in C on one hand (see

(2.7)) and that a patch test of order k was passed on 0C on

the other hand. In further papers é’lf, these convergences
rates were proved numerically. Theoretical convergence proofs
are given for the first time here: they apply to the physical
version under transverse integrationmn, but it is clear that
they should be valid also for the mathematical version also,
with or without transverse integration, as numerical results

do confirm 4°'*%,

If the mixed-hybrid implementation is compared to the direct
nonconforming one, we have seen in this Section that the mixed-
hybrid version is particularly easy to implement as many opera-

tions (like determining Py and uh) are performed element-wise.
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It is fair to say.(ana,we shall mention it in Section 6) that
with the use of static condensation techniques, algebraic
systéms of the same size and structure are finally solved.

If py has some interest in itself (as in oil reservoir simula-
tion‘problemé), it is directly treated in a better way in the
mixed—hjbrid formulation, but after the enhancement from.uh to

~

uy it is still possible to differentiate the final approxima-

tioh'gg to recover a ;h of the same dfder of accuracy as Bh.
A net advantage comes from the fact that the matrix elements
in the mixed-hybrid formulation are clearly simpler to evalu-
ate aé‘they involve lower dégree polynomials than in t?e'
direct nonconforming approach. In the case we have examined

in detail hereabove with a a diagonal tensor, pliecewise constant
like b, the two'apbfoaches are‘strictly equivalent (and do in
fact produée the same numerical results'lf). The major inter-
est of the mixed-hybrid implementation'coﬁes from the fact that
in more general situations it is the only to directly 1¢ad to
the harmonic average of the eventually rough coefficients in a
as we Shéll discuss in the next Section. More details on the
generai case, where a and b are not piecewise.cbnstant can bé

found in Arnold and Brezii 7,
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6. NODAL SCHEMES AND MESH-CENTERED FINITE DIFFERENCES

It was shown recently by Russell and Wheeler !°

that using
a clever combination of trapezoidal and midpoint quadrature
rules fhe mixed finite element aﬁﬁroximation to (1.1) boilé
down to the cofrésbonding classical mesh~centered finite dif-
ference approximation at the Lowest onder k=0, Such a result
was later used by M.F, Wheeler and her colleagues té provide
a well founded ﬁreconditioner for ite:ative éolutions of the
mixed fiﬁite element algebraic equations resulting from the
Lowest orden apphbximaiion to the miscible displacement prob-

lem in oil reservoir simulation '6°!7¢,

In this Section, we want to show that a similar result holds
for nodal schemes 04 dny-ondea k, so that potential precondi-
tioners 04 any order k can be provided for the gorresponding
mixed or mixed-hybrid finite element algébraic equations. In
principle, when the nodal equations (2.8) in the primal formula
tion are solved, any finite element expert would be tempted to

eliminate the unknowns belonging to only one node, that is the

53
cell moments m J

c e by a procedure quite classical known as

static condensation, to finally remain with a system of algebraic

. . i
equations in the edge moments m

E only, quite similar to the

system corresponding to the Lagrange multipliers in the mixed-
hybrid formulation. In fact as we explain with more details in

a forthcoming institutional report '®, the nuclear engineers
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.involved in the development of the ‘first nodal schemes 19,20

proposed quite tricky»s;rategies to eliminate inStead the edge
unknowns in terms of the ceil ones, 1in - an attempt to finally
get point or block mesh-centered finite difference like aige—
braic equations. We won't try here to formalize and analyze
the approach used, but we refer the interested readers to the

original references 19,20

or to the forthcoming report ‘¥ The
main reason behind such "tricks".seems to have been the implicit
recognition by the reactor calculation community thaf the mesh-
or block-centered finite differences are in some way superior to
the.point-centered finite differences, Which s;ill seem moré
favored by the mathematical community (Wachspress' box inkegra—
tion method ?‘ for instance is point-centered). It is inter-
esting to point out here that the same Qituation prevails in

0il reservoir simulation, where point-centered finite differ-
ence schemes are used in a small minority of industrial simula-
tors !5. The key point is that in presence of rough coefficients
the mesh-centered schemes lead to harmonic averaging of a, while
the point-centered ones provide‘an arithmetic averaging of the

. corresponding temsor. In 1D, the harmonic average 1is the correct
one with rough coefficients. This is no longer the case in more
than 1D, but the harmonic averaging is still better than the_
arithmetic one. At the beginning of Section 3, we briefly mention

ed that (3.1a) was preferred to (1.4): This is because (3.la)

directly leads to harmonic averaging, and not (1.4). There is
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thus a "good" and a "bad" mixed method and in presence of rough
coefficients they yield dramatically different results, as simple
numerical experiments show 1f,22.

Let us now proceed to derive mesh-centered finite difference
schemes from nodal schemes: our approach will Be based on the use
of particular numgrical‘qﬁadrature_rules, for the stiffness matrix
only. For the mass matrix, the Radau quadrature rules.will still
be used. Assume that the vector u=[ul,...,un]T of basis func-

~

tions, where N=(k+1l)(k+5) is partitioned following

u =" w7 ‘
e
u
u v _J . (6.1)
where
T
k k
E..H = [u_(]);, ..’uL:" u%,.. ,uR] ]
: T
kk
EC = [u%o,ulco, L) . 9 UC] E)
and
T
kt k
uy = [u%""fuB ,uo,...,uT] | . (6.2)

Let us introduce the elementary mass and stiffness matrices MS

and Ke of order N as



e e
M = (mij) ’
K€ = (kij) = K%F¥ + k%Y : (6.3)
where
+1 +1

[ ui(x’Y) uj(xsy)dXdY ’ i.sj=l-""’N

+1 +1 .
e _ .
kij_ ) j {uix(x,y) ujx(x,y)+uiy(x,y) ujy(x,y)}dxdy
-1 -1 :
e e -
= kig + ki§ . 1,4=l,..0,N , (6.4)

the separation of k€ in k¥F¥+k®Y being justified by the fact that
here again we shall assume g:=a(x)6ij where a(x) piecewise
constant. As M and K¢ are partitioned according to (6.1), we

have for instance

e e e e
MDo= Mgy Mo My
e e e
MCH Mcc Mcv : (6.5)
e e e
M M M
VH ve I'A'
L —

If the matrix elements are evaluated exactly, it is easy to

realize that

e _ & T _ e _ e - ¢ '
MHV = (MVH)_ KHV (K_.,) 0 R (6.6)

so that the coupling between the H (for horizontal) and V (for

vertical) components is only via the cell parameters.
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Using as above the Radau quadrature rules for the mass

matrices reduce them to diagonal matrices, with elements differ

ent from zero only in the M:c block: . actually

ij k1l 4
(urd,ulty=(p,.,P, )= S.. 6.. (6.7)
¢’ 137KLT 9541y 2541y ik il |
so that in the particularly siﬁple case k=0, we shall have
. - —_—
M =428y g o o o o (6.8)

4 E ‘

0
- -

. AxA : .
where the scaling factor —%rz takes into account the fact that

we consider C and not the reference cell C=[-1,+1]x[-1,+1].

The x elementary stiffness matrix for instance will have the

following structure

p—— -
ex _ ex ex .
K = KHH KHC 0 R (6.9)

ex ex ex
KCH‘ ch Kcv
ex ex
0 ch va

- -

and if we want to come up with mesh-centered like finite differ-

. ex ex ex
ence equations we must cancel out the blocks KCV’ KVC and KVV s
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which again is easily done by using a Radau rule in the vertical
direction. We also need to eliminate the_couplings between the
left and right horizontal unknowns: we have for instance

i j ' o : ! 2_pt 2

(uprug,) wf dy P (y)P;(y) f dx (B, (x)P-P] ,(x)?) , (6.10)
so that a quadrature rule in the horizontal direction would do
the job if it uses as quadrature points the zeros of
v +p! " '_ ) .

Pk+1(x) Pk+2(x), the cancelation due to a Gij factor being

incidental. Considerations of parity show that if X, is a

1 1 - . ] - ¥ - .
zero of Pk+1+Pk+2’ xi will be a zero of Pk+1 Pk+2 and it 1is
. - - 1 ] -
thus sufficient to look for the zeros of Pk+1+Pk+2' Since
Pk+1 (2k+1)Pk+(2k'3)Pk-2+(2k 7)Pk-4+"' (6.11la)
and
' - ._ -
Pk+2 (2k+3)Pk+1+(2k l)Pk_1+(2k S)Pk_3+... N (6.11b)
k+1 .
1 L - p .
Prel ¥ Prio ? (21+1)P, - (6.12)
1=0
For instance:
P' + P' =P + 3P ,
1 2 0 1
P' + P' = P + 3P + 5P ,
2 3 0 1 2
P'" + P' =P + 3P + 5P + 7P , (6.13)
3 4 0 1 2 3

etc.
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Pi+1 is a polynomial ofvdegree k that we shall call Q. . The set
of polynomials Q, kEN, is actually a family of orthogonal
polynomials over [-1,+1], namely ultraspherical polynomials ?3
corresponding to the weight (1-x?). Their zeros are in fagt the
inner (excluding *1) points of the Lobatto quadrature formulae.
Using Theorem 3.3.4? p-46, of Szeg3.?3, it is an easy matter to
show that the (k+l) zeros of Pﬂ+1+Pﬂ+2=Qk+Qk+1 are real, dis-

tinct and that they arein the interior of [-1,+1].

Let us give some examples. For k=0, P;+P;=1+3x and the 2

(2(k+1)) zeros of P;iP; are

x = + 1/3 x = - 1/3 , (6.14)

the corresponding quadrature rule (exact for linear polynomials)
being
+1

J f(x)dx = £(-1/3)+£(+1/3) ’ (6.15)

-1

a well-known quadrature rule of the (open) Newton-Cotes type.

For k=1, P'+P'=P +3P +5P and the 4 real zeros of P'*P' are *a
2 3 o 1 2 2 3

and b with '

a = (l+/6)/5 , b (-1+/6) /5 . (6.16)
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the correspbnding quadrature rule being

+

J 1fo)dx = ﬁa[f(-a)+f(a)]+wb[f(—b)+f(b)] o, (6.17)

-1

with

v = (3v/6+2) /6V/6 vy = (3/6-2)/6/% , (6.18)

exact for polynomials of degree less than or equal to three, etc.
In the case k=0, the elementafy stiffness matrices will

become under such quadrature rule (product of Radau by open

Newton-Cotes Qere)

ke* =& 1 5, o -2 o o . (6.19a)
Ax
0 2 -2 0 0
-2 -2 4 0 0
0 0 0 0 o0
00 0 0 0 o0
e ]
and
ey _ Ax : :
K iy 60 0 o0 0 o0 K (6.19b)
0 0 0 0 0
0 0 4 =2 =2
0 o =2 2 0
0o o0 -2 0 2
e —
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We shall now prove that these stiffness matrices and the
mass matrix (6.8) lead to the classical mesh-centered finite
difference scheme. We shall use the notation of Figure 3, where
intentionally the mesh is nonuniform and where the mean edge and
cell valués are conventionally associated with the corresponding
centers of gravity. Let us first lodok at the.equation for uR:~
this equation comes from the assembly of two elementafy matrices
corresponding to cell 0 and ceil E. Since thé Radau quadrature
"associates no mass to the edge parameters and because of the
cancellation of the couplings of u with u (by Newton-Cotes

Rx Lx

quadrature) and with up and U (by Radau quadrature in gener-

al; for k=0 these contributions are always zero), the final equa

tion is a relationship between uo, up and Ups namely
Ayo Ayo
aOAXO (ZuR-Zuu) + ap AXE (ZuR—ZuE) = 0 s (6.20)

which allows us to eliminate uR in function of u and uE:
o ,

gouo/Axo + aEuE/AxE ,
u, = ' . (6.21)

ao/Axo+ aE/AxE
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The equation in u on ithe other hand reads
o , :

Ay
. —0 (- -
ao Axo ( ZuL ZuR + 4u0)
Ax
0 _ . 7o
+ ao Z;: ( 2uB ZuT + 4g°)
+bAx Ay u = f Ax Ay ) A (6.22)
o 0 "0 o o o0 "o _

The b and f .terms are classical with mesh-centered finite differ-
ences and we realize that using (6.21) and similar expressions for

u, ug and Up, Wwe would finally come up with an expression re-

lating u to its four closest neighbors, u u, and u nameiy
0

w* YE* Ys N’
¥ .

a five-points difference scheme. To check that this expression is

well the mesh-centered one, we must look closer at for instance

the terms corresponding to the leakage to the right of cell 0 and

show that they are well written as

(6.23)

where R=(Axo+AxE)/2 while a, is the harmonic average given by

R

Ax  + AxE .
ap = 0 . . (6.24)
Axolao + AxE/aE

These leakage terms come from the first term of (6.22) where all
the up and half of the u0 contributions are considered. -Using‘
(6.21), it is a simple matter then to check that these terms do

yield (6.23) so that the five points mesh-centered finite differ-

ences are well recovered.
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The interest of this result consists in the fact that as in
the case of the lowest order mixed qefhod examined by M.F. Wheeler
and her colleagues a good preconditioner for.solving the correspon-
ding algeﬁraic systems is at hand. Here moreover, we dispose of a
general techique for builaing up such preconditioners fox any k,
and not only for k=0. The use of the product integration rules
with 2(k+1)lfixed points (the xeros df P£+1iPﬂ+2) in one direction
(x for K€* or y- for Key) and k+2 Radau points in the other direc—
tion, combined with a fully (k+2)x(k+2) quadrature rule for the
mass—-like terms, leads to quadrature schemes which reproduce all

the polynomials belonging to Q2k+l’2k+2 or Q2k+2’2k+1 ) Q2k+1,

and are therefore consistent with the accuracy expected from the

2)). In each case, (i.e. for

underlying nodal schemes (of 0(hk+
any k€EN), the result is a mesh-centered finite difference like
scheme of the 5-point type if k=0; and in gener#l of the S-block
type for k>0. 1In the lowest order case, we keep second order
accuracy, becausé after all thé underlying polynomial space in-
cludes Plvcell by.cell and has zeroth order moments continuous
through the facés of the cell. In the mesh-centered finite
differences examined by M.F. Wheeler and her colleagues, the
underlying approximation is the lowest order mixed one with u
piecewise constant and first order is expected, with second-order
only at the centers of gravity of the ﬁodes, a superconvergence

result induced by (3.9c). More details about the higher order

finite difference scheme‘(k:>0) mentioned hereabove will be found

18 25
elsehwere . °.
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