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ABSTRACT

The first order absorbing boundary conditions for elastic waves are
transparent for P  waves and S waves at normal incidence but give
rise to parasitic reflections of Rayleigh waves. To treat this phenomena
we first propose a solution of .geometric type which eliminates these
parasitic waves but causes others to appear which, while less important,
are. still troublesome. We propose a second solution by constructing a new
condition of second order type, transparent for P waves and S waves
at normal incidence and also for Rayleigh waves. We analyse this
condition mathematically and demonstrate its good behavior with regard to

reflection phenomena.
RESUME

Les conditions absorbantes du 1°" ordre pour les ondes élastiques
sont transparehtes pour les ondes P et S a incidence normale mais
font apparaitre des réflexions d'ondes de Rayleigh parasites.

Pour éliminer ces phénomenes, nous proposons une premiére
solution de type géométrique, qui permet de réduire leur amplitﬁde mais
en fait naitre de nouveaux, de moindre importance (quoique toujours
génants). '

Nous proposons une seconde Ssolution en construisant une nouvelie
condition, type second ordre, transparente pour les ondes P et S a
incidence normale et pour les ondes de Rayleigh. Nous analysons
mathématiquement cette condition et mettons ‘en évidehce ses bhonnes

propriétés vis a vis des phénomenes de réflexion.

KEY WORDS

Absorbing boundary conditions, elastodynamics, Rayleigh waves.
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1 - REFLECTION OF RAYLEIGH WAVES BY THE FIRST

ORDER CONDITION

1.1 - The first order absorbing boundary condition and its properties

We recall that the first order absorbing boundary condition for
the equations of elastodynamics is
au
0‘1’1+M-§-€ = 0,
at each point "of the absorbing boundary with exterior normal

n = (n1, nz), where M is the matrix given by

n n pVP 0 n, n,

n -n 0 pVS n, -n,

Note that the matrix M 1is symmetric and positive definite and thus
the boundéry condition expresses the fact that at the boundary the
normal stress on T is inversely proportional to the velocity.

By construction, the condition ((1.1), (1.2)) is the unique

| condition of type (1.1), with M symmetric and positive definite,
which is transparent for all plane harmonic P and 'S waves arriving
at r with normal incidence. Note also that for each displacement
field u satisfying the equations of elastodynamics in @ and a
condition of type (1.1) on T, with M symmetric and positive

definite, we have the energy identity :

1 d du Ju
(1.3) "é?i_t{E(Q’t)}+{,M’a—t'b’E do = 0,



where E(Q,t) denotes the total energy of the field u contained at
instant t in the domain Q.

The equality (1.3) implies, in particular, that the total
energy 1is a nonincreasing function of time, 1i.,e. any boundary-
condition of type (1.1) is an absorbing condition and thus leads to a
well posed mathematical problem.

We summarize these well known properties in the following

theoren.
Theorem 1.1

Formula (1.1), where M is a symmetric, positive definite
matrix, defines a family of absorbing boundary conditions for the
equations of elastodynamics in two dimensions. If M is given by
(1.2) the resulting boundary condition is the unique condition of
this family which is transparent for all plane harmonic P and §

waves striking the boundary T with normal incidence.

We remark that the first order condition (1.1), (1.2) depends
on the geometry of the domain f since M depends on the unit
exterior normal n,

In particular this conditions becomes

- in the case of a vertical boundary (x1 = 0)
Bu1
% Vp O 3t
te du =0
. 2
21 0 Vg 3t
- in the case of a horizontal boundary (x2 = 0)
Su1
912 Vg O 5t
+ = O.
P 8u2
o 0 v

22 2 ot



Classically, the first order condition ((1.1), (1.2)) is analyzed in
terms of reflection of a plane harmonic P or § wave, with amplitude
1, striking the absorbing boundary T with an incidence 0,

0 £0 £7/2. One can show that, for a given 0 :

- An incident P wave gives rise to a reflected P wave with
amplitude Rpp(e,v) and to a reflected S wave of amplitude RPS(e,v)
~ An incident S wave gives rise to a reflected S wave with

amplitude Rss(e,v) and to a reflected P wave of amplitude RSP(e,v).

The coefflpients RPP(S,v), Rps(e,v) (resp. Rss(e,v),
RSP(e,v)) are by definition the reflection coefficients of a P wave
(resp. of an S wave) for the absorbing boundary T. They depend
only on the angle of incidence 8 and the Poisson coefficient wv.

In particular one can show that for small angles of incidence

o that :
RPP(B,v) = 0(8?)
Rpg(8,v) = 008)
Ry (8,v) = 0(6?)
Rgp (8, V) =.0(eﬁ,

which shows that the first order condition is "quasi~transparent" for
small values of 8, the results being in each case better for the
phenomena of pure reflection (P » P, S » S) than for the phenomena of

conversion (P » S, S » P).



1.2 — Thé reflection of Rayleigh waves

We consider now the numerical simulation of the propagation of
elastic waves in a homogeneous half space, x2 S 0, with the free

(X = O),

surface boudary condition on the boundary T 5

1

(1.“) =0 on -T .

It is well known that in such a medium besides the so called
"volume waves", i.,e. P and S waves, there also propagate surface
waves guided by the free boundary I',. These are the Rayleigh waves

. 1
which are the sqlutions of the form

(1.5) uR(x1, Xps £) = Uplx, # Vo t, x,),

where C=vR is the unique solution_ in the interval [0, Vs] of the

classical Rayleigh equation

2 1, 2 1, 2
(1.6) u<1—%7)/2(1-%>/2=<2—%>2.
P S S

For the present we shall limit our domain of calculation to the

quarteh plane

,x2)€]R2:x £0,x.501},

Q=1 (x 1 5

1

and take for boundary condition on the artificial boundary ,r2 (x1=0)

the first order absorbing boundary condition,

o \'f 0 1

(1-7) + p = 0 on T, .
o) 0 vV —_—
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One can easily verify that a Rayleigh wave propagating along
the free boundary I‘1 in the positive x1 direction, i.e. a wave
incident upon the artificial boundary T

(1.8) u(x1, X, t) = UR(x1 - V.t, x2),

2’ R
does not satisfy condition (1.7). In other words, the first order
condition is not transparent for Rayleigh waves.

Thus, the question that naturally arises is the following
what happens when a Rayleigh wave reaches thé absorbing boundary r2 ?
The mathematical analysis of the phenomenon is extremely difficult.
Only a numerical simulation permits us to have, in a simple manner, an

~idea of what happens, at least qualitatively ...



The results we shall present now were obtained by limiting the
domain of calculation to a rectangle Q. One of the sides of the

rectangle coincides with the free boundary T The three other sides

1 .
are absorbing ; we have ‘taken the first order condition,

sz

free boundary

—» X,

ab sobbing boundary

The elastic waves are excited by the explosion, at time t=0,
of a seismic source located at point S near the free surface. The
following results were obtained by a numerical simulation in which Q1
finite elements associated with a uniform grid were used for the
spatial discretization, and an explicit scheme was employed for the
time discretization,

Figures 1.1 through 1.5 represent "snapshots! of the elastic
medium @ at different instants. Each figure gives, at a given time,
an image of the deformed medium, in that each point of the grid has
been displaced by its (amplified) displacement vector u. Thus the
compressed regions are darker and the dilated regions lighter.

The source was placed at the surface in order to generate
surface waves with a large amplitude. We consider a source of

compressional waves. The P wave front we see only in figure 1.1.
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The second circular front is due to the conversion at the free surface
of the P wave to an S wave. This shear wave is Jjoined to the P
wave front by the head wave and to the Rayleigh wave, which corresponds
to the large perturbation which disturbs the free surface as it
propagates along it.

In figures 1e1 and 1.2, the Rayleigh wave has not yet
reached the absorbing boundary. On the other hand, we can see that the
P and S waves cross the artificial boundary without being noticeably
reflected. The Rayleigh wave reaches the vertical boundary in figure
1.3, and in figures 1.4 and 1.5 we see that it has suffered a parasitic
reflection, One can observe, propagating along the surface, two fronts
converging toward the source, one with veloecity V and the other with

P

velocity \'f While these parasitic waves might appear to be

negligible, ;; fact they are not at all : the waves are of the same
order of magnitude as the quantities actually measured in seismic
reflection experiments which are themselves due to the reflection of
the emitted wave by the heterogeneities of the substratum. ‘
A finer analysis of these phenomena can be carried out by the
examination of synthetic seismograms, which, placed one next to the

other, are the diagrams depicting the curves that give the variations

of the two components, vertical and horizontal, of the displacements of

the points of the free surface as functions of time. As the amplitudé
of most of the waves decreases with time, we have amplified the results
linearly in time in order to better observe the parasitic phenomena,
see figures 1.6 and 1.7.

One can clearly distinguish two 1lines Dp and DR with

' respective slopes " and L which correspond to the propagation of

Vp VR

the P wave and the Rayleigh wave. Equally well one sees lines, DRP

and DRR’ issuing from the point of intersection of the line DR with

the curve corresponding to the right extremity of the model. These

lines have slopes - %— and - %— respectively.
o} R
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Figure 1.6 : Horizontal displacement
Initial Amplification Factor (IAF) = 1 x 1072
Gradient of Amplification (GA) =1 x 107"

100 100 116 124 182 140 148 166 164 168

1 ¥
.:FHC V) )2

Figure 1.7 : Vertical displacement
' IAF = 1 x 1072
GA = 1 x 107"
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The 1line DRR with slope - \—,1-— corresponds to the Rayleigh

R
wave reflected by the absorbing boundary. Arriving at the vertical
boundary, the incident Rayleigh wave also gives rise to a compression
wave which seems to be emitted by the corner point where the free and
artificial boundaries intersect. It 1is this wave that explains the

presence of the line DRP with slope - 71— . This is a phenomenon of
P

conversion from a surface wave to a volume wave. These two lines
correspond, of course, to the parasitic fronts observed in figure 1.4.

There appears yet another 1line D a second 1line of

)
slope - —V1— , which intersects the rightr:§st seismogram, the one
cor'r'espondingR to the registration at the upper, right corner of the
model, at the same point as does the 1line DP representing the
incident P wave: this P wave, arriving at the vertical boundary,
generates a parasitic Rayleigh wave. Anyway, this wave has a very small
amplitude, even when compar-éd with that of the reflected Rayleigh wave

represented by the 1line D and is visible in figures 1.6 and 1.7

’
only for large values of Rg, i.e. when the amplification factor is
maximum. This is a phenomenon of conversion of a volume wave to a
‘surface wave. This is not in contradiction with the fact that the first
order absorbing condition is transparent for normally incident P
waves as here we have, in fact, the presence of a corner joining a free
boundary with an absorbing boundary, a condition that we do not know

how to analyse mathematically.
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II - A FIRST SOLUTION OF GEOMETRIC TYPE : EARS

v In the previous section we have seen that'though the first
order absorbing boundary condition is transparent for normally incident
P and S waves, when this boundary condition 1is ‘used for an
artificial boundary in the problem of a half space with free boundary,
we still have the problem of reflected and converted surface waves.
There are two evident ways to approach this problem : The first, and
more rudimentary, is to try to modify the geometry of the domain of
calculation to avoid having the corner connecting the free bondary with
the absorbing boundary. The second is to modify the boundary condition
itself. It is the first of these that we shall consider in this
paragraph.

Since the amplitude of Rayleigh waves decreases exponentially
with the distance from the free boundary, a very simple golution to the
problem of the reflection of such waves at an artificial boundary is to
enlarge the domaih of calculation in a small region around the free
boundary. In this way the.length of time necessary for a Rayleigh wave
to reach the artificial boundary and to be reflected back into the
domain of interest can be made larger than the length of time of
observation so that no reflectibn of a Rayleigh wave is detected.

Thus if we consider the example of thé previous paragraph, the
idea is to modify our rectangular domain of calculation by adding to it
two long thin rectangles (ears) in such a way as to extend the length
of the free boundary on both sides of the original domain. More
precisely, if we assume that our free boundary coincides with the axis
x2=0 and that our original domain was the rectangle @, = [0,28]x[0,d]
with source S at (%,0), then our enlarged domain would be :

92 = 91 U Em u Er

where we huve set (with b < d)

[-a,0] x [0,b1
[20,20+a] x [0,b].

]
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x2 free-boundary
-a f 2% 24%t+a
X
s 1
T~ 5
absorbing
boundary
b
d

The constant a should be chosen large enough so that the time,
(2+a)/VR + a/VP, needed for a Rayleigh wave to travel the distance %+a
and for the converted P wave to return the distance a to the domain
of observation exceeds T, where T represents the final time of the
observation. The depth b should be just of sufficient size for the
amplitude of a Rayleigh wave to be negligible at that distance from the
free boundary, but not so large as to greatly increase the time of
calculation,

The following figures represent the results of the same
experiment as do those presented in paragraph 1, except that the domain
of calculation here ig ’92 instead of 91' Here 91 is a rectangle of
width 168m and depth 96m with source located in the center at depth O.
We have ﬁaken the ear to be of depth U49m though in practice the ratio

of the depth of the ear to that of 91 would be much smaller.

-199 0 168 ) 367

f=80hz

49

96
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Figures 2.1 through 2.4 are the snapshots corresponding to
those of figures 1.1 through 1.4, Figures 2.1 and 1.1 are, of course,
identical as the disturbance has not yet reached the artificial
boundary. However, the fact that 2.2 and 1.2 as well as 2.3 and 1.3
appear indistinguishable indicaﬁes that the P wave and the S wave
fronts have passed the interior corners, located at (0,b) and (2%,b)
without any noticeable diffraction. In figure 2.3 the Rayleigh wave
reaches the bounds of the observed domain and in figure 2.4 we see that
it has passed into the eafs without giving rise to the parasitic P
wave or Rayleigh wave observed in figure 1.4,

In figures 2.5 through 2.7 we restrict our attention to roughly
the right quarter of the observed domain as well as to the right ear
itself. The times of observation are the same as those in 1.2, 1.3, and
1.4 respectively as well as in 2.2, 2.3, and 2.4. In figures 2.5, 2.€,
and 2.7, we see the Rayleigh wave and S wave as they propagate toward
the artificial boundary, reach the right ear, and move in to the ear
with apparently no problem. However, to more c¢losely observe what
happens at the interior corner, we look again in figure 2.8 at the
deformation seen in 2.7 but this time with an amplification factor 10
times larger. In figure 2.8 a diffraction due to the corner is
definitely visible, though it is not immediately evident if this is due
to the S wave, the Rayleigh wave, or even the connecting wave between
the two,

The seismograms corresponding to those presented in figures 1.6
and 1.7 are given in 2.9 and 2.10, As in 1.6 and 1.7 we can cleariy
distinguish the two lines Dp and DR' having slopes 1/Vp and 1/VR

respectively, resulting from the disturbance caused by the P wave and

Rayleigh wave arising at the source. However, the lines DRR and DRP
which correspond to the reflected and converted Rayleigh wave as well
as the line DPR corresponding to the conversion of the incident P

wave to a parasitic Rayleigh wave have disappeared. Thus, even for the
large amplication factors toward the final time, there is no trace of
these parasitic waves since the boundary giving rise to them has been

pushed further from the source.
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However, in figure 2.9, representing horizontal displacement,
and to a lesser extent in figure 2.10 representing vertical
displacement, there is a definite disturbance indicated in the lower
righthand corner. This perturbation corresponds to the phenomenon
already detected in the snapshot 2.8, which is .due to the
diffraction at the interior corner.

Tb further examine the phenomena of diffraction at the interior
corner we have repeated the previous experiment increasing the depth of
the original rectangle to 192 meters and that of the ears to 99 meters
and also increasing the final time of the observation from 200

milliseconds to 400 milliseconds.

-199 0 168 367

99

1924

Figures 2.11 and 2.12 are snapshots at time'200 millisecondes
and 220 millisecondes respectively. In both we still observe the
diffraction phenomena. Figure 2.13 represents the corresponding
seismogram, depicting horizontal displacement. At time around 275
milliseconds there appears the same sort of disturbance as seen in
figure 2.8, only here at a later time as the corner is further from the
sodrce. We remark that an analysis of the velocity indicates that the
nature of the diffracted disturbance is probably an S wave; and again
we emphasize that the amplication factor in the seismograms at later

times is quite large.
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CONCLUSION

The ears solution is effective in eliminating the reflection
and conversion of the Rayleigh wave at the artificial absorbing
boundary. It also eliminates the parasitic Rayleigh wave generated when
the incident P wave reaches the corner joining the free boundary with
the artificial boundary. However, the interior corners introduéed by
the addition 6f the ears do give rise to a diffraction that, though
smaller in amplitude than the parasitic Rayleigh waves, is still of an
order that can be detected in the snapshots and seismograms. We can
hope to improve these results by modifying the absorbing condition in a
neighborhood of the corner. ' ’

Finally, one should note that though the addition of the ears
should not significantly increase the time of calculation, it does
complicate the programming. Still this complication is not extrordinary
as the ears may be programmed once and for all independently of the

complexity of the model.
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ITI - A CONDITION TRANSPARENT FOR P, S, AND R WAVES

III—'1 -Derivation and analysis of a new condition

We restrict our attention to the case of a half plane @ with
boundary the 1line T having unit normal vector n. The first order

condition-

ou
§2§1(u) =om+ M=+ =0,

with M the symmetric positive definite matrix

n n pVP 0 n1 n2

n ~-n 0 st n, -n,
is transparent for all P and S waves with normal incidence. Let us

now consider the differential operator

39

3t + Cn - grad,

where C designates a positive velocity., Clearly we have

au

T +Cne+gradu = 0

for any C wave with normal incidence, i.e. for any wave u of the

form
u(x,t) = U (xe1, Xx*n - Ct)

where 1 is a unit vector tangent to u is an arbitrary vectorial

C
function of two scalar variables, We introduce the operator :

SZE(U) = (g% + C negrad) Sz;(u)
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and the boundary condition

(3.1) .Ez%(u) =0 ‘ on T.

We remark that this condition is :

- in the case of a left half plane with T a vertical

boundary
) 0
('sg + C 3}:) %1(u) = 0,on T,
with 3u1
911 vy, 0 3t
Lo - | S -
o v./ \=2
U1 S ot
- in the case of a lower half plane with r a horizontal
boundary
d 9 ’
(SE + C 5;;) 5221(u) =0, on T,
with . 3u1
12 VS 0 T
%1(@ = + p u, |
0 v —_—
022 P ot

Theorem 3.1

The boundary condition 3.1 is transparent for :
e« P waves at normal incidence
« S waves at normal incidence

« C waves at normal incidence.
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Proof : '
The first two points are clear. The last is also with the

observation that ‘géc(u) may also be written in the form
du
£¥%(u) = 52;‘3% + C negrad u).

The operator . + C negrad is diagonal and thus as ¢ 1is constant

2
at
commute with 5231

) We turn now to the question of the stability of the condition
3.1. For simplicity of exposition we consider the case g the left

half plane,

Le]
]

{(x1,x2)| x, <0 }
{(x.]’xz) l X1 = 0 }o

e |
n

Then the problem may be written

~2
i DI T T
T 8x, 11 ¥, 12
2, in @,
9 u, 3 o 3 ;
P37 T ox 21 dx. 22
1 2
with boundary condition
3.2 S%%(u) = 0 on T,
and with initial conditions
u(x,0) = u°(x)
au “% in Q.
3 (x,0) = u(x)
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Theorem 3.2 :

The problem 3.2 is well posed.

Proof :

We introduce the function w,

ou ou
3t C 3x1 .

W =

As u _ satisfies the equations of elastodynamiecs in §, so does w,

Also w satisfies the initial conditions

0 "0 au’° .
w(x,0) = wWo(x) = u%(x) + C N (x)
! in Q.
ow . 32u d%u
3¢ (x,0) = wo(x) = 3t2 (x,0) + C m (x,0)
9%u

An expression for 3% (x,0) may be deduced from the equations
satisfied by u at the initial time t = 0. Furthermore, the function w

satisfies the boundary condition

ﬁza(w) = 0, on T,

We know (cf. 81) that one can obtain energy estimations for w., Thus we
deduce estimations for u by integrating'the equation
ou c v w

ot 8x1

u(x,0) = u®(x),
and the theorem follows. o
It is easy to check that in the operator éggc, second

derivatives in the normal direction to the boundary exist, which causes

troubles :
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The expression for the boundary condition . 3.1 may be
transformed in such a way that only first order derivatives in the

direction normal to T appear. In the expression for %,,(u),

) 3%u 3
%C(U) = 3t (o+n)+Cn-grad(o n)+M(-a-E-5 + C zp negrad u),
the term containing the second order normal derivative is
Cnegrad(oen). Assuming that the equations of elastodynamics are

satisfied on T, we deduce that

92u
at2’

negrad(o+n) = -1-grad(o-t) + p

where <t is a unit vector tangent to T.

Combining these two equations we obtain

2 (0+n)-C tegrad(oe-t) + (M+pC1) 3u
ot at,
+ CM—a- negrad u = 0
at '
Put
gc(u') = -—a-'(o'n) - C(t)grad(o-1) + (M+-C1 )'»3zu
ot ot?
+ CM—a negrad u = 0
ot *
The operator %C(u) may be written :
- in the case of a left half plane with T a vertical
boundary
_ 999 95 VP+C 0 \ CVp 0 ,
0 _ ) d%u 9%u
Lw - 2 ¢ 2 s o ‘o u
c 77, ot 0, 3X2 LI _ ot 2 . 8t3x1
0 V. +C 0 Cv
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- in the caSé of a lower half plane with T a horizontal

boundary
4 3 (%2 ) 911 Vg+C 0 3%u
(w) = =¢ - C — + p -— +
(o ot 3x1 0 V_+C ot* .
- %2 /) - -\ 21 P
+ oC vS 0 9%u
0 VP 3t3x2

Theorem 3.3 :

The boundary condition 3.1 is equivalent to the condition

PPt

(W = 0.

III- 2 - Plane wave analysis

As in the case of the first order condition, the condition 3.1

may be subjected to analysis in terms of the reflection coefficients

RPP' RPS’ RSS’ and‘RSP, defined in paragraph 1e2
We take for domain @ the left half plane {x: x, < ol and
assume that on the boundary r2 {x: Xy = 0} we have the absorbing
boundary condition 3.1
3 9
%C(u)—(35+c-5§—1-) 1(1.1)—0
044 VP 0 -
‘ gZ%(u) = +p T
o 0 Vv .
21 S
12
5%%(u> =0
elastodynamic equations in @ ,x1
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Consider a harmonic P wave of unit norm,

1(k_x~wt)
uP =u, e P ’
propagating toward the boundary P2. Suppose that upon arriving at ’r2,
of gives rise to a reflected P wave uP and a reflected S wave
uPS
14 -
PP ei(kax wt)
PP "PP
PS o ei(kpsx-wt)
PS "PS *
If the angle of incidence (measured from the normal) of uP is 9, then
the angle of emergence of uPP is also @ and that of uPS is

Y, where ¢ 1is related to & by Snell's law

v

S
Up

sin ¢ = sine,

We know that the length of the propagation vectors, k and k p’ of

P P
the P waves |is -#i and that the length of Kk the propagation

P
vector of the S wave, is = .

Vg

PS’
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Furthermore, the unit displacement vectors up and uPP of
the P waves are parallel to their propagation vectqrs‘.kp and kPP
while the displacement vector u for the S wave is perpendicular

‘ PS
to kPS'

: /cosB -cos8y . cosy
K o= = k. = — K . = =
P sine PP Y sing PS YVS ‘siny
cos8 (—cose) (sinw)
u,. = u_, =
P sing PP sing _ PS cosy

Now if we consider the sum u of these three waves,

c
1]

we know that Dby construction u satisfies the equations of
elastodynamics in Q. By imposing that u also satisfy the condition
(3.1), on r2, we obtain the following linear system in the unknowns

d
R an RP

PP s’

(cose+1)(2cosH+k?=2) (m cosB+k) Rpp

- k2 sin P(2cos P + k)(m cos Y +1) RPS

= (cose41)(2cose—K2+2)(m cosb-k)
(3.3)

sing(2coso+k ) (mcosb+k) RpP

+ k2(cosyp+1)(2cosy=1) (m cosy+1) RPS

= -sing(2cose~«k){(m cosd-«k),

v ,
where k 1is the ratio VE given as a function v by
: S

o, 10-v) 17
= ( 1-2v )

and m 1is the ratio L
_ VS'
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Similarly we obtain a system in the unknowns . R and R by

SP SS
considering the reflection of a harmonic S wave of unit amplitude
i( ksx-wt)
u'=u, e

S

by the boundary P2. For an angle of incidence @, there are a reflected

P wave uSP and a reflected S wave uSS
SP ey e1(kSPx-wt)
~SP 8P
sSs - R . u e;(kSSX'wt)
- 'ss ss

emerging at angles ¢ and 8 respectively, with

<|<
»n |I'v

As before, the length of the propagation vector kSP of the P wave
is =, while that of k_. and k_. is -,
VP : S SS VS
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and the unit displacement vector uSP. is parallel to kSP wnile uS

and uSS are orthogonal to kS and kSS respectively.

c0s0 ' ~ f[~cosy\ - [-cose
21 K. = = ( K. = — <‘ )
S VS (sine) SP VP siny S8 VS sing
-5ing ~coSY ' sine)
U, = u
S cos® SP siny 88 cos8

is obtained by
with the two

X
]

it

=
]

Again, the linear system in RSP and RSS
requiring that the sum u of the incident wave u-,

reflected waves uSP and uSS satisfy the boundary condition 3.1 on

T.. We have thus

2
(cosp+1) (2 cosy+k2-2)(m cosy+k) RSP
-2 8ing{2 cose+x)(m cose+1) RSS
=-¢2 5ine(2 cose-x)(m coss-1)
(3.5)

siny(2 cosy+k)(m cosp+k) RSP
+ k2(cosp+1)(2 cose-1)(m coso+1) Rgg

==k 2(c0os8-1)(2 cosp+1)(m cose-1).

We remark that equation 3.4 implies that for 6 1larger than

arcsin % , sinyp is larger than 1, i.e. & 1s no longer real, In this

case, the propagation vector ksP becomes
-1 2 =2
y w ( i sin®*y-«
= . ’
SP VS siny
and the reflected ' P wave
© -
— (sin?y-« ? oW _
Sp VS _ ) X i( Vs siny x, wt)

e

us = Rgp Ugp e
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is no longer a harmonic wave but is a surface wave propagating along
the poundary ‘I‘2 with amplitude decreasing exponentiaily with distance

from 1‘2.

Theorem 3.3 The r'eflection coefficients R and

pp* Rpgr Rgp:

RSS depend only on the angle of incidence 0, the Poisson

coefficient v, and the ratio c/v and for small angles of

S?
incidence 0 :
- for C = VP_
RPP(e,v) = 0(8")
Rpg(8,v) = 0(8%)
Rgg(0,V) = 0(82)
RSP(e,v) = 0(e)
-~ for C = VS__
RPP(G,v) = 0(8?)
RPS(B,v) = 0(8)
RSS(e,v) = 0(8")
Rsp(e,v) = 0(8%)
—for-CaVP,C*VS_
RPP(e,v,C/VS) = 0(8?)

Rps(e,v,C/VS) 0(e)

- 2
RSS(G,\),C/V_S) 0(e?)

1]

RSP(B,\),C/VS) 0(8).
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Proof : Using 3.3, a dibect calculation yields that
(4-k2) (1+x)m k 82

R = - 2 -k 2

PP [ “he®(m+k) + 0% JO m 2 ).e
(2-k)m : K. 9?

R = e + 0(p2 1 = = = = .

ps ™ | 2k (m+1) (0 J0 -g-F) e

Thus for C = VP we have m=¢ and the term (1- k/m - 82%/2) gives

another factor of 62 in the expressions for R and R

PP PS*®

Similarly from 3.5 we obtain

R

1l

[ - LeblexDdm ey g -1 - 805 62

ss T (m+ 1) 2
= (2-x)m _ l _ _6_2
Rep = |~ St P ote®) JO -5 -5 6

and observe that for C = VS a factor of 82 1is gained from the term

- - 2 s
(1 1/m - ¢2/2) in the expressions for RSS and RSP’

In figures 3.1 and 3.2 the amplitudes RPP’ RPS' RSS’ and RSP
for the boundary conditions ﬁza(u) = 0 and SZ%(U) = 0 with C = VP
may be compared. These curves give the reflection coefficients for
various values of the Poisson coefficient v, from 0.0 to 0.48, as
functions of the angle of incidence 6. We have not distinguished here
the 'different values of vV @ Wwe want only to emphasize the weak

influence of this paraméter. We remark that even for the coefficients

RSP and RSS which are of the same order in 8 for both conditions,
the results seem to be better for the condition . ﬁ%%(u) = 0.

The corresponding curves for the condition Ezé(u) = 0 with
C = VS and C = vR are shown in figure 3.2. We can easily see that,

for all values of C we have considered, the various reflection
cefficients have been uniformily -improved (not only for small values

of 9).
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III- 3 - A condition transparent for P,S and R. waves

We return now to our example of the half space x2 < 0 with

free boundary F1, X, = 0. We restrict our domain of calculation, as in

2
paragraph 1.2, to the quarter plane

Q={x:x1.<=0 and x2$0},
and take for boundary condition on the artificial boundary P2, X, = 0,
the condition 3.1, & .(w) = 0.

I‘1 -

Q elastodynamic ggVR(u) =0
equations
T>
Thus all P, S and Rayleigh waves at normal incidence are

absorbed- by the boundary VF2- ’
Remark : In order that Rayleigh waves traveling along the.

boundary r1 be absorbed by the boundary r2, we need to take C=VR the

velocity of the Rayleigh wave. On the otherhand, theorem 3.3 indicates

that it wculd also be of interest to take C=Vp or C=VS in order to

have a higher order absorbing condition for P waves or for S waves.

Thus we are led to define C=C(x2) to be a smooth function of x2,

having value VR for small x2 but having value say Vp for large

values of X, where the amplitude of the Rayleigh wave should be

negligible though a rigorous analysis in this case remains to be done.
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This condition still, of course, needs to be tested

numerically. There are at least two problems posed.

- The construction of a scheme for the discretization of
the condition
« The treatment of the corner joining the free boundary

and the absorbing boundary,

These we shall try to solve at a later date.

CONCLUSION

The geometric solution does not yield quite all of the results
that one might hope for ; however, some possibilities for improving it
have been indicated. The P-S-R condition appears to be a
theoretical solution' to the problem of the parasitic reflection of
Rayleigh waves. This remains to be confirmed numerically a task which

could pose somé small difficulties.
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