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ITERATIVE METHODS |
FOR THE NUMERICAL SOLUTION
OF MIXED FINITE ELEMENT
APPROXIMATIONS
OF THE STOKES PROBLEM

Riidiger VERFURTH




SUMMARY : We describe three iterative methods for the numerical solution

of mixed finite element approkimations of the Stokes problem. All methods
use more or less the multigrid idea. We give a convergence analysis for each
method. Numerical experiments show the applicability of the methods and
allow a comparison of their efficiency. Finally ve give two examples of

Navier-Stokes calculations using these methods as iterative Stokes 5Solvers.

RESUME : Nous présentons trois méthodes itératives pour la solution numérique

de 1'approximation par éléments finis mixtes du probleme de Stokes. Lés méthodes
utilisent plus ou moins la méthode de multigrille Nous donnons une analyse

de convergence pour chaque'méthode. Quelques exemples numériques montrent
1'applicabilité des méthodes. Ils permettent en outre de comparer leur
efficacité. Enfin, nous résoudrons deux problémes de Navier-Stokes stationaires

utilisant ces méthodes comme solveur de Stokes.
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1. INTRODUCTION

This note gives a survey of some iterative.methods for the numerical
solution of mixed finite element approximationss of the Stokes problem.
Such algorithms are of great interest as subrgutipe$ﬁin Navier-Stokes codes

vhere in general many Stokes problems have to bgfsgived.

We discuss three algorithms in detail. The First\bne is an improved version
of the well known Uzawa algorithm. The original indefinite problem for the
velocity and pressure is transformed into a positive definite problem for

the pressure alone. Ta this problem we apply a conjugate gradient (CG) algo-
rithm. Eache CG-step then requires the solution of several poisson equations.
This is done only approximately using a multigrid (MG) algorithm. The resulting
algorithm Has a convergence rate which is independent of the meshsize. It

is easily implemented if an efficient poisson solver is available.

The second algorithm is a pregonditioned conjugate residual (CR) algorithm for
the original velocity-pressure formulation. The preconditioning uses the

idea of hierarchical basis functions for finite elements [ 17,18]. The pre-
conditioning 1is very cheap, its cost corresponds to the calculation of three
scalar products. The convergence rate is of the form 1-0 Qlogh(h)b vhere h

is the meshsize.

The last algorithm is a direct application of the multigrid idea to the Stokes
problem. Because of the indefiniteness of the praoblem and the poor regularity
of the pressure, additional difficulties arise when compared with the existing
MG - theory for elliptic problems. The MG algorithm has a convergence rate

vhich is independent of the meshsize.

The second algorithm is most easily implemented. However it is restricted
to linear finite elements and two dimensional problems. The other algorithms
can be applied to a broad class of mixed finite elements in two and three

dimensions (Cf. §2).

Finally, we give examples of Stokes and Navier-Stokes calculations which

show the efficiency of the élgorithms.
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2. MIXED FINITE ELEMENT DISCRETIZATION OF THE STOKES PROBLEM

We consider the Stokes problem

-Vvbu + Vp = £ in Q
(2.1) div u =0 in @
u =0 on 238
d

in a bounded domainfc R~ , d = 2, 3. Here, u = (ul,..., ud) denotes the

velocity, p the pressure andv > 0 the viscosity of the fluid.

Let HK(Q), k ¢ N, and L2@) = H®(Q) be the usual Sobolev and Lebesgue spaces

equipped with the norm

@2 vl s =1 [ 1 %% ax 12,

K Q |alsk
Since no confusion can arise we use the same notation for the product norm
of Hk(Q)d. Finally, the scalar product of LZ(Q)d is denoted by (.,.).

Put

><
.e
t

=@ =l u e nt @ ¢ uz0on o9
(2.3)

=
|

_ 2 - 2 . -
LO(Q) ={ pe L) Jg pdx = 0}.

and introduce the bilinear forms

au,v): :\)f Vu W dx
9}

blu,p): = - j” p divu dx ,
Q

& (Tu,p1hlv,g]) + = alu,v) + bly,p) + blu,q)

on X x X, X x M and (XxM) x (XxM) resp.
The weak form of (2.1) then is to find [u,ple X x M such that

(2.5). & Uwpl 5 [v,q)) = (F,v) My,q] € X x M.

Finally, we introduce the norm
1/2

(2.6) |wspdly ¢ ={llulf +lp|f )

on X x M.

Let Xh c X and Mh c M be two families of finite €lement spaces satisfying

the following hypothesis :
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W) Inf lly -yl sen kllﬁllg VO SKkEl, kSL$2,ve H@
K :
Ve Xy
2 < 0 < L
(Hy)  Inf lq-qll s en llgll, ®¥0s2s1,qeH @
0
qheXh :
: -1
(Hy) Hﬁxhlll Sch lehllO Vv e X
(Ha) There is a canstant B >0 which does not dépend on h such that
b(v, ,qp)
Inf  Sup il — 2

(_HS) Xo© Xop 0 Mo CM,

Here and in the sequel, c denotes ageneric constant which does not depend on
h. Conditions (Hl)—(HB) are satisfied by standard finite element spaces

(ef. [9] ). (HS) is a condition on the triangulation of § .which is easily
satifsied in general. The so called Babuska-Brezzi condition (Ha) is much
harder to fulfil,., Before giving some examples of finite element spaces
satisfying (Ha) let us note, that (H4> together with the ellipticity of a(.,.)
is requivalent to

Ly, e 15[y 59, 1)
(2.7) Inf Sup SAEHLAUNAL >y > 0

(YoPR] € X XMy [uy» 9 Je X xMy I[_‘;‘hnph”l([l’hth”l
vith a constant y > 0 independent of h.

Example 2.1 : (a) Let Q C:ﬂ?zbe a plane polygonal domain and Jh be a family
of regular triangulations of Q (cf. [9]). Furthermore, assume that each
T ¢€ Jh is obtained by dividing‘a suitable Tl € Jh into four equal triangles

. the./vertices of which are the vertices and midpoints of Tl. Let

sf: =z f{vec® (8): vl, is a polynomial of degree £ r on each Te T _}.
T 9 h

h
Then. the couples

el 1 2 el 2
(2.8) X, =[Sy, N Hy@I", M =S Nlg ()
and

_re2 1 2 PR | 2
(2.9) X, = [sh ‘n Hg 1, Moo= S Ny ()

satisfy conditions (H,)-(H;) (Cf. [4,14]).
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(b) Let &2 CZIR3 be polyhedral and j? be a family of regular partitions of Q into
tetrahedrons. Let Sﬁ be defined as above. Then the couple

o re2. 1 3 _ela, 2
(2.10) Xy, = [shmHU 1, Mo =S NLg (2)

satisfies conditions (H;) to (H) (ef.[4,14]).

Remark 2.2 : Moreexamples of finite element spaces satisfying the above
conditions can be found in [10]. They can also be generalized to non-poly-
hedral domains and more general boundary conditions. n

The mixed finite element approximation of the stokes problem then is to find

[Eh,ph}e Xh X Mh such that

522([9h,ph],[!h,qh]) = (f,!h) y [gh,gh] X,, x M or equivalently
' a(y_h,yh) + b.(yh,ph) = (f_,yh) Vovo€ X
(2.11)

it
o

b(gh,qh) ¥ v ,q € XM

Inequality (2.7) ensures that (2.11) has a unique solution and yields together
with (H 1, 2) optimal error estimates [10, 14].

5. A COMBINED CONJUGATE GRADIENT MULTIGRID ALGORITHM

. *
Define the operators A : Xh Xh’ B : Xh—* Mh and B Mh-* Xh by

(A u,v) = alu,v) ¥ u,ve X, s
(3.1) (B u,p) blu,p) ¥ueX,peM,
*
(B p,u) = blu,p) ¥ u Xps P e Moy

m

Then problem (2.11) can be written as

*
A u o+ B Py = f

B_gh . = 0.

The following proposition, which is proved in [15], is essential for the

(3.2)

sequel.

defined by

Proposition 3.1 : The linear operator L : Mh—+ M

(3.3) L:=8a"tg",

h

is symmetric, positive definite and continuous. Its condition number is
bounded independently of h,Theze.are two constans 0 <C <Cl which do not depend

0
on h such that
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(tpyp) 2 Cy llpllg - vpem

(3.4)
el g s ¢ Ilellg VpeM .

* *

The couple tuh, ph]eth x M, is the solution of (3.2) if and only..if

* _l * *
(3.5)' Lpi=9 uh:A< (f -8B ph)
where
-g Al f. o

(3.6) g : =

Thus the indefinite problem (3.2) is reduced to the definite problem (3.5)
wvhich involves only the pressure. Since the condition number of L is bounded
independently of h, a CG- algorithm can be applied efficiently to (3.5).
tach evaluation of Lpthen requieres the calculation of A_l v for a suitable
ve X 1i.e. the solution of d discrete poisson equations with homogeheous

h
boundary conditions. This is done only approximately using a multigrid algorithm.

Denote by Kn : Xh-* Xh the linear operator which associates with y_eXh the result
of n iterations of the multigrid algorithm with starting value 0 applied to

the poisson equation Au = w. Then we have for all w % Xh:

(3.7) [k w - a gl s a7t ]

1 1

wvhere 0 < n< 1 is the convergence rate of the MG-algorithm. It is well known
that ® is independent of h (Cf. [2,6,12]). The theoretical upper bounds

ws .205 and » £ .291 are derived in [5,13] for a special triangulation of
plane, convex polygonal domains. In pratice, convergence rates u ~ .1 are
-often observed (cf. [1,7,11]).

The following proposition is proved in [15] .

. C
Proposition 3.2 : Assume that n is sufficiently large such that x"< a%—
vhere Cg, Cl are the constantsof (3.4). Then the operator !
an ; Mh=--},.Mh defingd by
) *
(3.8) L : =Bk B
n n

is symmetric, positive definite and satisfies
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| N
“Hﬁprpho dC o n ||pHg’
: n 2
(3.9) (L, pyp) 2(Cg-dcg ) [Ipllg,
h
L, pll s +dcy Y Ipllg

for all pce Mh' 0

Remark 3.3 : Note that Cl/CO is an upper bound for the condition number of L.
Estimates of CO; Cl and * yield lower bounds for the number n of MG iterations
which are necessary to satisfyurt< CO . These estimates are far too pessi-
.dC '
is

mistic. It pratice n = Zorn = 3 sufficient. o

Proposition 3.2 shows that a CG-algorithm can be applied to the problem

(3.10) L, P =9, vhere g : = BK f

n —

‘which is an approximation of (3.5).

This gives rise to the following

Algorithm CGMGST : 0. Preprocessing phase :

Compute
gn:=Ban

l. Start : Given an initial guess PO ¢ Mh for the pressure solving (3.5).

Compute

and put

o} o ] 0
I' =9 -9, d” = -1,

Set i : = 0 and set € to a small positive tolerance.

A

2. Iteration step : If |lrl||0 € goto step 3. Otherwise compute

q1+l - Ln dl
and put i .
B E0 N ¢ S )
T i i+l ’
(d7,q )
i+l _ i i+l i i+1 i i+l i+l
P P = p +0 d, r t =1+ Q g 5
Bi+l o (rl+1,rl+l)
o (ri, ri) ’
_d1+l . r1+l N 81+1 dt.

Replace i by i+l and return to the beginning of step 2.



3. Postprocessing phase : Compute

i * i
ut =K (£E-B p7)

and take [g}, pi] € Xh x M as final guess for the solution of (3.5), (3.6). a.
In {15] we proved the error estimate

i * i *o n
(3.11) [lu y_hli1 + lp*- th0= 0 (e+)

for the last iterate of cgmgst. Here [g:, p:]fé Xh X Mh is the egact solution
of (2:11). The term #' is the relative accuracy with which 9, the last residue
and g} are calculated. Hence steps 1 and 2 need only be performed with a
wmederate accuracy for the poisson problems, i.&.a small value of n. Once
1|ri||D < ¢ is obtained, one switches to a higher accuracy, i.e. greater

value of n, in the solution of the poissonequations. This strategy improves

the efficiency of cgmgst considerably. Moreover , inequ. (3.11) suggests that

it is useless to choose e smaller than the accuracy with which 9 is calculated.

4. A PRECONDITIONED CONJUGATE RESIDUAL ALGORITHM

In this section we consider a special discretization of the stokes problem. We
~assume that Q@ is a plane polygonal domain and that we are given a sequence of
,i=0,1, ..., Rwith hj 1

7 Nj-1°

Here, Jh/Z is obtained from Jh by dividing each T ¢ Jh into four equal triangles

triangulations Jh
J

the verticesof which are the midpoints of sides and vertices of T.

The mixed finite element approximation of .the stokes problem on level hk’

k=1, ..., R, is given by the spaces of (2.8), i.e.
ko= lstnw @, om oc=ston @,
k k k k-1

Note that the velocity is approximated on a finer triangulation than the
pressure. If no confusion can arise, we replace subscripts hj by j. Actually,
ve want to solve the discrete stokes problem on level hR' The coarser trian-

gulations are only auxiliary ones.

Denote by Qj, 3 =0, ..., R, the set of vertices corresponding to the
triangulation Jj and by Ij : C(&) » Sj the standard pointwise interpolation
operator. Define the mesh dependent scalar product

R
(4.1) (Lo, ¥)); o2 = (VI o,VI W)+ I ) [T.o-I. ;ol[1.9-1. 9] (x)
1,R 0 0 j=1 jsﬂjlgj—l J7 -1 J7 -1



On sé n Hl(Q) The corresponding norm is denoted by |||. I”l g+ We use the

same notatlons for the corresponding scalar product and norm or XR The

following Lemma.which is proved in [17, 18] shous that‘IH.IHl R is a good
b

approximation for the Hl-norm.

Lemma 4.1 : There are two constants 0 < CO < Cl wvhich do not depend on h

and hR such that

0

(4.2) CoReD)™% ||voll, s ollly r =y Hvelll

1

for all € Sz N H (). | ‘o

The continuity 0F§2§ and equations (2.7), (4.2) immediately imply

Corollary 4.2 : There are two constants 0< Y;'<CL vhich do not depend on
ho’ h, such that

R

L% ([Eap] y HvaD l
- (4.3)
¢ (llZ g+l a2 /2000002 5 +llal2 122 Viupd, Lo, aleng x g

and

Inf Sup %([H’p]’[lyq])
(urpd dgty Twoad Nty (TllZ el pll 2177 I1WIIZ o g 12172
(4.4) |
> -2 -
2y (R+1) ~.

The crucial point is to interprete Corollary 4.2 as a preconditioning result
for the discrete stokes problem. To this end we have to introduce the notion

of hierarchical basis Functions (cf.[17, 18]). Denote by wJ 0 £ j£R,

1<i¢g NJ : = dim [S N H ()] the hierarchical basis functions.

The w] are defined recur31vely : If j =20, they are the usual nodal basis of

Sé A H (), if j > 0, they consist of the WJ plus the nodal basis functions
correspondlng to the interior nodes of le Qj—l'
basis for j = 0. 1, 2 in one space dimension.

AN,

Figure 1 : Hierarchical basis for j = 0, 1, 2 in 1 D.

Figure 1 shows the hierarchical




In the sequel we use the convention that for any basis of XR X MR we first
number the basis functions for the-x-component of the velocity, than those
for its y-component and finally those for the pressure. Denote by T the
transformation matrix from the hierarchical to the neodal basis of Sé muHé(Q)

and put

§
S: =z{ O
0

O ;o

I/

Let B be the stifness matrix of the scalar product ((.,.))l R+ (.,.) on
b

XR X MR corresponding to the hierarchical/nodal basis on XR and MR resp.
Note that
B8 00
B=| 0 B o
0 0 I

Where B is a diagonal matrix except a small diagonal block corresponding

to (VID@5VlOW). Finally, denote by

Aip O As

A22 A23

T LT 0

Az A3

The stifness matrix of‘gg with respect to the nodal basis of XR X MR' Since
by lemma 4.1 B is symmetric and positive definite, it can be decomposed as

B = LLT wvith a lower triangular matrix L. Put

(4.5) Q: = STIL.

Then equations (4.3), (4.4) are equivalent to

TT
Y(Re1)72 € inf  Sup X_5 1925 Y 7
k k T ., T T, T
xeR< yeR {x' L' x} {vy' L' v}
: x" sTasy
<
£ K P k TooT L V2 g V2
xeRC yeR {x'LL' x} {y L' v}
< c

vhere K : = dim [XR X MR]. This proves
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Proposition 4.3 : The condition number of Q_l A Q_T is bounded by

C . ‘ :
f$-(R+l)2 ~ |logh|2. A conjugate residual algorithm applied to the discrete
Stokes problem with @ QT as preconditionning matrix has the quasi optimal

convergence rate 1 - 0(|logh|). : A

Remark 4.4 : The solution of Q QT Y = £ is done in three steps :
(1) transform the velocity components of # into their hierarchical basis

(l). Denote the velocity components belonging

representation, giving the vector y
to the coarsest level by w.
(2) Solve the discrete Poisson problem AX = W on the coarsest level. Replace

(1) (2)

the components of y corresponding to W by X, givingy'“’.

(3) Transform the velocity components of y(2 into their nodal basis represen-

tation. This gives the solution vector y. ]
Note that the pressure components remain unaffected.

Recalling that the discrete Stokes problem on XR X MR has the form

(4.6) A x = b,

wvhere x contains the velocity and pressure components, the preconditioned

conjugate residual algorithm is as follows :

Algorithm perst : 1. Start : Given an initial quess XO for the solution of

(4.6) compute
0
r
0
q

b - A x° , 2 ;= Q’T Q_l r° ’
: = A 29 , Wi=qTal g,

11

-
.

Set i : = 0, and set € to a small positive tolerance.

2. lteration step : If ||rl“0 S €, take x' as final approximation for the

solution of (4.6) and terminate the algorithm. Otherwise compute

of = (r%,gl)
(q*,ut)
and put
»Xl+l e R S , r1+l R ql,
Ao (A wh)
PE i i,
(q’\")
: 0 , if i =0,
8t - ii
(gu") , if 1 > 0,

('ql—l’ Wl—l)
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Z1+l R Yl sl z1—1 ,
q1+l Y z1+l ] w1+l - Q—T Q—l q1+l.
Replace i by i+l and return to the beginning of step 2. 0

5. A MULTIGRID ALGORITHM

In this section we consider any mixed finite element approximation of the

Stokes problem satisfying conditions (H1) - (H5) of §2. However, we assume

that we have a sequence of finite dimensional spacesX hoo Mh j =0,1,...,R,
1 . .

with hj =5 hj—l' As in the last section, we replace J J subgcripts

hjlby Jj. On level j we have to solve the problem

.1 . ) .,q. = G. .d. 1) (v.,g.]le X. .
(5.1) %([gj, pJ] , [xJ,qJJ) G ([_V_J,qJL v klj,qj]e X; x M

wvith linear forms Gj wvhich will be defined recursively, especially, we have

on the first level

(5.2) Gg (Ly,qD) : = (F,v) ¥ [v,q] € Xg x Mg

The multigrid algorithm then is as follows :

Algorithmmgst : (one iteration loop on level j with v smoothing steps)

1. Smoothing : Given an initial approximation [E?,po] € Xj X Mj for the

solution of problem (5.1) on level j. For i = 0, ...,V -1 calculate
i+1/2 i+1/2 i+l - i+l
(v » P Jrand [u™"", poi7]

HI+1/2, ﬁ)o 2 l+l/2,q)

e X. x M. solution of
J J

( +h" (p

0
=w’ {6,(v,a)) - Z (u'e'], [waD} ¥ [yal ¢ Xpxm,

and .
(E}+l _ El, l)o . hZ (pl+l— pl, q)D
. 2 my.
e (E91+1/ , p1+l‘2]’ [v,q])  ¥[v,q] e Xj X Mj'

2. Correction : Put

6,y ([wal) = 65 (Ly,al) =~ & [w”p"]s [w,a])
(5.3)

¥[v,aleX, ) x My
* *
If j = 1, compute the Sxact gflution [gd_l, Pj_l]e Xj—lx Mj—l of problem (5.1)
- = g .=z X .
on level j-1 and put Ej-l Lﬁ—l’ Pi-17 P3
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Otherwise calculate an approximation [Gj—l’aj—l]élxj-l X Mj 1 to the exact
solution of problem (5.1) on level j-1 by applying W22 iterations of the

algorithm on level j-1 with starting value 0. Put

H.V+l - Ey . gj-l’ p\)+l . = pv . Ej-l' o
Remark 5.1 : (1) writing the problem on level j in matrix vector notation
as A x = b, the smoothing corresponds to \fJacobi iterations appiied to
the squared problem A—2 x = Ab. This takes account of the indefiniteness
of the problem.
(2) Note the different scaling of the velocity and pressure components. This
is due to the different regularity of these components. In practice, one

replaces the Lz—scalar product by the equivalent mesh dependent scalar product

(-(cp,\b))o jiE h2

h) o(x)  WY(x)
J €

§.
J

X

wvhich gives a diagonal mass matrix. =
A detailed convergence analysis of the multigrid algorithm is given in [16].
The main difficulties are the indefiniteness of the Stokes problem and the
different regularity of the velocity and pressure. The analysis consists in
establishing a smoothing and an approximation property which are measured in
scales of mesh dependent norms. The smoothing property means that high
frequency error components are rapidly damped out by the smoothing part of
mgst. The approximation property says that the slowly convergent low frequency
error components are well reduced by the coarse grid correction. Combining
these two properties one obtains the convergence rate /% with a constant C
independent of h. (cf. [16]). Using

the convergence rate is improved to

a conjugate residual algorithm as smoother
C .

’\7 .

Remark 5.2 : Combining the analysis of [15] and [16] it is easy to see that

the algorithm cgmgst described in §3 can also be used as smoothing operator

in the multigrid algorithm. This will be analysed in more detail in a following
paper. o

6. NUMERICAL RESULTS

In this section we present some numerical results obtained for stokes
and Navier-Stokes problem using the algorithms of §§ 3-5 as Stokes solvers.
We consider the three regions described. in Figure 1 : the unit square Qc,an
L shaped domain'QL and a unit square with a slit QS. This allows us to test

the influence of singularities caused by reetrant corners.
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Nttt o - i e

Figure 1.

We use rightangled isosceles triangles with short sides of length h for the
triangulation and continuous piéeewise linear finite elements on Jh and JZh’
resp, to approximate the velocity and the pressure, resp. The calculations

are done with the meshsizes h = 1/4, 1/8, 1/16, 1/32 for the velocity. The
mesh corresponding to h = 1/4 is used as coarsest grid for the preconditioning
procedure of algorithm PCRST. W. Hackbusch Kindly provided us his program HELMH
{11] " for the multigrid part of algorithm CGMGST. For more general geometries
and triangulations one could also use a simplified version of PLTMG [1]. The
multigrid algorithm MGST uses five (v=5) Jacobi iterations for the squared
system per w.cycle (u=2). The numerical tests for this algorithm are performed
by KH. Hntiet at the university of Bochum on a CDC 175. The other tests were
done on the Bull CII -HB-DPS 68/ Multics of INRIA.

We consider five examples. In the first two examples the exact solution is

given by

Ex 1 : ulx,y) : ( 200 xz(l—x)2 y (1-2y)(1l-y) )
2

200 x (1- x)(1l-x) yZ (1-y)

p{x,y) : = 100 x (1-x) y (l-y) - %;
Ex 2 ¢ ulx,y) : =[ 2 mSin? (Zmx) Sin GtﬂY))
21 Sin  (4mx) SinZ(2mY)
p(x,y) t = 472 Sin (4mx) Sin (47Y)s

For the other three examples the exact solution is unknown. The right hand

- ()

100 x (1-x) y (1-y) e

side is given by

Ex 3 : fix,y) :

Ex 4 : f(x,y) :

Ex 5 ¢ f(x,y) : = 100 exp [—100(x2+ yz)]g.
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Due to the boundary conditions, example 1 is tested only one the unit square,nt.

In example (1) and (2) the iterations terminate if the Lz—norm of the difference
between calculated and exact pressure is lees then 0.1 h. iThe factor h takes
account of the error estimates for the finite element approximation (cf.[14]).
In example (3)-(5) the iterations terminate if the Lz—norm of the residual is
lees than 10-4, The cg-algorithms are restarted every 10 iterations. We always
perform 3 multigrid iterations per Poisson equation in algorithm CGMGST. The
result of the multigrid iteration is stored and taken as initial value for

fhe next call of the multigrid algorithm. In all algorithms, zero is used as
starting value on the coarsest grid. On finer grids, we take the interpolate

of the result of the calculation on the next coarser grid as starting value.

Tables 1-5 show the convergence rates for the three algorithms and the five
examples. For each example the numbers indicate from left to right the

convergence rate of cgmgst, pcrst and mgst and from top to bottom the rates
on the meshes corresponding to h = 1/8, 1/16, 1/32. A hyphen indicates that
the starting value satisfies the stopping criterion

hol Q

8 |.674  .935 -
16 |.509 .83 .32
32 | .731 .872 .38

Table 1 : exact solution polynomial

1 o) 2, 2

8 - - - - -— - . -

16 .818 .935 .47 .766 944 .760 .934

32 .905 .946 .50 .850 942 .879 .942
H

Table 2 : exact solution sin function

hi | 2 , o o

8 .507 972 , 635 .973 | .83 .961
16 - 948 | .781 942 716 .940

32 .709 941 b .8lé .941 .840 .934

Table 3 : right hand side constant



8 .00 .95 | .80l  .972 | .636 .96
16 ' .88 .94 |  .827  .965 .802  .952°
32 .842  .946 .890 .98 | .800  .949

{

Table 4 : Right hand side polynomial

- §
h l_ i Qc N;wwmmw"mmfﬁ, | : NUQS .

8 | .84l .9l 763 .968 815 .967
16 .921 .90 886 .965 892 .966
32 1 .920  .966 833 .963 .859  .961

Table 5 : right hand side exponeﬁtial

;

The results show that the convergence rates of cgmgst and pcrst are rather
independent of the geometry. This is consistent with the convergence analysis
for these algorithms which do not need any regularity results. In contrast,
the convergence analysis for the multigrid algorithm requirBSAHZ-regularity
of the Stokes problem which only holds for convex polygonal domains. The above
results show that we can expect convergence rates of about .8 - .9 for cgmgst
and .94 - .97 for pcrst. In order to compare them we have to take into account
the different complexity of the algorithms. In table 6 we give the asymptotic
number of additions and multiplications per velocity grid point and per '

iteration _ :

mgst

cgmgst , pcrst

cost per iteration | 412 A 138M

overhead 6.5 Iter

67 A 39M [ 840 A 252M
1.5 Iteri

Table 6 : Operation counts
Hence, we have

1 Iteration mgst ~ 2 iterations cgmgst

> 10 iterations pcrst

The overhead of cgmgst is due to the pre-and postprocessih@ phases which-
have to be done with a higher accuracy. Comparing operation counts and
convergence rates we see that cgmgst and pcrst roughly héve the same .
efficiency and that for some examples pcrst is 20% more efficient than
cgmgst. Concerning the work to implement the algorithms we have

pcrst > cgmgst > mgst.
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However, pcrst is restricted to a special discretization and plane problems,
vhereas cgmgst and mgst are applicable to other discretization and three
dimensional problems.

Finally, we want to present two examples for the application of our algorithms
to the stationary Navier-Stokes equations. We consider the well known problems
of driven cavity flow and flow across a step. For the second example the

total inflow is normalized to one.

u = (1,0) “ 1 .
1
> -+
1 >
2 > 5
v ¥ >
- — >
i >
2
v
) + 2 >
4
Figure 2 : driven cavity flow around a step

The nonlinearity introduces the additional term

%? J;{[(E:V)EJ v - [(u.9)v] u } dx

on the left hand side of (2.11), where Re denotes the Reynolds number. We

apply the standard fixed point iteration to the nonlinear problem. The iteration
terminates if the Lz-norm of the residual- (of the nonlinear problem)'is less
than 10-2. The Stokes problems occuring in each nonlinear iteration are solved
approximately using algorithms cgmgst or pcrst. The characteristics of these
algorithms are as described above. For the two algorithms we list in table 7

the number of nonlinear iterations (=Stokes problems to solve), number of

linear iterations and mean convergence rate per stokes problem.
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cgmgst ‘ pcrst

problem| 1/h |it monl | it lin | = it nonl | it lin 3
driven | 8 2 20 .925 2 70 .943
cavity | 16 1 10 .867 1 40 .935
Rez=10 | 32 1 10 | .900 1 20 .917
driven B 7 55 .790 6 260 .940
cavity | 16 3 30 .860. 2 70 .932
Re=50 | 32 1 10 .881 1 30 .928
step 8 3 30 .760 3 130 .970
Re=10 | 16 2 20 .830 2 60 .927

32 1 10 .842 1 40 .945

Table 7 :

Due to our extremely simple nonlinear iteration we could not agchieve convergence
for the flow accross the step at Re=50. The results show that pcrst needs
roughly four times as many linear iterations as cgmgst to sclve one example

on h = 1/32 starting from h = 1/8. Recalling the number of operation counts

this gives an advantage of roughly 25% for pcrst. Concerning the computing

time pcrst was nearly twice as fast as cgmgst. This is due to the rather big
overhead of cgmgst. Algorithm pcrst took between 1 and 3 minutes on the Bull

C II- HB - DPS 68 Multics to solve one nonlinear problem on h = 1/32 starting
from h = 1/8.

7. CONCLUSIONS

We presented three algorithms for the solution of mixed finite element
approximations of the Stokes problem. All algorithms use more or less the

multigrid idea.

The most easy one. to implement is pecrst. It is a preconditioned conjugate
residual algorithm. This algorithm is restricted to the discretization by
linear finite elements and two dimensional problems. The convergence rates are
worse than for the other two algorithms. But due to the low cost it is compe-

titive with the other algorithms.
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The algorithm cgmgst combines multigrid and conjugate gradient ideas and is
easy to implement if a multigrid code for the poiséon equation is available.
It is applicable to general mixed finite element discretizations and to three
dimensional problems too. The convergence rate is independent of the meshsize

and turns out to be about .8 - .9.

The most difficult algorithm to implement is mgst which applies the multigrid
idea directly to the Stokes problem. Practical experiences for this algorithm
are actually limited. However, the first results are promising and it seems
that it will be by far the fastest algorithm. This is also supported by results
-already obtained for multigrid methods applied to finite difference discre-

tizations of the Stokes problem [8] .
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