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RECAL- A NEW EFFICIENT ALGORITHM FOR THE EXACT
ANALYSIS OF MULTIPLE-CHAIN CLOSED
QUEUEING NETWORKS

A. E. Conway and N.D. Georganas®
University of Ottawa
Ottawa, Ontario
Canada

Résumé : RECAL ("REcursion by Chain ALgoirthm").

Un aglorithme pour I' évaluation des mesures de performance de réseaux de
flles d'attente a plusieurs chaines fermees est presente. L'algorithme est
basé sur une nouvelle expression récursive qui relie la constante de
normalisation d'un réseau avec n chaines de routage fermées a celle d'un
ensemble de réseaux ayunt (n-1) chaines. Une szmpllflcatlon est obtenue en
décomposant chaque chaine en un ensemble de sous-chaines, chacune ayant
un client. L'algorithme a une complexlte polynomiale en nombre de chaines,
en ce qui concerne le temps d'exécution et la mémoire exigée. Quand le
réseau contient plusieurs chaines 1l'algorithmes est plus efficace que celui de
convolution, et offre donc une extension uttle pour la categorle des réseaux
analysables de fagon exacte, Un exemple numérique est donné.

* The authors are currently on leave at INRIA, Le Chesnay, and the
Advanced Studies Department, Bull-Transac, Massy, France
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RECAL - A NEW EFFICIENT ALGORITHM FOR THE EXACT ANALYSIS

OF MULTIPLE-CHAIN CLOSED QUEUEING NETWORKS

A.E. Conway and N.D. Georganas
University of Ottawa
Ottawa, Ontario,

Canada

ABSTRACT - RECAL, a Recursion by Chain Algorithm for computing ghe mean
performance measures of product—form multiple-chain closed queueing
networks, is presented. It is based on a new recursive expression which
relates the normalization constant of a network with r closed routing
chains to those of a set of networks having (r-1) chains. It reliés on
the artifice of breaking down each chain into comstituent sub-chains
that each have a poﬁulation of one. The time and space requirements of
the algorithm are shown to be polynomial in the number of chains.

When the network contains many routing chains the proposed algorithm

is substantially more efficient than the convolution or mean value
analysis algorithms. The algorithm therefore extends the range of queueing

networks which can be efficiently analyzed by exact means. A numerical

example is given.

1'The authors are currently on leave at INRIA, Le Chesnay, and the Advanced

Studies Department, BULL-Transac, Maséy, France.



1. INTRODUCTION

Multiple-chain closed queueing networks, which have a product-
form (1) state probability distribution, are widely used models of, for
example, computer systems (9), (17) and computer communication networks
(8). The principal computational diffiﬁulty associated with these networks
is tﬁat a simple closed-form expression for the normalization constant of
the distribution is not knowp.,In general, a direct determipation of the
normalization constant by straightforward summation is computationally
intractable. Hence, the network performance measures cannot be computed
by simply summing probabilities over an appropriate set of states. As a
result, much effort has Seen"dirécted to the development of efficient
methods for analyzing multiple-chain networks. .

There now exist several efficient algorithms. The most well-
known ones are the comvolution algorithm and mean value analysis (MVA).
The convolution algorithm was first proposed by Buzen (3) for single-
chain networks and subsequently extended by Reiser and Kobayashi (15) for
multiple chains. The convolution algorithm is an efficient méans of
obtaining the normalization constant. Most performance measures of interest,
such as mean queue lengths, server utilizations, mean waiting times and
nodal throughputs are readily computed using the normalization constant
and certain intermediate results obtained in the convolution algo;ithm.
This is termed the normalization constant approach. Another efficient
algorithm is MVA (16) which is based on the so-called Arrival Theorem (10).
In this algorithm the performance measures are obtained directly, without
recourse to normalization constants, but only first moment information is
obtained. A major difficulty with both of these algérithms is that the

time and space requirements increase exponentially with the number of



chains. Other algorithms which exist, such as LBANC and CCNC (5), (9),
(17) also share this difficulty. As a result, the exact determination of
performance measures has, in general, been limited to networks with a
relatively small number of chains.

The analysis of queueing networks with many chains requires the
use of specialized exact aléorithms, analytical approximation techniques
or heuristic methods. The tree convolﬁtion algorithg (75 can obtain exact
results for networks in which there are many chains by taking advantage
of sparsity orAlocality properties of the routing. It is particularly
useful for the analysis of window flow-controlled computer communication
networks (8). A powerful analytical approximation technique for networks
of a large size is discussed in (12) and (13). Heuristic methods are
presented in (4), (9), (14) and (16).

In this paper we present RECAL, a Recursion by Chain AZgorithm
for the exact analysis of product-form multiple-chain closed queueing
networks. It is based on a new recursive expression which relates the
normalization constant of a network with r closed routing chains to those
of a set of networks having (r-1) chains. RﬁCAL may therefore be classified
as a new normalization constant approach. Thé new recursion,.for obtaining
the normalization conétant of multiple-chain closed”queueing networks, has
a time and space growth which is different from that of the recursions used in
the convolution and MVA algorithms. We introduce the artifice of breaking
.down each chain into sub-chains that each have a population of one. The
main idea of employing this artifice is the following. With each chain made
to have a population of ome, the recursion by chain expression is

greatly simplified. The artifice alters the state space and hence the



normalization constant of the network under consideration but leaves the
performance characteristics ( i.e. nodal throughputs, server utilizationms,
waiting times, queue lengths ) unchanged. As a ;egult, this simplified
version of the recursion, which yields tﬂe normalization constant for the
artifiéial network, may neveftheless be used to carry out an exact analysis
of the original network.

The time and space requirements for obtaining the mean performance
measures of all the routing chains in a network using RECAL is polynomial
in the number of chains. When there are many routing chains in the network,
RECAL is substantially more efficient than the hitherto adopted methods
bf anal?zing queueing networks. In other situations, such as when tﬂe number
of routing chains is small, it is in general less efficient. RECAL therefore
extends the range of queueing networks which can be efficiently analyzed
by eQ;ct means.

RECAL is general in the sense that it may accommodate the
situation in which all service centers are overlapped by all chains. Hence,
wé do not exploit sparsity or locality proper?ies of the routing. Rather,
the computational savings_can be attributed to the definition of the
recursion itself. When there is sparsity or locality, héwever, the
computational requirements dictated by the mathematical'definition of the
recursion are indeed diminished but in this paper we will only.concern‘
ourselves with the algorithm in its general form.

The paper is organized as follows. In the following Section we
define the class of queueing networks to be considered here. For'simplicity,
we initially assume constant speed servers at the service centers. In Section
3 we present certain new results which form the basis for the proposed

algorithm. The algorithm is then developed in Section 4. The computational
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complexity of the algorithm is derived in Section 5. In Section 6 we compare
this complexity with that of the convolution and MVA algorithms and demonstrate
the situations in which the proposed algorithm is useful. In Section 7 we
extend the algorithm to accommodate the situation in which there are state-
dependent servers. The paper concludes with an example of a network which

has been analysed using RECAL.

2. THE QUEUEING NETIWORK

We are concerned here with the analysis of multiple-chain closed
queueing networks of the product-form type which have been considered in
(1). There are N service centers and R closed routing chains. We will only
be concerned with cases where R>1. The service discipline at the centers
may be FCFS, LCFSPR, PS or IS, as in (1). The routiqg of customers belonging
to chain r is specified by a transition probability matrix with a left
eigenvector (visit ratio vector), agsociated with eigenvalue one, given bi
(elr""’eNr)' The mean service requirement for a chain r customer at center
iis t, .. We initially assume constant speed servers. At centers with a FCFS
discipline it is required that the service time distribution be exponential
with mean t, 7t for 1<r<R. The population of chain r is K_. We denote the
queueing network described above as N.

(R) (R)_ (ﬁgR)

An aggregate system state of N is n where n

(R)

, yes s ),
(R) . . .

a. ‘= (n,;,+..,0,.) and n,_ is the number of customers at center 1 belonging
s I il?* iR ir

(R)

to chain r. The space of feasible aggregate system states for N is S

where

N
In., =K for 1<r<R }.
. ir b o -

B, { EFR)l n, 2 0 for 1<i<N, 1<r<R;
i=1



The marginal state probability distribution is (1), for g(R)e S(R),
@, -1 Y w
Pr(n" ') =G I£.(") (2.1)
- . i=i
i=1 .
where
R n.
nSR)! Mw. **/ n. !, if center i is FCFS,
i 1 it ir
f.(nSR)) = T LCFSPR or PS,
i=—i :
R n.r
Tw, T /n, ! , i1f center i is IS,
ir ir -
r=1 :
L
®_ B . s - . e s
n. = In._,w. =t, e._ and the normalization constant 1s, by definition,
i ir’ ir “irir

N
= I I fi(ggR)) :
L g® il

§(®)

Since the cérdinality of the set is generally large, the computation
of G by direct summation is not feasible. In the following Section we

develop a new approach to efficiently compute G.

3. PRELIMINARY RESULTS

In this Section we present certain new relationships among .the
normalization constants of multiple-chain closed queueing networks and
new expressions for the mean performance measures in terms of these
normalization constants. They will provide the mathematical basis for the
algorithm to be developed in the following Sectionm.

'

Consider a multiple-chain closed queueing network, like N, but



with state-dependent servers at those service centers which do not have

an IS service discipline. Let the service rate fuﬁction for center i be
ui(n); that is, when there are n customers at center i the server
accomplishes work at the rate ui(n). Let ui(n) =n / (n+ci)’ where c; is’
a nonnegative integer. The physical interpretation is that there are ¢
customers at node i that cycle around continuously, at node i, and consume
on average a fraction l-ui(n) of the server capacity when the population
of node i‘ is n. Denote the normalization constant for such a network with
state dependent servers as GR(g) where ¢ = (cl,...;én). An explicit
expression for GR(E) is given in Appendix 1. Clearly GR(Q) = G since, if

¢ =0, then ui(n) = 1. We have the following results.

Theorem 1 :

GR(Q) is given recursively by

where

N R
{w| v, >0 for 1<iN; Zv,.= I K}, if 0<r<R-1,
i=1 s=r+l

{0}, if r=R,

_ N
L ={&] £, for 1<i<N; L £, =K_},
r 1 - . 1 r
i=1
N
g (v.,2) = QNh, (v ,b2),



K.'l-v]._r L. \
(' )w, ', if center i is FCFS, LCFSPR or PS,
v, ir
ir
° -
hir(zr’-@ = 2
w. >/ 21, if center i is IS
L 1T 1

and the initial conditions are Go(go) =1 for all v, € IO'
Proof : The proof is contained in Appendix 1.

Theorem 1 gives a new recursive expression for computing the
normalizgtion constant G = GR(Q). In effect, the normalization constant
Gr(gt) of a network with.r chains is.decomposed into a sum of normalization
constants for networks having (r-1) chaiﬁs and in which the customers of
chain r are fixed at the nodes and cannot depart. The number of networks
involved in this sum is the number of distinct ways Kr customers of chain r
may be distributed over N nodes. In our algorithm to compute the mean
performance measures, howevet,_we will not use Theorem 1 but rather a
simplified version of it (Corollary 1 below) which results when the
population of all chains is one.

Corollary 1 : If Kr = 1 for 1<r<R, then GR(Q) is given,fecursively by

N -
= <r< :
G (v.) ifl(ltYirGi)wirGr—l(xrfli)’ for 1<r<R, v € I,

.where li is a unit vector pointing in the ith direction, -
1, if center i is FCFS, LCFSPR or PS,
§, = ' 3 :

i 0, if center i is IS,

and the inigial conditions are Go(zo) =1 for all Yy € IO’ where now



N

| v., > 0 for 1<i<N; I
i0 - -,

i=1

I.= {v R }.

0 <0 vio ©

Proof : The Corollary follows directly from Theorem 1 when Kr =1 for 1<r<R.

Theorem 2 :
N

) = -1 ' ~
Pr(ngl) = Gpl0) Gy ®) T by(ky)

where Bp © (an,---anR):
k= Gk yeeesky)

r
k. :
ViR 1 if center i is FCFS, LCFSPR or PS,
and b.(k.) = < :
1 k.
1 1 . .
ViR / ki" if center i is IS.
-

Proof : The proof is contained in Appendix 2.
Theorem 2 gives a new expression for the marginal distribution
with respect to a particular chain R.

Theorem 3 : (a) If KR =1 and there are no IS centers in the network, then

N .
Gp1(Q) = 1.51 Gp-1(Lp) / (N+K-1)
R
where K= I K.
=1 T

(b) If x is an IS center, then G,_,(0) = G, _,(1).

R-1

Proof : The proofs are contained in Appendix 3.



We now give some results concerning the mean performance measures
for chain R when KR = 1. We denote the throughput, utilization, mean queue
length (node population) and mean waiting time (queueing+service) of chain

r customers at node i by Tir’ Uif’ Qir and wir’ respectively.
Corollary 2 : If KR = 1, then

[ N
e.
1R 2=1

TiR = < centers in the network,

Gp-1(Lp) / G (0)(N+K-1), if there are no IS

R R— 1(l )/ G (0), if there are IS centers and x is

any one of them,

Uik = %irTir?

-1
= Gp(Q) "Gy, (L, )w,

QiR‘ iR

and W.r = Qgr / Tyr-

Proof : It is well-known (2), (9), (17) that, in terms of the notation

adopted here, when KR =1, TiR (0)/G (0). The expressions for T

®iR R -1
" then follow from Theorem 3. The expression for QiR follows directly from
its definition and Theorem 2. The expressions for UiR and wiR are well-known

and based on Little’s result (11).

4. THE RECURSION BY CHAIN ALGORITHM -~ RECAL

The new algorithm for multiple-chain networks is based directly

on Corollaries 1 and 2 and the inf#roduction of the artifice of breaking
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down each chain r, with Kr customers, into Kr identical sub-chains, with
one. customer each. The basic idea of employing this artifice is to create
an artificial network in which Kr = 1 for all chains so that the recursion
of Corollary 1 can be applied. The artificial network has,.in general, a
different state space and normalization constant from the original network,
but we may nevertheless employ the artifice and obtain the correct values
for the performance measures since it alters in no way the physical
characteristics of the original network.

Let the network created from N, by breaking down each chain, be
denoted by N°. (We use a dot (°) to differentiate the notation associated
with N°.) The total population K° of N° is K° = g K_- The number of
chains R° in N° is, by the definition of N°, K° ::é the population of
chain r is K} = 1 for 1<r<K°. Let the customers in N° be enumerated as
1;2,...,K° and let the chain to which customer k belongs in N be r(k). We
then have, using Corollary ;, that G;,(g) is given recursively by

N

G (%) = i§1(lwiksi)"ir(k)cokq(Xk*li) (4.1)

N
o 0 = - . =K° -
€ I, where I? = { v | v, > 0 for 1i<N; izlvik K°-k }.

for 1<k<K°, Y.
The initial conditions are Ga(go) = 1 for all ¥y € IB.

Hence, by breaking down each chain in N into constituent
sub-chains we can apply Corollary 1 and circumvent, in particular, the
need to compute the terms gr(gr,é) which appear in the expression of
Theorem 1. We nofe that, in general, cﬁo(g) # GR(Q) since, in general,

e ®)

. Hence, we are no longer able to compute the normalization
. » .
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constant G = GR(Q) which is supposed to be of central interest. Nevertheless,

using Corollary 2, we may write

F' N
€ (%) L (12) / G °(0)(N+K -1), if there are
T;R° = < no IS centers in the network,
1r(R°) R 1(1 )/ G° (0), if there are IS centers
L and x is any one of them,
Q = : -]
Uire = Eir(r°)TiR®’
° = Q° -1
QiRo GRo(g) (1 )wu'(R )
and  Wp. = Q. / Thp. G.2)

The above expressions give the mean performance measures with respect to
a 44ngle customer who belongs to chain r(R°) in N. The normalization
constants in eq. 4.2 are obtained in the computation of‘Gio(Q) using

eq. 4.1. The key point remaining in the algorithm is that all customers
who belong to a particular chain in N are statistically indistinguishable

in equilibrium so we have finally for the network N :

Tiere) = Feere)Tires
Uirr®) ™ Kr(re)Vire?
QG rre) " Krro)re

and wir(R°) = w;R°' (4.3)

Hence, we are able to obtain the mean performance measures for a particular
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chain r(R°), using eq. 4.1, even though the value for G itself is never
obtained.
The mean performance measures for chains other than r(R°) may
be obtained by reenumerating the customers in N° so that r(R°) is changed
to another chain for which one wishes to compute performance measures.dsiﬁg i
"eqs. 4.1, 4.2 and 4.3. More specifically, suppose that the customers‘in N° are
initially enumerated so that the initial assignment of the customers in N°

to chaihs in N is r(l)(k) as illustrated in Table 1 and given by

1 for likfxl—l s
(1) i-l i
rr/(k) = i for 1+ I (K -1)<k< I (K _-1) , 2<i<R,
. r —= r -
r=1 r=1
R R
R-k+1+ I (K -1) for 1+ I (R -1)<k<K® . (4.4)
. r=1 r=1

Having arrived at G§°(g) using eq. 4.1 we may compute the mean performance
measures for chain 1 in N using eqs. 4.2 and 4.3. We then reenumerate the
customers in N° to obtain a new assignment of the customers in N° to chains

in N. Let the new assignment be r(Z)(k) as illustrated in Table 1 and given by

[~ R
r(l)(k) for 1<k< I (K _-1) ,
. r=l T
R
) = 4 1 forkel+ I (R-D,
r=]
1) R o
r '(k)+l for 2+ I (Kr-1)§k§K .
L r=1

The mean performance measures for chain 2 in N may then be obtained after
having recomputed G§0(2)~ In general then, after having computed the

performance measures for chain s in N we reenumerate the customers in N°
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so that
i R
(s)
(k) for 1<k<s-1+ I (K -1) ,
r=1
(s+1) R
ro (k) = < s for k=s+ I (K ~-1) ,
: r=1
(s) R .
r (k) for s+l+ I (Kr-l)fkjﬁ . (4.5)
" r=1

We then recompute G? °(0) and obtain the measures for chain (s+l). This
procedure of reassxgnment and recomputation of G, °(0) is rendered efficient

by storing Gx 1( ) for all Vel € Ix—l’ where

R
x=s8+ I (K-~-1)
r
r=l
so. that in the determination of the performance measures for chain (s+l) in
‘N we need not reevaluate eq. 4.1 for all 1<k<K° but only for x<k<K°.

We now summarize the algorithm which has been developed.

RECAL : A recursion by chain algorithm for computing mean performance measures.
. . -]
Step 1 : Initialize Go(v ) =1 for all v, € IO'
Step 2 : Enumerate.the customers in N° so that the assignment of customers
in N° to chains in N is r(l)(k), given by eq. 4.4, for 1<k<K°.
Step 3 : Compute and store G;(xx) for all gx € I;, where x=K°-R, gsing eq. 4.1.
Step & : For each chain s in N, 1<s<R :
Step 4a : Determine G, °(0) using eq. 4.1 and the stored values of

G(v), v ¢ I°.
=%’ -x x



Step 4b : Compute the mean performance measures for chain s using
Ggo(0), Gga_;(L.) for 1<icN, eqs. 4.2 and 4.3. Stop if s=R.

Step 4c’ : Reenumerate the customers in N° so that the assignment of -
customers in N° to chains in N is r8+1(k), as defined by eq. 4.5.

Step 4d : Increment x by 1.

Séep 4e : Compute and store G;(!x) for all v € I; using eq. 4.1 and fhe
stored values of G _, (v 1 % € Iy

=X

5. COMPUTATIONAL COMPLEXITY

In this Section we determine the time and space requirements of
tﬁe algorithm. We derive the number of operations (additions and
multiplications) and the storage space (number of elements) required. For
simplicity we assume that there are no IS centers in the network. When
there are IS centers, however, the computations are simplified slightly
since 6i=0 when i is an IS center.
5.1 Time requirement

Let us begin by evaluating the number of operations involved in
Step 3. The evaluation of the summation in eq. 4.l requires (4N-1) operationms.

The number of operations to obtain G;(gl) for all v, € I7 is

K°+N-2

N-1 ) s

(4N-1)(
the combinatorial term being the cardinality of I;. The total number of
operations to obtain G°(v_) for all v e I°, where x=K°-R, is therefore

X X -x x
K°=-R K°=-i+N-1

Z GN=-DC o,
i=l

) . (5.1)
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With s=1, the number of operations to carry out Step 4a is

K° R°=-i+N-1

TGN L ).
N i=K°-R+1 N-1

We will ignore the number of operations in Step 4b since it is

relatively small.

With s=1, the number of operations to carry out Step 4e is

R-1+N-1

N-1 ) -

(4N-1)(

In general, the number of operations required in Step 4a 1is

K° K°=i+N-1
z (4N-1)¢( N-1 - ) (5.2)
i=K°~R+s

and the number of operations involved in Step 4e 1is

R-g+N-1

(aN-1C oy

) . | : (5.3)

The total number of operations required by the algorithm is,

using eqs. 5.1, 5.2 and 5.3,

K°-R K°-i+N-1 R K® . K°=i+N-1 R-1 R-s+N-1
T (4aN-1)C )+ I T (4N-1)( . )+ I (aN-1)C o )
i=1 N-1 s=1 i=K°-R+s - Nl s=1 N-1
which simplifies to
K°+N-1 R+N-1 R+N-1
(4N=-1)( ( ) + ( ) + ( ) -1) . (5.4)

N N+1 N
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Now suppose that Kr = k for 1<r<R. Then K’ = KR. If we comsider K and N fixed,
then eq. 5.4 is a polynomial in R of degree (N+1). When R is large, eq. 5.4
is of the order of

’(4N--1-)‘. RN+1

(N+1)!

If we now consider R and Kk fixed, then eq. 5.4 is a polynomial

in N of degree (KkR). When N is large, eq. 5.4 is of the order of

8Nt/ (R-1)! , if k=1,

aNR/(er-1)1 , if ©>1.

5.2 Space requirement
The space requirement is dictated by the maximum storage space
which is required at any one time in the implementation of eq. 4.1. It is
assumed, for the sake of simplicity in implementation, that we compute
[ [ 3 .
Gk(!k) for all Y € Ik before incrementing k.

Suppose that G;-l(!k-l) has been computed and stored for all

[-] [ . .
Y1 € Ik-l' Furthermore suppose that the value for Gk-l(!k-l) is held in

an array at location Mk—l(!k—l)’ where Mk(g) is a mapping that gives
increasing values of the storage location index to vectors d that give
increasing values for the sum

N

D di<x°-x>i"1. | (5.5)
im1



Such a mapping has been introduced in (6,Section 4.2). The domain of
K -x+N-1
( 0

N-1

term being the cardinality of the set I;. An example mapping is given in

Mx(g) is I; and the range is {1,2,..., )}; the combinatorial

Table 2.

g -] -] L4
If we now compute the values of Gk(zk)’ v € Ik’ in the order

which gives increasing values for the sum

N i-1
.z Vik(K -k) »
1=1_
then a useful consequence is that after having computed G;(xk) using eq. 4.1
we may store the result at location Mk(!k) of the 4ame array which was used
to store Gk—l(xk-l) for all Vo1 € Ik—l' We illustrate this mechanism in
Figure 1. This storage procedure may be adopted since the value of G;—l(!k-l)
- . . -]

at location Mk(!k) is never required, after Gk(xk) has been computed, for
any of the computations of G;(I)’ where Y is any vector such that y € I;

' N . . . . . :
and Mk(x) Mk(gk). This point is proved in Appendix 4. As a result, the
required storage space to implement eq. 4.1 is only the cardinality of 18
\and not the sum of the cardinalities of 18 and I]. The cardinality of 16 is
(KN:?-I). In addition, Step 3 requires a storage space equal to the
cardinality of IE°—R which is (R;HII). The values obtained in Step 4e may

be stored in the same storage space used for Step 3. The total requirea

storage space for the algorithm is then

K°+N~-1 R+N-1
Car ) * O ) | (5.6)
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with K = K for 1<r<R and with N and K considered fixed, eq. 5.6

is a polynomial in R of degree (N~-1). When R is large, eq. 5.6 is of the

order of

If we now consider R and K fixed, then eq. 5.6 is a polynomial

in N of degree (kR). When N is large, eq. 5.6 is of the order of

aNR/RY , if k=1,

N¥R/R) 1, if ko1,

6. COMPARISONS IN COMPLEXITY

’

In this Section we compare the time and space requirements of
RECAL with those of the convolution and MVA algorithms.

If we use the version of the convolution algorithm (2) which
applies to networks with constant speed sefvers, as is the case here, the

total number of operations to arrive at G is

R
2R(N-1) T (K +1) (6.1)
: r=1 r

and the required storage space, in number of elements, is

R
2 I (K +1). . (6.2)
r=1 T :
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\The MVA'algorithm requires approxiﬁafel& the same time requirement
as eq. 6.1 (16) and the required stofage space is (2)
R
N I (X +1) (6.3)
r=1
We show in Appendix 5 that no computational advantage can be obtaingd in
the convolution or MVA algorithms by breaking down the chains in N into
sub—-chains.

In the previous Section we have seen that with N and K.considered
fixed, the time and space requirements of RECAL are polynomial in R; Hence, if
R is sufficiently large the time and space requirements given by eqs. 5.4 and
5.6, respectively, will be less than those given Sy eq. 6.1 aﬁd 6.2 or 6.3.

In Figure 2 we compare, for the purposeé of illustration, the
number éf operations given by eq. 5.4 with eq. 6.1 in the case where N = 4
and Kf = K for 1<r<R, for various values of K and R. In Figure 3 we coﬁpare
the storage requirements given by eq. 5.6 with eq. 6.2 in the case where

= 4, In Figure 4 we determine, for various values of K, the region in
the space of queueing networks (NXR) in which the number of operatlons
required by RECAL (eq. 5.4) is less than that required with convolutlon

(eq. 6.1). In Figure’5 we determine the region in which the storage space
requirement of RECAL (eq. 5.6) is less than that required with convolution
(eq. 6.2), In Figures 6 and 7 we give, respectively, several iéo-time and
iso-storage curves in the space (NXR) for RECAL and convolution in the case
where K = 3, We see from Figures 2-7 thaf RECAL is useful.when there are
many chains in the network. We finally note that when N = 2 the storége

requirement of RECAL, given by eq. 5.6, is linear in R.
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7. EXTENSIONS FOR STATE~DEPENDENT SERVICE CENTERS

In the previous Sections we have assumed, for the sake of
simplicity in presentation, that the servers at the service centers operate
at a constant speed. In this Section we extend RECAL to accommodate the
situation in which there may be state-dependent service rates. An attractive
feature of RECAL is that this extension may be made with little additional
complexity. In the convolution and MVA algorithms such an extension is not
so trivial (2), (9), (17).

Consider a queueing network of type N, but with state~dependent
servers at the service centers. Let the service rate function for center i

depend on the total number of customers at center i and be denoted
by Bi(n). At IS centers, with the definition of fi(Ei(R{) thét has been
adopted in Section 2, we have Bi(n)=1. With state-dependent servers, the
marginal state distribution for the network is (1), for B(R)e S(R),
N “ER) -
er@®™) =6t T Ce@®) /T oB(a)). (7.1)
- i=1 *77 a=1 '

Without loss of generality we need not explicitly consider the more general
situation, which has been considered in (1), in which there may be different
service rate functions, Bir(n)’ for each chain r.

o Using eq. 7.1, and the same line of reasoning used in the proof
of Theorem 1 (Appendix 1), we may show that GR(Q) is given by the same

recursive formula which appears in Theorem 1 but with

Livvi o 4 4
by (w) = CE 50 1 g (b, ), (7.2)
ir b=1

if center i is FCFS, LCFSPR or PS. The quantity Gr(xr)’ in Theorem 1, is now
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the normalization constant for a network of type N but with servers who
have state-dependent service rate functions ui(n)=3i(n+vir)n/(n+vir).
With these changes, we may then rewrite eq. 4.1 as

G;(gk) Z (1+v 6 )w (v, +1. )/B (1+v ) : (7.3)

i=1 ir(k) k 1k

Comparing eq. 7.3 with eq. 4.1 we see that little additional complexity has
been introduced to accommodate tﬁe situation of state-dependenqy.

The expression for the marginal distributi;n with respect to a
particular chain R, in the casé of state—-dependency, is unchanged from
" Theorem 2 except ﬁhat if center i is FCFS, LCFSPR or PS then
k k.

bi(ki) = W.p ty H B. (a) .

a=1

As a result, if K, =1, then Qg = GR(Q)_IGR_I(li)wiR/Bi(l) so that

R

o - Mo -1_,
Qe = Gao (@ N650_ (10w,

1

(zey/8; (D

_ Under the additional condition that there is at. least one IS
center in the network we have, in fhe case; of state-dependency,

° - a ' o
TiRe = ®ir(r*)%e-1\1y)/Cro(Q

" where x is any one of the IS centers. This eipression for the throughput
follows from the identity GR_I(Q)=GR;1(lx) and- the result that, when Ke=1,
T;g = ©;g0p-1(2)/6L(0) which is known to hold even in the case of state-
dependency (2,page 71). We also have, using Little’s result (11),
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%0 = Q2 /TS .
w1R° Q1R°/ iR°

If we assume that there are no IS centers in the network and that
there is state—dependency at all service centers, then the evaluation of
the summation in eq. 7.3 requires (5N-1) operations. The total number of

operations required by the algorithm is then, using eq. 5.4,

K°+N-1 R+N-1 R+N-1
€ i T G I G IR D
When there are IS centers the number of operations is reduced slightly
since 6i = 0 when i is an IS center. The required storage space, in the
case of state~dependency, is unchanged from eq. 5.6 except, of course,
for the additiomnal space required to store the network parameters Bi(n),

which we will ignore.

8. EXAMPLE ANALYSIS USING RECAL

RECAL has been programmed in C-language and run on the VAX-11/780
operating under UNIX IS-3. We present the analysis of a queueing network
with 4 service centers (Ne4) and 10 closed toutiné chains (R=10). The
population of each chain is 3 (k=3). Service center 4 is an IS center.

The parameters of the network and t@e mean performance measures, obtained
using RECAL, are given in Table 3. (We simply specify the visit ratio
vectors rather than the routing matrices.) The required storage space for
‘RECAL is 5742 elements (see Figure 3). The convolution algorithm would
require, according to eq. 6.2, 2.1><106 eleménts. The theoretical number
of operations for RECAL and convolution are 6.4X105 (see Figure 2) and

6.3X107.(using eq. 6.1), EesPectively.
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9, CONCLUDING REMARKS

In this paper we have presented RECAL,'a new recursive algorithm
for computing thé mean performance measures of multiple-chain closed
queueing networks. It is b;sed on certain new relationships which have
been derived among the normalization constants of multiple-chain closed
queueing networks and relies on the artifice of breaking down each chain
into constituent sub-chains. We have derived the time and space
requiremenfs of the algorithm and shown that, when the population of
each chain is considered equal, they are polynomial in the number of
routing chains. The efficiency of RECAL; compared with that of convolution
and MVA, becomes pronoﬁnced when thege are many chains in the network.
RECAL therefore extends the range of queueing networks which ‘can be
efficiently analyzed by exact means.

Wé conclude by noting that, when there is sparsity or locality
in the routing, the number of operations involved in the summation of
eq. 4.1 is reduced since the sum need only range over those centers i

which customer number k may actually visit.

ACKNOWLEDGEMENT : The authors are grateful to Dr. D. Potier of INRIA,

France, for several useful suggestions.
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APPENDIX 1
Proof of Theorem 1':

Gt(g) is the normalization constant of a queueing network of
type N with R=r, as described in Section 2, but with state-dependent
service rate functions ui(n)-n/(m-ci) at those centers which do not have
an IS discipline. Let the centers be enumerated so that centers 1,...,p
aré the ones with a FCFS, LCFSPR or PS discipline and p+l,...,N are the
IS centers. The aggregate system state distribution for this system

with state dependent service rate functions is (1)

()
n.
(r) -1 P r r Ms N I Bis
Pr(a ') =G (c) " T ({1 (ate)} Tw, “/o, 1) T (Tw "/o 1)
i=l a=1 s=1 : i=p+l s=l 18 1
where, by definitionm,
ngr)
(o) L R (T ave} Twi®/m 1) 1 (Twifm,
G (¢c) = a+c, w, /n, ! _ w., /n, !
4 (0 g(m) dml aml P eml 18 18 iapel gm 1% 18

But

s(r) = U S(l‘)(&)
Lel

r
where Lr was defined in Theorem 1 and

) - {g(")l 2P () 4. ap. for 1<i<n}
= - ir 4 -=

so that
. b g -
. 6 - gﬁ L 2(")2 s( ¢ iEI( ") i=g+1( )
Now “irl;l)"zi( (r-1)
a-c»ci) = (1+ci) .es (£i+ci)(£i+ci+1) cen (ni +Z£+ci)

a=1
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(x-1)

= (L.+c.)! %i '
i 1 I (a+l.+c.) .

1 1

c.! a=1
1
Hence
- P ﬂi N Zi
] .
Gr(S) = . 2 . izl((£i+ci)! wir/ci!li!)i=g+1(wir/£i.)
- r
(r-1)
P b ) r-1 niS/ "
. T IO (a+l.+c.)) Tw. "/n. 1)
. 1 1 o1 18 is
E(r)e S(r)(é) 1=1 a 1 S 1
N r-1n.
. n (I w.ls/nis!) .

i=p+l s=l

We now see that the sum on the far right is the definition:é6f

G__,(c+8) itself, so that

r-1
o P Zi+ci Zi N Zi o
G (c) = I (I .. v, I ow, li!)Gr_l(sfé).

Lel i=l 1T j=p+l

The initial conditionms, GO(E)’ are normalization constants of networks that
contain no customers. The only network state is the empty state and hence
Gyle) = 1.

The above expressions are valid for any c € C where
C={¢| ¢;20 for 1<i<N }. They are therefore valid for ¢ = ¥ _, where

v € Ir’ since IrcC‘. Hence,
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N
6(v)= L (Ih, (v,0))6 _ (v +L)
T -r _l_eri=1u-r r-1"-r

where hir(y_r,é) was defined in Theorem 1.
It now remains to be shown that the domain of Gr(y_r), in the

computation of GR(Q_), is :

[ , N "R
{v | v, >0 for 1<i<N; Z v, = I K }, for O<r<r-1,
-r' ir— -, ir -
i=1 s=r+l
I = <
r.
{0}, for r=R. (Al)

We show this by induction on r.

Clearly, IR = {0} since we only wish to determine GR(XR) for
Y = 0. Now
1 = U { v {3R+£}}= U {£}=LR

€ L Le LR

so that eq. Al is true for r=R-l.
We now assume that eq. Al is true for r=t and show that it is

- true for r=t-1. We have

I.y= U { v {v+}}= U { U {v+e}}
t-1 -t = -t =
\_rtelt &eLt &eLt xtelt
l N R 3
= U {(y+®)] v, >0 for 1<i<N; L v, = I K
Lel, -t 1 i=1 Y gatsl
N
Now £ € Lt so that £i30 for 1<i<N and I £i = K, . Hence,

i=l
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. N " R
1 = { (v +£)| v, >0 for 1<i<N; £.>0 for 1Li<N; I v.= L K ;
-1 € He St gml P gaper B
N
Ig =k}
i=1

‘ N R
= { (gt+£?[ (v; *£,)20 for 15icN; iEl(vituzi) = sith }

Defining a new variable Yeo1 = '(3t+_1’_.), we see that this agrees in form
with eq. Al.

APPENDIX 2 :

!

Proof of Theorem 2 : (we use some notation and definitions found in

Appendix 1)

" By definition

Pr(5R=5) = z Pr(g(R)

)
E(R) c S(R)(E) _
Now, using eq 2.1, we may write
| RELAE
Pr(n1R=k1,.1.,nNR=kN) =G i_’glwiR /ki! .
p ) R-1 n, N R-l1 n,
. L M (Pt Tw, /m, 0 0 ( Tw, /0,
4P k. N Kk
=¢! Hw.R"_ I wiRl/ki! .
i=1 ¥ ‘j=p+l
LB
P i R-1 o N R-1 n
. pX n¢n (a+ki)} Hwir /n. 1) I Mw, . /nir!) .

2R gR)pyiml  a=l r=l ‘AT jap+l r=l
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From the definition of Gr(g) in Appendix 1 we see that the sum on the far

right is the definition of GR_I(E) itself. Furthermore, G=G_(0), so that

-1 P ok Nk
Pr(n, =k, ,...,a =k ) = G."(0)G, . (k) Il w, I ow., “/k.! .
1R 1 oy’ = G (D6 fm1 R gapy iR T

APPENDIX 3
Proof of Theorem 3(a) :
When there are no IS centers in the network, using the definition

of Gr(g) in Appendix 1, we may write

L) - z @FDu) 1 @EFD1(T w, o, L)
B(R-l)e S(R-l) i=1 =1t
Therefore
Gpg (Lp) = G _;(0) E(n (R Dy v e (0
r-1'%¢ r-12

where E( * ) denotes expectation. Hence, when KR-I,

N

r1(Lg) = Gp_) (O (R-1) + Ne__ (0)

z 1 R-1

since
R-1
ZE( (Rl))- ZK = K-1.
=1 =1 T
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Proof of Theorem 3(b)
Consider the definition of Gr(_g) in Appendix 1. When ¢ = l—x ‘
and x is an IS center, we have c; = 0 for all 1<i<p in which case

) ).

Gr(_l_x) = Gr(_g). Hence G = GR,‘l 1

R-1
APPENDIX 4
We. need to show that the value of Gk-l(-!k-l) at location Mk(gk)
is not required in the computation of G;(x), where Y is any vector such
that y € T} and M (y) > M (v, ).
Proof :
"As can be seen from eq. 4.1, the computatiom of Gl‘:(l) requires
‘the values of Gli—l (1+li) for 1<i<N. We need to show that the value of
Gk-l (xk-l? at location Mk(zk) is not one of these.A Hence, we need to show
> ¢i< °
that M, ,(y*L.) > M (v, ) for any 1<i<N and Yy, such that Y € I} and
>
M (Y) Mk(gk).
We assume that M, _,(y+l.) < M (v, ) and show that this leads to
a contradiction. '
. e S < :
By the definition of Y, Mk(l) Mk(y_k) so that M __, (r"li) Mk(x).

Therefore, using eq. 5.5, we have

. N . N . N .
e-k+D) ez oy @eke1)IT < oy < Tyl (Ro-ke1) Y,
j=l J ) j=1 J j=1 J

Hence (K"'-k‘l-l)]'-1 < 1. Now 1<k<K°.and 1<i<N so there is a contradiction.
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APPENDIX 5 :

Suppose for the sake of simplicity that Kr = K for 1<r<R. When
we break down the chains in N, so that each sub-chain consists of one
customer, the number of operations to arrive at G° using the convolution

algorithm is, according to eq. 6.1, ZRK(N-I)ZRK. Now

R KR
2Rc(N-1)2 k(2™)
= 2k 21

2R(N-1)(t<+1)R (K+1)R

. K . . . . .
since 2 > K+l. Hence no advantage is obtained in the number of operations.

The storage space required in the convolution algorithm to obtain

G° is, using eq. 6.2, 2RK+1. Now

22 a0 = (9% (ee)R > 1,

Hence, no advantage in the storage space is obtained either.
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Figure 1 - Illustration of the implementation of eq.-4.1

(N=3, K°=2)
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Legend : ————-» Pointer to storage location of Gl:(!k)

—— Elements needed in the computation of Gl:(!k)
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Table 2 - Example of the mapping ux(g)
(N.s’ ,K°-3, x.O)

d ¥ (D)
300 1
210 2
120 3
030 4
201 5
111 6
021 7
102 8
012 9
003

-
o




Table 3 - Example anralysis using RECAL

number of nodes &
number of chains 10

discipline

chain chain population noda
1 3 1 fcts
2 3 2 fcfs
3 3 3 ps (or lcfspr)
4 3 4 - is
S 2.
6 3
2 3 all nodes constant speed servers
3 3
9 3
18 3
maan sarvice requiraments 3t the nodes
nods 1 node 2 node 3 node 4
chain 1.00e+C0 2.00e*00 2.00e+00 1.0Ce+00
chain 1.00e+CC 2Z2.00e+00 2.00e+00 1.002+00
chain 1.00e+00 2.00e+00 5.00e+00 1.0Ce+00
cnain 1.00e+00 2.00e+00 5.00e+00 2.00e+00
chain 1.00e+C0 2.00e+00 5.00e+00 5.0Ce+00
chain 1.00e+00 2.00e+00 1.00e+00 1.00e+00
chain 1.00e+C0 2.00e+00 1.00e+00 2.00C2+00C
chain 1.00e+00 2.00e+00 4.00e+Q00 4.0Ce+00
chain 1.00e+C0 2.00e+00 1.00e+00 4.00e+00
chain 10 1.00e+00 2.00e+00 1.00e+00 5.000+00
~visit ratios
nede 1 nade 2 node 3 node &4
chain 1 1.00e=C?7 1.00e=01 1.00e-01 1.00e-01
chain 2 1.00e=-01 3.00e-01 3.00e-01 1.00e-0C1
chain 3 1.00e-C1 1.00e=~01 2.008-01 2.00e~-01
chain 4 3.00e-C1 1.00e~01 6.0Ce=-01 7.00e-01
chain 5 1.000-02 1.00e-02 3.00e=-02 1.00e-C1
chain 6 1.00e-C2 1.00e-~02 2.00e-02 1.00¢-01
chain 7 2.00e-C2 5.00e=02 4.00e~02 2.10e-0C1
chain 8 1.00e~02 2.30e=01 1.00e-02 7.00e~-02
chain 9 1.00e~03 1.00e-03 1.00e-03 1.10e-C2
chain 10 2.000-03 1.00e=03 1.00e-03 4.C0e=-03
mean performance measures for chain 1
throughput utilization queue length waiting time
node 1 554385e-02 5.54385e=02 8.260380=02  1.490010+00
node 2 5¢54335e-=02 1.10877e-01 1.10497e+00 1.99314¢+01
node 3 5.54385e-02 1.10877¢-01 1.75699e+00 3.16926a+01
node & 5«54385e=02 na S«54385e=02 1.00000¢+00
mean performance measures for chain 2
throughput utilization queue length waiting time
node 1 1.90935e~=02 1.90935e=02 2¢900040=02 1.51886e+00
node 2 5728060~02 1.145610e~01 1.139506+00 1.989340+01
node 3 5.728C6a~=02 1.14561e-01 1.81240e+00 3.16408e+01
node & 1.90935e~02 na 1.9093250=02 1.00000e+00
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node
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node
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node
node
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node
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node

node
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node
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node
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mean performance measures

throughput utilization
1.7138022-02 1.71802e-02
1.71802e-32 3.43605e-02
3.43605e=C2 1.713020-01

3,43605e-02 na

mean performance maasures

throughput utilization
1.87193e=-02 187193e=02
6.239782-03 14247%6e-02
3.74387e=02 1.87193e-01

6.36784e-02 na

mean performance measures
throughput utilization
1.001312-02 1.00131e-02
1.00131e-02 2.002%63e-02
3.003%4e~-22 1.50197e=01
1.00131e~-01 na

mean performance moasures

throughput utilization
4.72%03e-02 4.72903e=02
"4,72903e-02 9.45807e~-02
9.45807e~=C2 9.,45307e=02

4.,729040=01 na

mean performance measures

throughput utilization
2.913260-02 2.91324e=02
7.23316e=02 1.456630~01

5.82653e~-C2 5.82653e=-02
3.,058%3e-01 na o

mean parformance measuraes

throughput utilization
4.232960=03 5.23296e=03
1.433582-01 2.86716e=01.
6.23298e-03 2.49318e=02

4.36307e-02 na

mean performancae measures

throughput utilization
3.66436e=02 3.66436@=22
3.6%54860e-02 7.32972e~02
3.66436e=02 3.66438e~-02

4.031340-01 na

mean performance measuras

throughput utilization
1.01828e=31 1.01828e~01
5.0913%e=02 1.01828e-01
5.09139e-02 5.091398-02

2.03656e-01 na

not applicablae

for chain 3

queue length

2.607360~02
3.73650e-01
2.56591e+00
3.43605e-02

for chain &

queue length

. 2483680e-02
1.39535e-01
2.744740+00
8.73569%e-02

for chain S

quaue length

1.521432-02
2.18528e-01
2.256560e+00
5.00657e-01

for chain 4

queue leaength

7.05930e=02
9.48854e-01
1.50765e+00
4.72904e-01

for chain 7

queue length’

4.38978e~-02
1.38341e+00
9.560910e~-01
6.11785e-01

for chain B8

queua length

9.56511e-03
2.381472+00
4.344420-01
1.745239-01

for chain 9

quaug length

5.46340e=02
7.30798e~-01
- 6.019812~01
1.61254e+00

for chain 10

queue length

1.47736e-01
9.98803e~-01
8.35183a=01
1.01828e+00

waiting time
1.51796e+00
2.17488e+01
7.46763a+01
1.00000e+00

waiting time
1.51544e+00
2.236220+01

'7433130e+01

2.0000Ce+0Q0

waiting time
1.51944e+00
2.1824619+01
7.54210e+01
5S.00000e+00

waiting time
1.492762+00
2.006440+01
1.594040+01
1.00000e+00

waiting time
1.50622e+00

" 1.899460+01
" 1.54920e+01

2.00000e+00

waiting time
153460e+00
1.661202+01
6.970C8e+01
4.00000e+00

waiting time
149212e+00
1.99407e+01
1.64258e+01
4.000002+00

1

waiting time
1 .‘OS 08‘0"00 ’
1.96175e+01
1.64038e+01
5.00000e+0Q0






