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ABSTRACT :

This paper is devoted to the two-product problem with joint production
costs and independent inventory costs. It gives an algorithm which leads to
the optimal policy in the infinite horizon case. This algcrlthm is the ex-
tension of the celebrated EOQ formula which was obtalned for the mono-pro-

duct problem

RESUME :

Ce papier est consacré au probléme 2 deux produits avec incitation aux
lancements groupés. Il propose un algorlthme qui ‘donne la pollthue optima-
le lorsque l'horizon est infini. Cet algorithme prolonge la célébre for-
mule des quantités économlques établie dans le cas d'un produit unique.



)., INTRODUCTION
[

Many papers have been devoted to the multi-products problem with con-
cave, individual inventory costs and concave, joint production costs (see
in particular A.EDWARD SILVER (1979), P.C. EDWARD KAO (1979), V.I.LEQPOULOS
and J,M.PROTH (1984)). On the other hand, the optimal policy of the mono-
product'problem'with concave costs, constant demand and infinite horizon is
given by Wilson's formula. In the following, we propose two algorithms which
lead to the optimal control of theAtwo-products problem with' individual
inventory costs and joint production costs when the horizon is infinife. The
demand is constant at each time unit for every product and the initial in-
ventory levels are equal to zero. We found that the optimal policy is pe-
riodic. The algorithms lead to the restriction of the optimal control to

pne period.
The paper is organized as follows:'
~ we first give some properties of a particular mono-product problem.

- we give some results concerning the two-products prohlem and deduce
an algorithm which leads to the E.0.Q.

-~ we finally bring up an exemple.



2. SOME _PROPERTIES OF A PARTICULAR MONO-PRODUCT PROBLEM

2.1. NOTATION

Let N be the horizon of the problem. £ 2 0 is the demand at time i
(i=1,2,...,N). 2 0 is the production level (or replnnlshment) dec1ded at
time i and avallable at time i+l (i=0,1,...,N-1). v={v Vo> l’ V- l} is cal-
led a control (or solution) of the problem. We denote by Y; (1 0,1,...,N) the

inventory level on [i,i+1). The following relations are called state equations:

Yiel= Y * Vi - & 02 0, 1,.e., N-l (2-1)
' We suppose that backlogging is not allowed, i.e. :
y# 0 for i= 0, 1,..., N (2-2)

Y= (yo,yl, . ,yN) is the seauence of inventory levels correspondlnq to

v startlnq from Yo and using (2-1).
|  We also consider two types of cost tunctions for i=0, 1,..., N—l :
t. fi(y)zby, béﬁf+ and yeBT, is the cost of holding in stock a quantity
y at time i for one period until ji+l. fi is positive, nom decreasing énd‘
concave.

2.'ci(v): Kin>0+ av, where Xv>0= 1 if velR and O otherwise, Kisﬂf and

»aem+, is the cost of ordering a quantity v at time i. c; is positive, non

decreasing and concave.

Let us consider a control V and the corresponding sequence of in-

ventory levels. If Y verifies (2-2), V is said to be adm1331ble
~ The total cost corresponding to the admissible control V depends on y
It is denoted W%(yO,V)
Bygo\) = Z [e;(vp) + FlyDT

o’

®




or :
N-1 N-1 N-1

%(YU’V) = biZU yi+ 'izc'x\)i>0|(i + aizo\)i (2-3)

Let D be the set of admissible controls. If V*eD and

%(YU’V*) = eiB%yD’V) ’
€ N
then V* is said to be optimal for the N-horizon problem.

Note that Ki depends on i :the above problem is then non stationary

and more general than Wilson's one.

2.2. PROPERTIES OF THE OPTIMAL CONTROL

The following results are well known (see in particular [1], (2], [3]
and [4]). They.hold for every problem with concave and non decreasing cost

functions.
There exists an optimal control V ={Vg’ Viseees V N-l} which verifies :

1. v,.> 0 if and only if yi<£ , except perhaps for the first striétly posi-

tive vy (Y:-{yo,..., yN} is the sequence of inventory levels corresponding
to V). . '
2. if v; > 0, then y;+v.= (r-i)& , with r e{i+1,..., N} (2-4)

In the case of Ki =K eR+', Vi e{O, 1,004, N-l}, the problem becomes

stationary and property 1 is true without exception.

2.3. ADDITIONAL PROPERTIES OF THE PROBLEM DEFINED IN 2.1.

Let V:{vo, Viseess VN-l} be an optimal control which verifies (2-4).
We denote by P0 the above problem and by Pl the problem obtained starting

from PO by putting Ki in the place of Ki for an ile {0, 1,..., N-1} which
1 1



satisfies v. > 0. We choose K% < K. .
iy i i

Theorem (2<1)

V is also optimal for Pl'

1

Prpof :

Let us consider an admissible control W which is not optimal for

'Pl :
G ygV) < By - (2-5)
Furthermore, considering the definition of Pl and (2-5) :
wl 1 0 1
G (V) “Blygsv) - (k; ;) oy - (K ki) (2-6)

If W= {wﬂ’wl""’WN—l}’ we have to consider two cases :

1, w; = 0. .In that case :

1
G lygo) By (2-7)
2w > 0. In that case :
GO ygW) B (ygot) + (Kil~ Kil) | @)
From (2-7) and (2-8) :
G (ygoi) - K ) 5@ 29

Finally, (2-6) and (2-9) lead to :
ng(yo,v) 5%?l(y0,w) 0

Remarks ::

1. Ifv, =0, theorem (2-1) doesn't hold.
1
2, If V is optimal for P|, v, =0 and K1<K. , then it is possible to
K ll ll ll
prove similarly as above that V is optiMal for P.




Theorem (2-2)

0 .0 0
et VO = {\)0, Visenes "N-l}
1 1

V1 = {vo, Viseses vﬁ_l} an optimal control for Pl'

an optimal control for P0 and

If vg = vi = 0, then V0 is optimal for Pl and Vl is optimal for
1 1
Proof :

v? 70 leads to :

l Gy Sy (2-10)
VO is optimal for éU’ then :
& (g V) <@ (yyvH (2-11)
vilbeing equal to zero, we can write :
By By vh | (2-12)
We deduce from (2-10), (2-11) and (2-12) :
Gy By vh) o (2-13)
And, Vl being optimal for Pl’ we can write :
G (yg V) sE (yy0?) (2-14)
Finally, considering (2-13) and (2-14) : |
G (390" =G (ypvH) | (2-15)

and VU is optimal for Pl‘
Considering (2-10), (2-12) and (2-15) we obtain :

G lygv®) “Blrygvh)

and V! is optimal for Pg. o



2.4, THE OPTIMAL CONTROL OF THE N-HORIZON STATIQNARY PROBLEM

Let us now consider the N—horizbn problem defined in 2.1 with Ki=K
whatever ie’{O,l,...,N—l} may be. This problem is stationary. In addition,
we assume that Yg=0- We denote by E(x) the integer part of every x ¢ R.

 The following properties will be useful in the study of the two-pro-
ducts problem.

Thearem (2-3) -

.Let‘ bé p=~ (—'l+‘/1+4%)/2. - (2-16)

p is always greater than zero.

1. If p > N, the components of the optimal control are equal to zero,
except the first one which is equal to N§.

2. If p SN, we set :

N/E(p) if E(p)=p
a= ) \ (2-17)

N/(Ep)+1) if Ep)#p
and 3 |
| a= N/ &(a)), s)=N-q, .&(a) (2-18)
ap= EN/(€a)+1)), sysN-q,@a)s1) (2-19)

2.1. Let us first assume that a=&€(a). In that case, an admissible
control is optimal if : ‘

-. 8, of its components are equal to (ql+l)€'.

. 6(3)-81 of its components are equal to qlC. - (2-20)

- the remaining components are equal to zero.

2.2. In the case of aZ £(a), an admissible control is optimal either



if it verifies (2-20) of if it verifies :

- 8 of its components are equal to (q2+l)€.
. éTa)+1—sz of its components are equal to ng. (2-21)

. the remaining components are equal to zero.

Proof :

a. Let Dr be the set of admissible controls whiech have r strictly po-

sitive components (1 £ r £ N) and which verify vi.yizﬂ, i=0,1,.,.,N=1 (\)i

are the components of the control and y; are the corresponding stock le-

*
vels). We set q= €(N/r) and s=N-qr and we denote by Dr the set of controls
which verify :

*
1. Dr(: Dr
]
N- €(N/r).r of its components are equal to (€ (N/T)+1)E.

2.{(1+&(N/r))r-N of its components are equal to € (N/r)E&.

the remaining components are equal to zero.

*
We first prove that, whatever V*e Dr may be, then

C5(yo,\/*) - Mincé(yo,\/)

VeDr
If V:{vo,vl,...,vN_l}e Dr’ then :
V0=nl£’ \)nl:nzg’ Tt ’an+n2+. . .+nr_l:nr€'
:agd v;=0 for i €{0,1,...,N-1} and i #{D,nl,nl+n2,...,nl+n2+...+nrhl}

The cost is then :

n.-1

r .

C\6()’0,\/)2 rK+ aNE+ b z ( J) (2-22)
i=1 \j=1

H o~—7-



n.-1

assuming that

1 O~

j=0 when n.=z1
. i
Jj=1

 The minimum of (2-22) is obtained by choosing NpsNoyeeesn, which mi-~

nimize :

n.-1
r 1 T
) ( Yol with Zni=N
i=1 \ j=1 i=]l &

" The solution of this problem is known :
ni:€(N/r)+l for N- &(N/r).r of the i-index.
ng= E(N/r) for the (1+ E(N/r)).r-N others.

The proof of the first part of the theorem ig then finished.

: *
b. Let us now consider V'e D y T e{l,Z,...,N}.
v . . r

Starting from the previous results, (2-21) becomes :

1@ yg,V")=[K-bEq(q+1)/2]r/N+ bEar ak (2-23)
N

with g= €(N/r) .
The problem consists in finding 'V le D: which verifies :

1
”J
%(YO’V )= Min (YO,V )
re l 2,...
The function (2-23) is continue on {l,N],‘linear on every interval
[(N/(N-i+2), N/(N-i+1)], i=2,3,...,N. In addition, it is easy to prove that
this function is convex.

Lef Ty be the smallest value of r verifying
h(q)= K- bEq(g+l)/2 2 0 (see (2-23))

This value is the smallest integer greater than or equal to p. Star-

ting from thls remark, a short discussion leads to the theorem. o
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2.5. ECONOMICAL ORDERING QUANTITY (E.0.Q.) FOR THE MONO-PRODUCT PROBLEM

The £.0.Q. is the integer value which minimize the total cost per time

unit if the horizon is infinite, i.e.:

w(q)= g + bE(q1)/2+ af (2-24)

The relation (2-24) is obtained starting from (2-23) by replacing ﬁ
1 1 . . . .
by 1 = EYN7;7 . It is the cost per time unit expressed using the mean rep-
lenishment and it is a convex function of q.

The minimal value of w(q) is obtained by setting s

g= §= \/2K/(b£) (2-25)

The optimal replenishment g*¥f is then obtained as follows :

1. If @ £ 1,then g*=1 : each component of the optimal control
is equal to E.

2. If g > 1, we have to consider twoc cases :
2.1. If 3= &3§), gq*=3
2.2. If g# &(q), then :
a*= &@) if wlf@] < wl&@+ 1]
;q*= EG)+ 1 if not

(2-26)

It is easy to show that :

p £3 < p+tl (see theorem (2-16)) (2-27)
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3. THE STATIONARY TWO PRODUCTS-PROBLEM WITH JOINT PRODUCTION COSTS

3.1. NOTATION

. We consider the N-horizon problem in the case of two different pro-
ducts denbted by 1 aﬁd 2.For j=1,2, Ej is the demand of product J at ti-
me i (i= 1,2,...,N) and vg is the production level (or replenishment)
‘concerning the oroduct j, decided at time i and available at time i+l

(i= 0,1,...,N=1). -

We denote by yg (j= 1,2 and i= 0,1,...,N) the inventory level of pro-

duct j on [i,i+l).

The following relations are called state equations :
yg+l: yf +v£ -8, J= 1,2 and iz 0,1,...,N-1 ‘ (3-1)
Backlogging is not allowed,lthen :

v} 20 for iz 0,1,...,N and j= 1,2 (3-2) -

and we assume that :

= yn= . (3-3).

Jy=1,2_
BUNITRE S il T }i:n,l,,..,N-l

={yJ1i=1,2_
y = HE {Yi}i=0,l,...,N

yee ey

is the set of inventory levels corresponding to V starting from yé,‘yg

and (3-1).

If Y verifies (3-2), V is said to be admissible.

We also consider :
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1. for iz 0,1,...,N-1 and j=1,2, fj()’)' byy(b; ¢R *and y eRT). It is
the cost of holdlng in stock a quantity y Of the oroduct j at time i for
one period until i+l.

2. for i=C,1,...,N-1 and Vi={“i’“§}’ the cost of ordering a auantity Vi o

product 1 and v? of product 2 at time i (also called production cost) is :

JV)

i 1 2
ci(vi)_ K - @)V azvi

J(V )

+ ? 1R+,K YeR* and :

(ale]R+, a7eJR+ “¢R

IV lx x|

\)>0 \)>0

The followina definition holds :

X =

gl 1f the condition a is true
a

0 if not

We assume that :
{o s max[k {10} 10 1hye ({1, 1hg W frs0lfoab (5,

10,0} g

The total cost corrésponding to V is then :

N-1 J(V )

2 1 2 1 2
A(yo,yO,V)-igo[ +alvi+azvi+blyi+b2yi] (3-5)

If D is the set of admissible controls, V* is said to be optimal if :

%(yoiyOyv )— Mlg (YO,YO,V) (3—6) »

-~

This problem will be denoted PZ(N) in the following. Pz(w) is the in-

finite horizon problem.



)
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3.2. AN E.0.Q. ALGORITHM FOR THE TWO-PRODUCTS PROBLEM

We denote by G (N)(k l 2) the mono-product problem w1th the initial
stock level yO-O, a demand E at each time i (i=1,2,...,N), 'the inventory
cost function f and the ordering (or production) cost function :

z?(V): Kk+ aV, v2o ) | (3-7)
where : _
K = K(1,0) (O,1)

K if k=2

if k=1 and’Kkz K
Gk(N) becomes Gk(ﬁ) when the horizon is infinite.
We first give some properties of the two-products infinite horizon pro-

blem. These properties will be used in the following algorithm.

Theorem (3-1)

At least one optimal control of Pz(w) is periedic.

Proof :

Let us denote by V:{Vl,Vz} an optimal contrel of Fé(m).

a) We first prove that there exist 0= < Ny<
1 2

V, =V, >0 for k=1, 2,... (3-8)
k k

Supposé that (3-8) does not hold. For k=1,2, \'/k would be the optimal

control of Gk(m), and we know that it is periodic. This hypothesis leads to

«..$.. which verify :

(3-8) for k=r where r is the least common multiole of the two periods : this
contradicts the fact that (3-8) does not hold.

b) Because V is optimal, its restriction te any per iod [nk, nk+l]’

k=1, 2,...., leads to the same cost per time unit. Consequently, the con-

catenation of the restriction of V to any [nk,nk+1] periedic time with it-

self is optimal and periodic.. _ a
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Theorem (3-2)

Let us denote by T the period of the optimal control of Pz(w). Let \/k

(k=1,2) be the optimal control of Gk(T). Then :
2)

V= (vl,v is an optimal control for PZ(T)'

Proof_:

T being optimal for Gk(T), it is also optimal for the problem G;(T)
obtained starting from Gk(T) by replacing the production cost function
k
zo(v) by :

;k(v)z K(l’l)— K3—k+ a Vv (see 3-7)

This item is a consequence of the theorem (2-1), taking into account
the fact that k(110 g K, (see (3-4)). Finally : |

z

3-k <

*
V,is an optimal control for Gl(T) and VZ is an optimal control for GZ(T)'

Vi
Then V= (Vl,V‘) is optimal for PZ(TX

Theorem (3-3)

*
Let qkik be the strictly positive components of Vk(w), optimal control

Letéz;be the least common multiple of qi and q;. %;is an upper bound
of the period of the optimal control of Pz(w).

Proof :

qaf nkqﬁ, k= 1,2.
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wWhatever N >%5’may be, V (N), optimal .control of G (N), contains more

than n, components equal to q;i : it is a consequence of (2-27) and theorem

2-3.

For k= 1,2, we choose the N first strictly positive components of
vK(N) equal to qrX. It leads to  vEIN)>D and viN). v%w) > 0. Then
nyN)— y N)= 0, where y N) and %TfN) are the 1nventory levels of products
1 and 2 on fo%;+l), and this item is true whatever N >§5’ may be. The theo-

rem is proved. ’ q

The following algorithm is based on the previous results.

1. For k= 1,2 , compute (see theorem 3-3 and paragraph 2,5):
1.1. q;
k, . . ' . . .
l.2.€a (<), optimal cost per time unit of Gk(w)
2. Compute@Z;, least common multiple of af and q;.

3. Set : .
1
3. 2 U= %a GD) %& (), upper bound of the optimal cost per time unlt of P (m)
(see theorem (2-1) and its proof)

4. For m= 1,2,3,..., (see theorems 3-1 , 3-2 and 3-3 ):
4.1. For k= 122 , compute (see theorem 2-3 ): '
4.1.1. %%,(m), optimal cost per time unit of G (m)

4.1.2. v (m), optimal control of Gk(m)
4.2. Compute : |

a2 (m)+ L2 (m)- L [<1 ,0), (O,U_K'(l-,l)]

4.3, If agU and v;(m).v;(m)=ﬂ for iz 1,2,..., m-1 :
4.3.1. U= a
4.3.2. h=m
1 2
4.3,3. V= (V' (m),V"(m))

Finally, U is the optimal cost per time Qnit of the two products prob-
lem Pz(m), h is the period of the optimal control.and V is the restriction
to [0,h] of the optimal control of PZ(W).'
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4. AN EXAMPLE

We use the notation of the paragraph 3.1.

We choose :

al: az= 0

1025, k(012 45 (D), g

’

i"bl: b2= 0

Using (2-25), we obtain the following results :
1. the period of the optimal control of Gl(w) is 5 or 6.

2. the period of the optimal control of Gz(w) is 3.

We then have to compute the optimal controls of Gl(N) and GZ(N) for
N=1,2,3,4,5,6, to deduce the optimal control of PZ(N) for every value of
N and to retain the optimal control corresponding to the smallest cost per

time unit.

We summarize these results in the following table :

N |Optimal cost of Gl(N) Optimal cost of GZ(N) OptimaifcgigNger time unit

1 15 4,5 15+4,5-4,5 = 15

2 16 5,5 (16+5,5-4,5)/2 = 8,5

3 18 7,5 (18+7,5-4,5)/3 = 7

4 21 10,5 (21+10,5-4,5)/4 = 6,75
js 25 | 13 (25+13-4,5)/5 = 6,7

6 30 15 (30+15-4,5)/6 = 6,75
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The problem which leads to the smallest optimal cost per tlme unit is
then P (5) and the optlmal control of this problem is V= {V (5),v (5)}
where V K(5) is the optlmal control for Gk(S) (k=1,2).

We obtain.:

vis) = (5,0,0,0,0)

and v2(s) = (3,0,0,2,0)

Finally, the optimal policy for the infinite horizon problem consists

in ordering product 1 as shown by Vl(S) and product 2 as shown by VZ(S) on

—-every five time units period.

5. CONCLUSION

The above algorithm is based on the following properties :

1. if T is the perlod of the infinite horizon two products problem opti-
mal cost, then its restriction to the T-horizon is optimal for the

T-horizon problem.

2. an upper bound of T exists, and this upper bound is easy to obtain.
Let us denote by qg’this upper bound.

3. we only have to compute two optimal controls of mono-product N-horizon
problems for N= 1,2,...?25 in order to obtain- the optimal control of

the T-horizon problem.

Properties 1 and 2 hold for the M-product problem, whatever M 2 2 may
be. Unfortunately, property 3 is only true for the two-products problem. It
is then possible to obtain an algorithm similar to the previous one whate-
ver M 2 2 may be, but it needs the computation of the optimal control of
-the M-products N- horlzon problem for N= 1,2 qg’ The exact solution of
this problem is known in the general case (see[lo]),but the amount of com-

putation is proportional to NM+1.
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