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ABSTRACT: The design of adaptive algorithms for the purpose of the tracking of slowly
time varying systems is investigated. A criterion for measuring the tracking capability
of an algorithm in this situation was introduced in an earlier work; the domain of validity
of this criterion is shown to be much wider than expected before. On the other hand,
multistep algorithms, introduced in the Soviet litterature, are generalized and
systematically studied; they are shown to provide significant improvements over the
classical (one-step) methods for the purpose of tracking. Finally, a complete design
methodology for adaptive algorithms used on time varying systems is given.

CONCEPTION D'ALGORITHMES ADAPTATIFS MONO- ET MULTIPAS
POUR LA POURSUITE DE SYSTEMES NON STATIONNAIRES

RESUME: Dans ce papier, on examine les problémes posés par l'utilisation d'algorithmes
adaptatifs pour la poursuite de systémes lentement variables dans le temps. On introduit
un critére de qualité permettant d'évaluer a priori la capacité de poursuite d'un
algorithme. D'autre part, l'on s'intéresse aux algorithmes multipas introduits dans les
travaux de l'école Russe; ces algorithmes multipas ' présentent des intéréts pour la
poursuite de systémes non stationnaires. Enfin, on donne une méthodologie -compléte
pour la conception d'algorithmes adaptatifs dans ce contexte.
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PART I: INTRODUCTION, EXAMPLES, AND THEORETICAL BACKGROUND.

Among several other reasons, the success of adaptive algorithms in signal processing
and automatic control is due to their ability to track slowly time varying systems with
time invariant models. But, surprisingly, little has been done in order to obtain a
convenient theoretical framework for analysing this problem. In order to define more
precisely what we have in mind with the "tracking of slowly time varying systems",
let us recall the problems that are encountered in the design and analysis of adaptive
algorithms.

The first problem is the problem of convergence (or consistency in the framework
of statistics): in this case, the true system is assumed to be time invariant. This is a
wellknown problem we will not talk about.

The second problem is the transient behaviour: how fast the adjusted parameter
converges in the vicinity of the desired value after an initialization, or after some abrupt
and "large" change in the true system? To my knowledge, only rules of thumb are now
available to handle this problem. ‘

The third problem is the convergence rate: the true system is assumed to be time
invariant, and one is interested in the speed of convergence of the algorithm to the
desired value of the parameter after a long period of time. Extensive studies have been
done in this direction, in the litterature of statistics as well as in the litterature of
identification. Again, this is not the purpose of this paper.

Finally, the tracking problem we want to investigate in this paper is the following:
assume that, after some transient period, the adjustable parameter has approached
to the vicinity of its desired "true" value. We want now to investigate what happens
if the true system is varying "slowly" with time. It has been recognized for a long time
that a good way of modifying the classical adaptive algorithms (i.e. with decreasing
gains) is, either to introduce a forgetting factor, or to use constant gain algorithms
(see Ljung & Soderstrom (1983)). Another way is to set the identification problem in
such a way that the tracking is obtained through the use of an extended Kalman filter
(see Bohlin (1977) for a first attempt in this direction).

A first family of papers has been involved in getting upper bounds of the short time
mean square error (by error, we have in mind the deviation of the estimated from the
actual value of the parameter), by only assuming that the speed of variation of the
true system is bounded by some deterministic constant. The work of Farden & Sayood
(1980) belongs to this family, where the "Widrow" LMS algorithm is investigated in the
case of independent regression vectors. But the most interesting contribution has been
given by Macchi & Eweda (1981) for the same algorithm, but for m-dependent regression
vectors and with more illuminating results. In fact, I should say that this paper is the
only rigorous treatment of this problem which avoids the use of any asymptotic argument,
but this method applies to this simple algorithm only.

A second family of papers uses asymptotic arguments for the prupose of the analysis,
thus resulting in questions like "what is the domain of validity of the approximation?",
but with more general methods, and results leading to effective design methods for
adaptiva algorithms. To this family belongs the pioneering work of Widrow & al.(1976)
where the LMS algorithm is analysed for independent regression vectors. Let us also
mention the work *of Benveniste & Ruget (1982) for general adaptive algorithms with
- constant gains. Related to this approach is also the work of Kushner & Huang (1981)
where a diffusion model is given for describing the behaviour of a general adaptive
algorithm in the presence of time varying systems, and of Kushner & Huang (1982),
where the digital phaselock loop is analysed. Finally, a recent paper of Widrow & Walach
(1984) presents results similar to those of Widrow & al (1976). The present paper also
belongs to this class; compared to our previous work, we shall introduce our asymptotic
analysis in a more satisfactory way, thus resulting in a large possibility of generalization.
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As we shall see in this paper an interesting generalization will be the analysis of
multistep adaptive algorithms ‘in the case of the tracking of -time varying systems.
Multistep methods for the finite difference approximation of differential equations
are wellknown in the field of numerical analysis, see Henrici (1963) for a classical
treatment. Howewer, multistep algorithms have been also.introduced in the field.of
stochastic approximations of the Robbins-Monro type by several authors of the Russian
school (Shil'man & Yastrebov (1976, 1978), and the remarkable paper of Korostelev
(1981) where multistep algorithms are analysed from the viewpoint of the large deviation
theory), and by Ruszczynskyi & Sysky (1983). Shil'man & Yastrebov have investigated
in"a heuristic way and by simulations the transient behaviour of multistep algorithms,
showing that interesting improvements can be obtained in some cases. But a long
discussion occurred in the Soviet litterature about the convergence rate of those
procedures: some of them are shown to be less efficient, and other as efficient as the
classical one-step methods. One of the pruposes of the present paper is to clarify this
discussion.

The purpose of the present paper is to give quantitative design methods for both
one-step and multistep adaptive algorithms in the case of the tracking of slowly time
varying systems. Although the approach is fairly general, the results are more relevant
to adaptive signal processing thant to adaptive control. The questions to which we shall
give an answer are the following:

(i) Is it possible to measure a priori (i.e; without any -prior knowledge of the possible
disturbance acting on the true system) the tracking capability of a given adaptive
algorithm? ‘ :

_(ii) How to design in an optimal way the algorithm when the characteristics of the
.disturbance are approximately known? (Optimal design means here the choice of a one-
or multistep form of the algorithm, and of the corresponding gains).

The paper is organized as follows. First of all, two basic examples will be introduced
for the purpose of the illustration of our approach; then the necessary theoretical
background will be presented. ‘

The second part of the paper will be devoted to the analysis of one-step algorithms,
i.e. classical ones. A new asymptotic analysis will be presented; and answers will be
given to the two questions mentioned above. The tradeoff tracking/accuracy will be
analysed for both zero- and non zero drift models of the time variations of the true
system. A link will be established between the measure of the tracking capability, and
the classical Fisher information matrix.

The third part of the paper will be devoted to multistep methods. Multistep algorithms
will be shown to improve the tracking capability, and the problem of the optimal design
-of a multistep adaptive algorithm will be solved for non zer drift models of the time
variations of the true system. A connection will be established with the Kalman filter
approach and the "smoothness priors" of Gersh & Kitagawa (1984). s



I TWO TYPICAL EXAMPLES.

I.1 THE DIGITAL PHASE LOCKED LOOP.

We refer the interested reader to Benveniste, Vandamme & Joindot (1980) for a
more detailed presentation. Let us consider the case of the 4-PSK (Phase Shift Keying)
transmission scheme in data communication; we shall describe this system in the baseband
equivalent form (Falconer (1976)). An i.i.d. complex signal (ag)of the following form

a: » o { ©/4 + k2v /4, k=0,1,2,3 } (1.1)

is sent through a complex c'hannel; the receiver observes the complex signal
y = ( Z 81 at-k v, 1.2)

where (s, ) is the channel (including the baseband equivalent effect of the transmission
and reception filters, together with the effect of the proper channel, the noisev being
also complex); ¢« is the phase shift due to the channel. The model (1.2) is redundant
unless we assume the normalizing condition sy >0 . Assuming that the distorsion of
the channel is small, i.e.

) Iskl << 5o (1.3)
k#0

the main degradation is then due to the unknown phase shift ¢4. The purpose of the
DPLL is then to estimate this phase shift, to rotate the received signal by the opposite
of the corresponding estimate ¢ , and to apply a simple decision rule to ye-e 1%t for
recovering an estimate 3 of the message. Typical algorithms for estimating ¢ are the
following

ea1 T b T e (o), ¥20 a9

where

et(¢) = Im( y4 e-i4¢ ) ( Costas Loop)
, : (1.5)
-i¢ ¥ o

et(cp) = -Im( y, e at(¢,) ) (Decision Feedback Loop)

where 3,(¢)is given by

ét(¢) = sign( Re Y, e-i(b) + i sign( Im Y, e-i¢ ) (1.6)

(the superscript * denotes the complex conjugate).



1.2 THE LEAST SQUARES ALGORITHM.
Let (y.)- . be a signal of the form -
y, = ¢ .8_+v o : L (1.7)

where (C2D) is an n-dimensional regression vector, and (ve) is a zero mean process
such that v, 'is independent of ¢, . The Recursive Least Squares (RLS) algorithm with
constant matrix gain is given by '

See1 = 8, FAG, e (8)

(1.85

. T
0 C = - .6
et( ¢) Ve © %%

where A is a constant matrix gain to be chosen.

I THEORETICAL PEREQUISITES.

' The general form of adaptive algorithms we can use for the two examples introduced
above is the following - = - : : :

b1 = & * Avt(et) , 6 €eR . (1.9)

where A is a constant matrix gain, and, for 6 fixed, (Ve (8)) ez is an ergodic stationary
random vector field; less restrictive forms are also used in the litterature, see for
instance Lung & Soderstrom (1983), and Métivier & Priouret (1984), where a more general
conditional Markov model is used. For the sake of simplicity, we shall restrict ourselves
to the case of stationary random vector fields, but the method we use extends without
any modification to the more general models we mentioned above. The classical tools
for analysing the algorithm (1.9) are now given.

For the prupose of the analysis of the small gain case, let us modify (1.9) by
introducing a small parameter :

et+1 = et + v A vt(et) (1.10)

II.1 THE ORDINARY DIFFERENTIAL EQUATION (ODE).

The ODE associated to (1.10) is'defined by

6= AvV(e) , V(g) = E(V,(8)) (1.11)

and we shall denote by -



8(t) , 120 4 (1.12)
the solution of the ODE such that 5(0)=e0 . Then we have the following result:
Theorem 1: let T be finite or infinite. Then, for every positive ¢ , we have

lim P { sup ||6t - é(tY)H >e }=0. : (1.13)
y~>0 0=ty<T » ' :

Without any further assumption on the ODE, we must assume T finite in this theorem
(Benveniste & al. (1980)), whereas we can assume T infinite if convenient stability
conditions are satisfied by the ODE (Derevitskii & Fradkov (1974)). Typical assumptions
for the theorem 1 to be valid are the following (precise statement can be found in the
above mentioned references, and in Métivier & Priouret (1984)):

Assumptions for the theorem 1:
for o fixed, (Vt(e)) is ergodic ' (1.14)
8 - Vt(e) can be discontinuous, but 8 + V(8)is smooth (1.15)

Related results for the more classical case of decreasing gain algorithms can be found
for example in Ljung & Soderstrém (1983), and in-Métivier & Priouret (1984).

II.2 THE INVARIANCE PRINCIPLE.

Fix again T finite; we shall now investigate in a more precise way the error

et - 6(1)

(for t=ty) as v tends to zero. Let us denote by

Vy
(e‘r )OéT <T

the continuous time stochastic process with piecewise linear trajectories such that

'é,-Y _ -1/2 (

To=y et - 8(1t)) for T=ty (1.16)

Then, we have the following invariance principle (Kushner & Huang (1981)):



Theorem 2: When vy tends to zero, the process (eY ). -convergeés weakly to the Gaussian
process (6 T) ’ wluch is the solution of the linear stochastlc differential equation

¥ = AV G Brar o+ arPGan @, Y=o 0 o0 ordn

where (WT) is a standard n-dimensional Brownian motion, and

V4(8) =S ()

(1.18)

R(B) = ) cov(vn(é),vo(é))
neZ '

the serie being assumed to cohverge.

For this theorem to be valid, (1. 14) has to be reinforced . by requiring some mlxmg
conditions on the random vector field (v (8)). :



PART 2: MONOSTEP ADAPTIVE ALGORITHMS.

I TOWARDS A MODEL FOR ANALYSING THE TRACKING PROBLEM.

I.1 BACK TO THE EXAMPLES.

Let us first analyse the DPLL. We shall now take into éccount that the true phase
shift of the channel is time varying, a situation which is most often encountered. Then
it is convenient to rewrite (1.2) as follows

igx(t)
Ve (os(t)) = ( kgz S, 2y ) e +v, | (2.1)

which turns out to modify the expression of the DPLL algorithms as follows

b1 = b Y et.(¢>t,¢*(t)) ‘ ” ' (2.2)

where

4 -i4(o-d%)
e )

Im( Y,

et(¢ s9,) (Costas Loop)

(2.3)
~i(d-dx)

e, (6,6,) = -Im(y e 8,(¢-¢,) ) (Decision Feedback Loop)

Where y denotesy (0) as defined by (2.1).

The same modification holds for the RLS algorithm when ¢ 4 IS time varying: (1.7)
and (1.8) have to be replaced respectively by

Yo (0,(6)) = 41(8,(£)).0,(6) + v, (2.4)
and
ng = 6, + A (8,(t)).e (8 ,0,(t))

(2.5)

€ (8,8,) = y (8,) - ¢7(6,).0

1.2 THE MODEL.
The analysis of the examples introduces in a natural way the modification of (1.9)
which is required for the analysis on time varying systems:



841 = O + AV.(8..S5) B (2.6)

‘where s denotes the parameter vector correspondmg to the true system and, for ¢ and s
fixed, the random vector field (vie(8,8)) isstationary.

For describing the time variations of the true systems , we shall use the falrly general
model :

Se41 = S, + U(s) | (2.7)

where, as usually, for s fixed, (Ut(S))tsZ is a statlonary random vector field. Since,
as we have mentioned before, we are interested in the analysis of (2.6) when the true
system moves slowly, we shall again introduce a small parameter y in the joint recurrent
equations (2.6) and (2.7), thus obtaining finally the model

41 = 8 * YAV (8.,8)

(2.8)

S

t+1 S¢ 7 YQt(st)

and we shall study the behaviour of (2.8) when y tends to zero.

Here, the adjustable matrix gain chosen by the designer is the matrix A, whereas
the parameter vy is nothing but a tool for the analysis. Let us summarize the assumptlons
we need on (2.8):

Assumptions 1: For ¢ and s fixed, (U (s)) and (V (6,8)) are stationary random
vector fields with means

u(s) = E(Ut(S)), v(s,8) = E(vt(e,s)). (2.9)
We shall assume that the identification is perfect when v(g,5)=0 ie.
v(e,8) = 0 iff ¢ = S. , ' (2.10)

Finally, we shall assume the following condition on the flrst and second partial derivatives
of v:

ve(s,s) = -vs(s,s). 4 | (2.11)

(2.11) means that the two partial derivatives of V are opposite on the diagonal.
This is in fact a very natural assumption. (2.11) is satisfied, for example, when v(p,8) is
of the form v(e¢-s), which is for example the case for the DPLL in view of (2. 3), but
it is also satisfied by the RLS algorithm, as it can be easily verified, using the

orthogonality condmon between the noise and the reg’ressnon vector on the true system.



Condition (2.10) could be weakened for allowing the case of overparametrization
of the model with respect to the true system (in which case V(6,S)=0 has infinitely
many solutions), but we shall restrict ourselves to (2.10) for the sake of simplicity.

1.3 THE BASIC PROBLEMS.

We shall now investigate the problems we mentioned in the introduction, namely:

Problem 1: how to choose in (2.8) the matrix gain A in an optimal way when the model
of the time variations of the true system S is approximately known?

Problem 2: how to compare different random vector fieldsv}(s,S) and v¢(9,S) used
for the tracking of the same system, without any prior knowledge of the possible time
variations of this true system? :

Note that the later question occurs naturally when the purpose of the analysis is
the selection of one of the two DPLL introduced above, according to the criterion of
the best tracking capability.

A natural criterion which reflects the compromise between tracking and accuracy
is the following: try to keep the mean square deviation :

E[fo, - s,]|° _ (2.12)

as small as possible when t is large (recall that we do not analyse here the transient
behaviour of the algorithm). This criterion has already been used by most of the authors
(Macchi & Eweda (1984), Benveniste & Ruget (1982), Farden & Sayood (1980)), whereas
the criterion used by Widrow & al.(1976) will be shown to be very close to the present
one.

L.4 EXPRESSING THE OBJECTIVE FUNCTION (2.12) AS THE SUM OF A BIAS PLUS
A VARIANCE.

For ty=t1, let us rewrite et—st in the following way

6, = S, = (B(x) - §(x) + ¢ VIQY - (2.13)
T T

where (8,3) and ('f\ﬁ,g’z) are defined respectively according to (1.12) and (1.16)
from the stochastic recurrent equations (2.8). In view of the theorems 1 and 2, for
small, we have the approximation

4

Tr E( (et-st)(et-st)T) Tr( (8(x)-5(t))(8(0)-5(z)T)

+ y Tr( cov('é‘T-gT) ) (2.14)

Tr( bias + +y variance ).

- 10 -



I MAIN THEOREMS.

Throughout this chapfer, the following assumption will be in force:

Assumption 2: for every S fixed, the ODE
8 = A V(5,5) S ' O (2.19)

- is asymptotically stable, with -g=5 as unit;i:e equilibrium

The following quantities will be of interest:

QS) = ] cov(u (5),U,(5))
neZ
(2.16)

R(S) = } cov(v (5,8),V.(5,8))
. n o 0
neZ

(cf. theorem_2). When there is no possible ambiguity, ‘we shall drop the dependence on
the variable s in these quantities. ' S :

- II.1 THE ZERO DRIFT CASE

It corresponds to th'é following assumption: the true system evolves as a zero mean
random process, i.e. the ODE

S = U(S), s(0) - So ' , (2.17)

~has $=S, as solution. In this case, (2.15) and (2.16) give that the bias is zero (cf. (2.14));
in the sequel, when using the theorem 2, we shall drop the dependence on (8,5) , since
these are constant in the zero drift case. We thus have only to investigate the variance.
According to the theorem 2, the joint-process (3§,§) is solution of the following
stochastic differential equation

ds U 0 s . Ql/? 0

dr + dw,, ' (2.18)

do AV AV 8 0 ARl/z
T, S 6} T

where W is a standard brownian motion, and Ug » Vg , and vy denote partial derivatives.
We can here distinguish two subcases: T :

case (i): Ug is asymptotically stable.

This is for example the case if the true system moves according to a stable second
order process. Then, using (2.11), we get

-1 -



]
o
-
+

aw " (2.19)
T ‘ )

de_l_ -AV6 AVe GT 0 . AR

N

Finally, in this case (i), under the assumptions 1 and 2, the joint process (3’,“9'-3) is

the solution of the following linear stochastic differential equation

ds U 0 s) . /2 0

T S T
= dr  + _ dw_ (2.20)
1/2 1/2
de_ Ug avel | e, Q AR
Hence, setting
P = cov(§, 8-8) L (@2.21)
» P is the solution of the following Lyapunov equation
T
FR+PF +Q=0
Ug 0 Q -Q
F = Q= (2.22)
L\ -Q Q + ARAT

where Q and R are defined in (2.16).
case (ii): ug = 0.

This corresponds to the case where the true systems moves according to a random
walk. In this case, (2.20) degenerates in the following equation

de_ = AvV_6 dr + ( -Q1/2 ARI/Z) aw (2.23)
T 6 't T

which gives that

P = cov(§-%) (2.24)

is the solution of the Lyapunov equation

AVgR + (av )" + araT + Q = o. (2.25)

-12 -



11.2 THE NON ZERO DRIFT CASE
Here, the situationh is more involved, since we shall have to take into account both*
bias and variance. We shall here assume that

U(S) # 0 along the trajectory of (2.17). (2.26)

The following result is then proved in the appendix A: if (2.26) is in force, it is convenient
to choose the matrix gain A so that the time variations of 6 be much faster than the
time variations of S. This is achieved in the «following way: select A of the following
form

A=y"%4, (2.27)

where the matrix A, is fixed, and a has to be chosen. Then, it is proved in the appendix
A that the optimum o is :

a=1/3 (2.28)

Then it is proved that, fory small, and ty=t,.

. 2 2/
Elle, - s, |17= y

3 ec (one)'IUUT(one)’T + P,), UzU(S(1)),

and P, is the solution of : (2.29)

A VgP, + Po(one)T + A.RA; = 0.

I1.3 SUMMARY OF THE RESULTS; A QUALITY CRITERION; CHOICE OF THE OPTIMUM
GAIN MATRIX A. '

Let us first summarize the results of the preceding paragraphs.

Theorem 3:
(i) Select A of the form

A= %4, " " (2.30)

Then, when v tends to zero, the asymptotically optimum « is given by

0 in the zero drift case (2.17)

Q
]

Q
]

1/3 in the non zero drift case (2.26). ' (2.31)

-13 -



(ii) zero drift case (2.17); we distinguish two subcases:

(ii-a) Ug is asymptotically stable (the true system moves according to a second
order process of finite energy); then, for ty>t, , and y+0 ,we have

2
E[lo, - S./|7 = v Tr(Ry)) o (2.32)
where
P P i
k= S » S ‘ (2.33)
P)1 Pa

is the solution of the Lyapunov equation:

FRP+PF +Q=0

U 0 Q -Q (2.34)

|
-U AV -Q Q + ARA
(ii-b) v §=0 (the true system moves according to a random walk); here,
Efle_~-S ||2 = Tr(P) : (2.35)
t t . :
where P is the solution of the Lyapunov equation
T

AV P + P(AVe)T + ARA” + Q = 0. (2.36)

(iii) non zero drift case (2.26); for ty=t

Bllo, - 5,112 = ¥/ meC (v Tloulav )T+ o), UGB, @3D

where P, is the solution of the Lyapunov equation

AoV Po + P°(A°Ve)T + ARAL = 0. o (2.38)

Comments: the main surprinsing point in the theorem is the point (i): it expresses the
strong difference between the zero drift and the non zero drift case. In the former
case, the matrix gain has to be of the same order of magnitude as the speed of
variation of the true system, whereas a much larger gain matrix has to be chosen in
the later case, when a bias has to be compensated for.

- 14 -



We shall use the results of the theorem 3 for introducing a 'quality criterion, which
will solve the problem 2 of the section I.3.

‘Theorem 4: a quality criterion.
Assume that a model of the time variations of the true system has been given. Then,
for ty=r >0 and y > 0, we have :

Ello - s %= v (a5, 85, =) (2.39)
where

- - -1 -T

A = Vg -R.V, | (2.40)

the exponent o« and matrix gain A, being chosen according to the theorem 3; the function
in (2.39) has the property that

& > #(a ,0) | (2.41)

is increasing when A) is fixed. The matrix A thus entirely characterizes the tracking
capability of the algorithm (i.e. of the random vector field Ve (8,8) ): we will refer
to A as the quality criterion of the algorithm.

PROOF: the result is an immediate consequence of the theorem 3, if we rewrite every
formula of the theorem in terms of the normalized matrix gain

A, = A,.V (2.42)

1 0

Use of the quality criterion: the quality criterion can be used in the followin way.
Assume we want to compare two different random vector fields vl and v for
tracking the same system s . Then, ifAl < A2, we can claim that the algorithm 1 is
more efficient for tracking than 2 in the following sense: given a model of the time
variations of the true system, for every choice of the matrix gain in the algorithm 2,
there exists a matrix gain for the algorithm 1 which produces a smaller variance to
the tracking error (2.12).

A connection with the case of decreasing gain algorithms: we will here show that the
same quality criterion plays also a role for decreasing gain algorithms. Recall that
decreasing gain algorithms are used for identifying constant systems. typical algorithms
are of the form :

= 1 n
6.1 - 0, *tTA V(8. , eer (2.43)

Let us denote'by 6, the unique stable equilibrium of the ODE associated to this algorithm,
and denote by v and R the quantities (1.18) evaluated at 6 . We shall report here
the results of Kushner & Huang (1979); a matrix gain A is said to be admissible if it
satifies '

- 15 -



(AV + %) is asymptotically stable. (2.44)
Then, under suitable conditions, we have the following central-limit theorem

1/2
e "(e, - 0,) >~ N(O,P,) (2.45)

where Py is the solution of the Lyapunov equation

I 1
(AVe+ —2—) PA + PA(AV6+ 2)

T ¢ araT = 0. (2.46)

Then, it is easy to show that

min {P.: A admissible} = V. R V.7

A o 6 (=4) (2.47)

the minimum being realized with the gain
A (2.48)

Hence, the same criterion measures at the same time the convergence rate of the
algorithm used on time invariant systems (with a decreasing gain), and the tracking
capability of the algorithm used on time varying systems (with a constaint gain).

Now, the problem of the optimal choice of the matrix gain will be investigated.
For this purpose, we must assume that the user has some prior knowledge of a model
of the time variations of the true system; the purpose is then to design an optimum
matrix gain according to this prior knowledge. It is clear that the theorem 3 gives an
answer to this question: in each of the cases (ii) or (iii), the problem of the optimum
choice of the matrix gain can be reformulated as a minimization problem with a
constraint given by a Lyapunov equation. We were not able to formulate closed form
solutions to these minimization problems in all the cases, but we shall give an answer
for the case (ii-b), where the true system moves according to a random walk.

Theorem 5: optimum choice of the matrix gain.

Assume the true system moves according to a random walk (with possibly dependent
increments), which corresponds to the case (ii-b) of theorem 3. Then, according to the
notations of (ii-b), the optimum pair (A, ,P,) is given by

(2.49)
1_ o l/2 p-1/2

where the last equality of (2.49) is valid for convenient choices of the square roots.
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PROOF: set A=AV, 5 P is defined as a function of A1 a$ the solution of the Lyapunov
equation o - _—

AP + PAT + apAT + @ = 0 | (2.50)
and we thus have to minimize in (2.50) P with respect to A. For this purpose, set

A : n . '
A=A +A,P=P +P, (2.51)

where A, and P, are defined in (2.49). Using (2.49) and (2.50), we get that B is ‘the
solution of o : 7

T T

AB+B AT+ 32037 =0, (2.52)

which ensures that P20 whenever the normalized matrix gain A is stable. This
finishes the proof. '

' I APPLICATIONS.

III.1 BACK TO THE EXAMPLES.

The DPLL.

In Benveniste, Vandamme & Joindot (1979), the quality criterion for both loops defined
in (1.5) has been calculated under the assumption of a small distorsion due to the channel,
i.e.

Z Iskl K s

k#0 0

- The criterion is approximately the same for both loops in this case, and is given by

2 . .
| sy - sf ! 2 )
A= _;_ y —K L ' : (2.53)
k>0 s2 s2 '
0 0

where o2 denotes the power of the noise v. Hence, both loops are equivalent in the
case of a small distorsion. As a matter of fact , this formula allowed the authors to
evaluate the performance of these loops in the presence of a dispersive (i.e. non trivial) .
channel, a result which has never been obtained before. - i
Note that, in this case, the quality criterion is time invariant, even if there is a time
varying phase shift due to the channel. A

As a matter of fact, R and Vg depend on the dispersive channel (sx) and noise
power only, and not on the time varying unknown phase shift to be estimated: this allows
the user to compute in advance the optimum gain according to the theorem 5. This
is a pleasant feature of the DPLL algorithm, but is by no means a general situation.

- 17 -



The Recursive Least Squares algorithm: a connection with Kalman Filtering.

Using the orthogonality conditions between the regression vector and the noise,
we get

- " 'I‘ -
v = - E ) .= - 1(S)
e(s) (o0 5 T
(2.54)
T
v

- _ _ 2 -
R(S) = § E(vn¢n¢0 03 = ¢~ £(8)

neZ

where ¢2 is the variance of the noise v: the terms with nonzero indices in the sum
vanish since the noise is orthogonal to the regression vector. Note that, here, these
quantities depend on the trajectory S of the ODE of the true system, an unpleasant
feature which was not encountered in the DPLL. The quality criterion is then equal

to
A= o’ s (2.55)

so that A is here nothing but the Fisher information matrix.

We shall now calculate the optimum matrix gain A according to the theorem 5.
Note that, in this case, S is fixed, and so are R and Ve . The optimal pair (A,,P.) is

P, AP, = 02 Q ,or P_=o0 Q1/2 2-1/2

(2.56)

A, = o 2 P, = o1 /2 zfllz"

with convenient choices for the square roots. Note that the computation of the optimal
gain requires the knowledge of £ , which is precisely not known in advance, especially
if the true system is time varying. We shall now show that using an appropriate Kalman
filtering formulation of the RLS algorithm provides us with an estimate of the optimal
matrix gain (2.56). This formulation is the following:

Seq1 =S¢t YW, » cov (w) = Q
(2.57)
) T
Ve = oS, v,
Setting
-2
Q=0 Q

the Kalman filter equations are
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PART 3: MULTISTEP ADAPTIVE ALGORITHMS.

Although they have used a single name, the Soviet engineers have introduced in

fact two different classes of multistep adaptive algorithms. The first class is a copy.

of the multistep methods of the numerical analysis; those methods will be shown to
have no advantage over monostep algorithms, neither for the convergence rate (decreasing
gain algorithms and constant systems) nor for the tracking capability, but they are
reported to improve in some cases the transient behaviour .of the algorithms (these
claims are supported by simulations (Shil'man & Yastrebov (1976, '1978)). The second
class is in fact wellknown in the community of digital communications for the case
of the DPLL, where they are referred to as "higher order loops"; they will also be shown
to be related to extended Kalman filtering with a prior model of the time variations
of the true system, and it will be proved that they improve the tracking capability with
respect to conventional monostep algorithms. . N :

I HOW TO BUILD MULTISTEP ALGORITHMS .

I.1 MULTISTEP ALGORITHMS OF THE FIRST KIND.

They are extensively studied in Shil'man & Yastrebov (1976, 1978). Their goal is
to force the algorithm (1.10) to be closer to the ODE (1.11), exactly as for the finite
difference approximations of ordinary differential equations (Henrici (1963)). Using
the z-transform notation, those algorithms are of the form '

(1 - z-1

RS |
)8, = yAlz ).v (8,) , (3.1)
where Vt(e) is as before, y is the small parameter we shall let tend to zero, and

A(z'l) is a stable rational transfer function (3.2)

The filters used by Shil'man & Yastrebov are all-pole, but rational filters can be used
as well. It is easy to see that the ODE corresponding to (3.1) is nothing but '

6 = AC1).V(3) . ‘ : (3.3)

On the other hand, defining '

R(B) = ] cov(Vn(é),Vo(é))

neZ

- (3.4)
RG) = ] cov( Az hv_(8), atz"Mv (3) ), -

neZ

we have the relationship
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8 I ™ ael®) rG) aT(e 1) 4y
neZ ‘

-
~~
<D
~—
]

(3.5)

A LR(®).a)7T

L}

Finally, (3.3) and (3.5) show that (3.1) and (1.10) are completely equivalent from the
viewpoint of both the convergence rate and the tracking capability. This finishes the
study of this class of multistep methods. ‘

I.2 MULTISTEP ALGORITHMS OF THE SECOND KIND. -
We refer the reader to Korostelev (1981) for véry deep results on such methods from

the viewpoint of the large deviation theory. The best way of obtaining these algorithms
" is to start with the ODE

8 = v(8) | . . (3.6)
Let A(s) denote a stable continuous time rational transfer funétion defined by
A(s) = J + H(sI-F) L6 (3.7)
and replace (3.6) by

6 = AGs).V(B) | (3.8)

Write (3.8) in the state space form
= : ‘ (3-9)

8 H J v(d)

and form the adaptive algorithm corresponding to the extended ODE (3.9)

et+1 et F G et |
= + (3.10)
et+1 et H J vt(et) : .

which is also of the form
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1 _ -1 ' _ L .
(I-z "o =y AY(Z ).vt(et) .
) o (3.11)
-1 -1
AY(z ) = J+ vy H( zI - (I+yF) ) G
thus resulting in a discrete time filter depending upon . Again, the multistep methods
analysed by Korostelev correspond to all-pole filters A(s). .

From now on, we shall concentrate on the multistep algorithms of the second kind,
and we shall refer to these simply as "multistep algorithms".

1.3 ANALYSIS OF THE RELATED ODE.

This ODE is given by (3.8); the introduction of the filter A(s) can modify the stability
of the original ODE. An analysis of this problem is now given. -

Theorem 6: stability of the multistep ODE.
Let us denote by o, a stable equilibrium point of the original ODE (3.6).
(i) Global stability: assume there exists a positive definite matrix I such that

(e-e*)T.n.(e-,e*) ‘ _ _ ’ ' (3.12)

be a Lyapunov function of (3.6). Then a sufficient condition for (3.8) to be globally stable
with ¢_ as equilibrium is that

I.A(s) be a strictly posisitve real transfer function . (3.13).

(ii) Local stability: a necessary and sufficient condition for & « to be a locally stable
equilibrium of (3.8) is that the matrix ‘

A0).v, (o, | (3.14)

be asymptotically stable.

PROOF of (i): set § =10 . Then, (3.8) is rewritten as
8 =1 AGs) v(n o) ' (3.15)

Set§=ﬁ'ﬁ*

; (8.12) implies
'E‘a‘T v(n'l'e) = 8T 1 ve) s 0, and <0 if _3_ #0. (3.16)

Then, thanks to Popov's hyperstability criterion, (3.16) and (3.13) implie that the .

derivative of 8 converges to zero for every inital condition; but this implies also that ©
converges to zero, and also V(¢) by (3.6), which implies finally that ¢ converges to
0, '
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Proof of (ii): since F is asymptotically stable, (3.14) implies that the matrix

F GV
(3.17)
H A

. is also asymptotically stable; but this is exactly the condition of local stability of the
pair (0, g,) for the ODE (3.9). This finishes the proof of the theorem. ‘

In the sequel, we shall assume that g, Is at least a locally stable equilibrium of
the ODE (3.8).

I TRACKING PROPERTIES OF MULTISTEP ALGORITHMS.

1.1 THE CASE OF THE DPLL.

A very common situation in the case of the DPLL is the simulfaneous presence of
jitter and frequency offset (Falconer (1976-a) and (1976-b)); a jitter corresponds to
a motion of the phase shift p according to a sinusoild with a known frequency, and
a frequency offset corresponds to an approximately constant drift due to an incorrect
tuning of the voltage controlled oscillator in the loop. A possible continuous time model
for the evolution of the true phase shift p of the system is

-5 L o'v, + u . (3.18)

sz+es+w2

where  is the frequency of the jitter, ¢ and o are small parameters related to the
amplitude of the jitter by

/et = amplitude of the jitter (3.19)

and M is the nominal value of the offset, and o' is a small parameter reflecting the
uncertainty on the value of the offset; finally, vy and v, are independent standard
white noises. It is clear that (2.7) is a very poor model for reflecting this behaviour.

II.2 A MODEL FOR ANALYSING THE TRACKING PROBLEM.

In view of the preceding example, it is interesting to generalize the class of models
(2.7), by assuming that the true system obeys the following dynamics

(3.20)

il
+

Ses1 S, H, I, u.(s)

where, for s fixed, Ut(S) is as usually a stationary random vector field.
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To this model, we shall assvociate the following multistep algorithm, where the dimensions
of the matrices are the same respectively in (3.20) and (3.21)

o

®t+1 Gt F G Ot -
= + : S (3.21)
® il o | H J Vt(et,st)J
- Where, again, V.(8,S) denotes as usually the random vector field defining the

- algorithm, for which we shall also assume that the ‘assumtpions 1 are satisfied; moreover,
we shall assume that, for every S fixed, the ODE )

§ = A(s) v(B,5) | ' | (3.22)

is asymptotically stable, with 6=S gs unique equilibrium. This later condition defnies
the class of admissible filters A(s) for the multistep algorithm. '

. Again, we are interested in the joint behaviour of the equations (3.21), (3.22) when
the true system moves slowly, i.e. when U¢(S) is small; thus, as for the study of monostep
methods, 'we shall introduce a small parameter y for the purpose of the asymptotic
analysis. Setting ’

z €] VA ¢]
. F G
s - .8 = , U = . V(E,8) = e (3.23)
' H J
] 8 u(s) v(6,s)
we can rewrite (3.21) and (3.22) with the small parameter Y as follows
‘ gt:+1 = gt: tY 4 Xt(gt’§t)
(3.24)
S = §t + Y é* I.—'It(gt)

=t+1

which looks like the form (2.8) analysed in the second part. But, don't f‘orget that we
are interested in the behaviour of 8, and not of 81

1.3 MAIN THEOREMS.

We shall restrict ourselves to the subclass corresponding to (ii-b) in the' theorem-
3, for the following two reasons: first, the other cases are more involved, exactly as-
for monostep algorithms, and , second, this is the only case for which we were able
to derive explicit formulas for the optimum filter A(s). We shall thus assume

S = constant, US(§) = 0. (3.25)

Take care that the condition (3.25) do not imply that the pair (Zt,S¢) moves according
to a random walk, so that it is not possible to apply brute-force the results of the theorem
3 to the joint model (3.24)! _
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Since the mean values (Z,5) are constant (with Z = 0 ), we shall again delete the
dependence of the forthcoming quantities with respect to these parameters. Because
of the assumption (3.25), the contribution of the bias to (2.12) is equal to zero, so that
the only problem is the evaluation of the variance. This evaluation will be obtained
by applying the theorem 2 to the model (3.24). According to this theorem, the joint
process (§ ,e) is the solution of the following stochastic differential equation

( F, 0 0 0 ) r rG* )
(dgT\ 5. | Q1/2 0
H, 0 0 0 Iy
= dr + dWT
0 GV F GV G
s s 1/2
dg_ 8. 0 R
Y 0 J VS H JVe J J
\ /> A /
Using (2.11), we get
4 \
(¢, 0 o o )
as ) s
= =1
B, 0 0 0
= dt + same as above (3.27)
0 ‘GVe F GVe
dg ’ 8
- » ot
0 -Jv H Jv
. o 0)
Finally, the joint process (':s','_‘é-'\s') is the solution of the following linear stochastic
differential equation R
r 4
rF* 0 0o o) G, )
rd§T1 5. : d’r o
H, 0 0 0 Iy |
= dt + dw_ (3.28)
F-F 0 F GV G fe
* ol *
0y gl | [ ] R
e
H-H 0 Jv J N
. ¥ H 60 J : (U * /

We shall now assume that the true system moves according to a process of finite energy,
l.e.

F, is asymptotically stable, | (3.29)
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and we sha]l restrict ourselves to admissibles fllters A(s) (cf.(3 2;{)) Thanks to these
assumptions, the steady state covariance matrix of the pair (s S) , which we
shall denote by P, is the solutlon of the Lyapunov equation

FP+PF +Q=0 o | - (3.30)

(F, 0 0 0 )
H, 0 0.0
g =
F-F, 0 F GV,
H-H, 0 H JV -
) ’ (3.31)
( (.Y e ) h ,
G T T G, -
Q (6,30 | -] |ae el,a5)
g -|-\ 7
-| Mla «t,sh "o 61+ R Cev® v
\ LJ*J ‘ »J*J . e J

This formula allows us to extend the vahdlty of the quallty criterion we have defined
-before to the multistep algorithms: .

Theorem 7: assume that a model of the time variations. of the true system has been
given according to (3. 24), and that (3.25) is in force. Then, for ty=1>0 andy > 0 ,
we have

lnllet - stllz =y @(QI,A) - ' . (3.32)
where A is giveﬁ by (2.40), and

A =1 o (3.33)
The function ¢ in (3.32) has the property that.

A > o4, ,8) ' | ‘ (3.34)

is increasing when A; is fixed. This extends the validity of the quahty criterion A to
multistep algorithms. ,
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This theorem is an easy consequence of the formulas (3.30) and (3.31). This theorem
and the proof of the theorem 4 allows us reasonably to claim that our quality criterion
is valid for general U.(S) as well; a formal proof supporting this claim would be rather
tedious, so that we did not include it in this paper. _ _

We shall now investigate the problem of the optimal choice of the filter; as for the
monostep case, we shall give an answer to this problem only when (3.25) is in force.

Theorem 8: calculation of the optimal filter.

Assume that the true system moves according to a given model (3.24) satisfying
to (3.25). Define the filter Aypt(s) as follows

-1
Aopt(S) = Jopt + Hopt(SI - Fopt) Gopt

FOpt = F* s Hopt = H* (3.35)
T -1 _ T -1
Gopt = Py Vo R ©, Jopr = Py, V. R
where
3
P P A )
p = 11 12 . . (3.36)
P21 PZZ)
is the unique nonnegative definite solution of the following Algebraic Riccati Equation
T T
0 0 rF* O F* H* . G* T T
P P = P+ P + Q(c, J,) (3.37) .
0 & B, 0 N J

Then, the filter A,,¢(s) is admissible, and realizes the minimum of the criterion (2.12)
among all the admissible filters.

PROOF: see the appendix B. A : 5,

M APPLICATIONS.

.1 THE RLS ALGORITHM: A CONNECTION WITH KALMAN FILTERING.

We shall here assume that the true system moves according to the model

zt+1 t * *
= + v Wt+1 | (3.38)

St:+1 . t *

where Wy is a standard white noise. Add the regression equation

_ T .
Yo = 6, S, *+ v, . (3.39)

and use the Kalman filter equations for computing the estimate © of the extended
state defined in (3.38). This gives
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_ T
O = ¢ e A

2 -1

T
K =
. Fth ¢t ( @t zt ¢t + 0" )

7

_ ) T 2,-1 T T, 2
Ty “F (T - Z0 (0T + o) en ) F o+ Q

(3.40)
I+ YF,, 0
F, = ¢: = (0 ¢§)
YH, I
G
: *
Q = (cz Jf)
J

%

Now, we shall proceed as in the analysis of (2.58): taking into account that, for y small,
the error covariance matrix is small and slowly time varying, we can 1/ neglect I with
respect to I, 2/ use an averaging argument for

i'éplacing o Qz by its expectation R = [g g] (3.41)

Finally, we take a first order expaﬁsion of the so modified ARE, thus obtaining

o2 ERT =y (Fr+ 1FD) + v2q ‘
F, 0 - (3.42)
F=1+yF , i.e. F =
Y H* 0 .

which is exactly the optimal filter given by (3.37). .

Again, the conclusion is that in order to compute the optimum filter for the multistep
RLS algorithm, it is convenient to set the tracking problem as a Kalman filtering problem
with the proper choice of the prior model of time variation of the true system.’

As for monostep algorithms, it is reasonable to expect that, when this is possible,
setting the tracking problem as an Extended Kalman Filtering problem with the proper
choice of the prior model of the time variations of the true system will provide us
asymptotically with the optimum filter for the multistep procedure. Such an approach
was for instance used by Gersh & Kitagawa (1984), where the following prior model
is used for the time variations of the true system: vks = noise, where VSt= St4+1-Ses
and the order k is selected according to an AIC criterion.

L2 THE DPLL.

We shall investigate the case of the jitter, which corresponds to the continuous time
. model ,

=—95 » Vv standard white noise, ‘ (3.43)

s 2+g S+w2

g
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for the time variations of the true system, where w is the frequency of the jitter, €
is a small positive parameter ensuring the stability of the system, and the standard
deviation ¢ of the noise vt is related to € and @ through

C52/€m2 = amplitude of the jitter (3.44)

The preceding theory applies with

(3.45)
Q = identity, & given by (2.53)

The optimum filter of the multistep algorithm (also known as the loop filter) is then
- computed using (3.45), (3.35,36,37), and (2.53); then, the algorithm is obtained through
(3.8,9,10) where Y is nothing but the inverse of the sampling rate (i.e. the discretization
step)

IV SOME GUIDELINES FOR THE DESIGN OF MULTISTEP ADAPTIVE ALGORITHMS.
- Again, three problems are encountered.

Step 1: selection of the best algorithm, i.e. of the best random vector field v.(s,s) :
as we have shown in this third part, the quality criterion we have introduced is valid
for evaluating the tracking capability of an algorithm for monostep and multistep
procedures as well. Hence the same remarks and hints hold as before.

Step 2: choice of a prior model of the time variations of the true system. The best is
to define this model in the continuous time domain. Two cases occur:

CASE 1: the prior knowledge on the true system is sufficient for allowing to choose
reliably a higher order model of the form S = A (s).U(S) . This is for example the case
for the DPLL, when the parameters of the jitter and offset are known. It should be
acknowledged that the sensitivity of the performances of the algorithm to the choice
of this prior model is rather unknown, and may be significant especially for multistep
methods.

CASE 2: the prior knowledge on the time variations of the true system is very poor;
in this case, the robustness of the method with respect to this uncertainty is a key issue.
Then the most commonly used approach is a conservative one: select a random walk
model and use a monostep procedure; Bohlin (1977) gives an interesting example of
such an approach for the RLS algorithm where the covariance of the noise of the dynamics
of the true system is also identified. On the other hand, a different attractive ap {oach
is used by Gersh & Kitagawa (1984) where a given famlly of models is used ( V
noise, V = difference operator) with an unspecified order k; then this order is estxmated
using an AIC criterion.

In any case, the analysis we have developed clearely points out that the time dependency
of the random vector field U¢(S) defining the time variations of the true system has
very little importance, since this dependency disappears in the diffusion model introduced
in the theorem 2. This justifies the use of random walk models for describing time varying
systems, even if the short time behaviour of a random walk is erratic from a theoretical
viewpoint, while the motion of the true system is generally smooth.
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Step 3: choice of the optimal filter A(s) for the algorithm. We have given some
indications for the case of a general model of the time variations of the true system
When a monostep procedure is used; and we have given precise results when the tracking
error is reduced to a variance (the bias being zero), for both cases of monostep and
multistep procedures. According to the theorem 8, when the tracking error reduces
to a variance, proceed as follows: :

* select a filter of the same structure as the model used for describing the time variations
of the true system. ' ’

* appl§r the theorem 8 for corﬁputing the optimal filter 'Aopt’(s).

* Form the multistep adaptive algorithm according to (3.35,36,37), the small parameter
being the sampling period. ' o

In some case, the optimal filter can be computed off-line, thanks to a prior knowledge
of the required quantities; such a situation is, for example, illustrated by the DPLL.
But in other cases (like the RLS algorithm), the required quantities are not known in
advance, but have to be estimated on-line; this difficullty is, for example, overcomed
when the tracking problem is setted as an Extended Kalman filtering problem as it has
been illustrated by the case of the RLS algorithm. Note that the theory of recursive
stochastic algorithms extends the validity of the use of extended Kalman filtering,
since discontinuous random vector fields can be used (with discontinuities arising for
example from the differentiation of non smooth functions) in the observation equation;
in fact, the effect of these discontinuities is smoothed out thanks to the averaging

.

principle supporting the adaptive algorithms.
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CONCLUSION.

The theoretical problems underlying the use of adaptive algorithms for tracking
slowly time varying systems have been investigated. Multistep algorithms were introduced
for improving the tracking capability, and a complete design methodology was given
for selecting the optimal filter of a multistep algorithm when some prior information
is available on the time variations of the true system. A quality criterion was introduced
for evaluating a priori this tracking capability, regardless of the form of the time
variations of the true system (provided that they are slow). This was possible since we
used an asymptotic approach which considerably reduced the difficulty of the analysis.
The counterpart of this advantage is that the domain of validity of the approximations
we have used is not known (this drawback was pointed out in Macchi & Eweda (1984),
and is in fact non neglectible if a rigorous approach is searched for; on the other hand,
the results of these authors are of limited validity, and of poor help for the design
problem).
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APPENDIX A: PROOF OF . THE THEOREM 3, ANALYSIS OF A TWO-TIME SCALE
STOCHASTIC APPROXIMATION. '

We have only to investigate the non-zero drift case. Rewrite (2.8) as follows

S

t+1 St ty Ut(st)

] = 8 Y /e (A.1)

¥*0, >0, n =vy/e + 0

We shall only be 'able to present a heuristic analysis of (A.1). The key idea in the
analysis of (A.1) is the following. The deviation 6, - St is asymptotically the sum
- of two terms: the contyribution of the biss and the contribution of the variance; in
order to minimize this deviation, one has to balance between these two contributions;

this will determine the relative order of magnitude of the two gains € and v.

First order approximant: the ODE. o
As in the theorem 1, we shall first approximate in the slow time scale

T =yt | (A.2) -

the pair (St’et)0<t<sly where s < =is fixed, by the coupled two-time scale ODE

S = u(s)
(A.3)
€ 8 = Ao V(é,g)
and we shall apply to (A.3) a singular perturbation analysis argument (Hoppenstaedt

(1971)). Thanks to the assumption 2, for y tending to zero, (A.3) is expanded into the
- following coupled static/dynamic system

u(s)

wm
i

(A.4)

<D
n

§ + ¢ (A¢V9(§,§))‘1.U(§,§)

for 0 <t < 5.

Second order approximant: the diffusion approximation.

We shall proceed as in the theorem 2, but with convenient modifications. We shall
consider the deviation '

(et-é(r), st-é(r})

in the slow time scale (A.2), but with the normalization associated with the fast dynamics
nt. Set _ .
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-1/2

1t

Y, 8 ) = (s -8(z) , 6. -8(1) ) - (A.5)
T t t

T

Then, assuming e+ 0, g’i tends to zero in probability, whereas the fast diffusion '(\3'1 lies
in its steady state behaviour, given by

8~ N(O,P(5(1)) (A.6)
where P(S) is the solution of the Lyapunov equation

ALV (8).P(S) + P(S).(one(s))T + Ao.R(S).AL = 0 (A7)

Combining the two approximants.
Finally, for t large and y small, (A.4-7) give together

6, - 5, * (1) - s(1)
+ oM 3o - 3o
(A.8)
- 8(1) - 8(0) + o'/ ¥
> € (one)'l.u + ol/2y
which results in the optimum choice
e.(n)-l/2 -1 when y +0 . (A.9)

which gives exactly (2.31), whereas (A.6-8) give together (2.37,38).

This finishes the heuristic justification of the theorem 3. A rigorous analysis of the
two-time scales stochastic approximation of the form (A.1) would be of great interest
(for some data transmission systems, for example), but is far beyond the scope of this
paper.
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APPENDIX - B: . CALCULATION OF THE OP’I‘IMAL FILTER OF THE MULTISTEP
METHOD, PROOF OF THE THEOREM 8.

I

Step 1: convexity of the solution of the Lyapunov equation (3.30,31).
Rewrite (3.30,31) as follows

T

AP+PA" +BP+PB' + ARAT + 9= 0 a | S ®BD

where

|
"
>
"
(I
]
e
L]
"
i~

(B.2)

(7o)
]
| s
[}

- same ' + same 1[GV
‘ l ol °®lr ((Gve)T.,(Jve)T)

JVe
\ A

We shall prove that
the function A > P is convex - (B.3).

Since B satisfies BR=0, by considering A+B instead of A, it is equivalent to prove
that ' ‘

the function A » P is convex, where

T

. | (B.4)
AP+PA’ + ARAT+ Q=0

For this purpose, set

P =P+ P", where

—_—

AP+ PAT+ Q=0 S |- X

T

Jé_l:".}. EHAT + ARA = 0

It is sufficient to prove that

._é_‘-» P' and A - P" are convex _ (B.6)
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But, on one hand, the former is known to be convex, and on the other hand, the later
is the composition of the two following convex maps -

A > 5 (pseudo-inverse of A)
and

+

A" > P, where (£)TP"+ PrA*+ Q= 0.

This finishes the proof of the step 1. The next steps will be devoted to prove that the
optimum filter of the theorem 8 corresponds to a stationary point of the function (B.1).

Step 2: Among the filters of the form (H,,F,,G,J), the optimum filter is Agypt defined
in the theorem 8.

o §or F=F,, H=H,, the equation (3.28) reduces to the following model for the process
(g-8

de. F, GVgle G G

(B.7)

de H, Jvgle,

Then the step 2 is a trivial consequence of the following lemma about Lyapunov equations
Lemma B.1: consider the following Lyapunov equation |
ap+pPAT +aRAT+BP +PBT + Q=0 , (B.8)
where the matrix A is constrained as follows

A+B is stable (B.9)
A = A'R'for some A' (B.10)
where R is the bséudo inverse of R. Then,
P, = min A P
is the solution of the Riccati equation
P,R P,=BP,+P,Bl+Q (B.11)
whereas the corresponding optimum gain matrix A, is
A,=-P,F » | (B.12)

PROOF: easy verification left to the reader.
Apply this lemma to

B = A = ' ' (B.13)

P is the covariance of the process ( :Q' - g ) , and Q,R are defined in an obvious
way to get the step 2. - .
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_ “stochastic differential equatlons

A consequence of the step 1 is that the map
A(s) »P= cov(a-'g)

is convex. Thanks to the'step 2, it remains only to prove that the restriction of this
map to G = Gopt, d = Jopt admits a stationary point at the pair (H, F) = (H*,F ). This
will be done in the two following steps.

LA

- Step 3: for Aqpt given as in the theorem 8, then
cov( 8 ,8-5) =0 | (B.14)

o

.PROOF: the joint process ( ) satisfies the following coupled linear

o fne
ltn e

(¢ . (F dfe) ~ (0 cvdfe.-2) - ~
T . Q9 GVe Or: fe 1/2

dt+ : dT + R dwr

de.] |H 0y 0 Jvl]l6,-S, J
(B.15)

da(e-z).\ [F, GV \[(0-2) F-F, 0\ G G,

6 * 1/2

' ™+ H Rl/zdwT - Q / av..-

d(e-s) w IV I\(0-8), -H, O)\e, J -\,

Then, the steady state covanance matrix  of this process is the solution of the following
Lyapunov equation

AT+ AT = Q' o (B.16)
where

(F 0 F-F, cv ) e )

R(G,J7) same

H 0 H-H, JV, J
A= , |
a (B.17)

0 0 F, G | A

same same+ Q(c,,J,.)
0 \Y/ J
. O H‘k J ea - *, ”

Setting F=F,, H=H, in (B.17) and using the last formulas of (3.35) gives finally (B.14).

Step 4: The restriction of the map

A(s) > P= cov(’i"é)_

to G=Gopt, J=Jgpt admits a stationary point at the pair (H,F) = (Hy,F,).

 PROOF: denote by A, and I, respectively the pair (A,) of (B.16) when Aopt(s)
is used. The demvatlve at A, of the map A » g is the linear map §A 51[

defined by

’ T T :

A ST +6M.AL +SAN, +T,.6A =0 -« (B.18)
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But, using (B.14) and (B.17), we get that

[ ] [ J L ] *
. e o o o
6A.M,  isof the form | = _ (B.19)
e o 0 O
But this gives that the covariance P of the error '§~§ satisfies
' T
F, GoptV F, GoptV
RRCARLA TS IS PPe)
H*. JoptVy e JoptVq (B.20)

which implies §P =0, since the extended optimum matrix gain is asymptotically stable.
This finishes the proof of this step, and, by the way, the proof of the theorem.

- 38 -



REFERENCES

A.BENVENISTE, P.VANDAMME, M.JOINDOT (1979): "Evaluation of the tracking
capability of a digital phaselock loop in the presence of dispersive channels", Rep.
NT/MER/TSF/1/CNET -

A.BENVENISTE, M.GOURSAT, G.RUGET (1980): "Analysis of stocahstic approximation
schemes with dependent and discontinuous forcing terms" IEEE-AC 25 n°5
A.BENVENISTE, G.RUGET (1982): "A measure of the .tracking ‘capability of recursive
stochastic algorithms with constant gains", IEEE-AC 27 n°3

T.BOHLIN (1976): "Four cases of identification of changing systems", in System
identification, advances and cases studies, R.K.Mehra & D.Lainiotis Ed., Academic
Press, N-Y o

D.P.DEREVITSKII & "A.L.FRADKOV (1974): "Two models for analysing the dynamics
of adaptation algorithms", Automation & Remote control, vol 35 n°l, 59-67
D.D.FALCONER (1976-a): "Jointly adaptive equalization and carrier recovery in two-
dimensional digital communication systems" Bell Syst Tech J. voll 55, Mar 1976
D.D.FALCONER (1976-b): "Analysis of a gradient algorithm for simultaneous passband
equalization and carrier phase recovery" Bell Syst Tech J. vol 55, Apr 1976

W.GERSH , KITAGAWA (1984): "A smoothness priors-time varying AR coefficient
modeling of nonstationary covariance time series", 1984~-CDC, Las Vegas, Dec 1984.
P.HENRICI (1963): "Error propagation for difference methods" Wiley & Sons, N-Y, London
F.HOPPENSTAEDT (1971): "Properties of solutions of ordinary differential equations
with small parameters" Comm. on pure and Appl. Math. vol XX1V 807-840 ‘ _
A.P.KOROSTELEV (1981): "Multistep procedures of stochastic optimization" Avtomatikha
i Telemekhanika n®5, 82-90, May 1981 .
H.J.KUSHNER, H.HUANG (1981): "Asymptotic properties of stochastic approximations
with constant coefficients" SIAM J. Contr. & Optimiz.vol 19 n°l, 87-105

H.J.KUSHNER, H.HUANG (1982): "Diffusion approximation for the analysis of digital
phaselocked loops" IEEE-IT 28 n°2

L.LJUNG, T.SODERSTROM (1983): "Theory and practice of recursive identification",
MIT Press

‘O.MACCHI, E.EWEDA (1981): "Poursuite adaptative du filtrage optimal non stationnaire"
CRAS, Série 1, t.293, 497-500 : _
O.MACCHI, E.EWEDA (1984): "Tracking properties of adaptive nonstationary filtering"
to appear IEEE-IT : )

M.METIVIER, P.PRIOURET (1984): "Application of a lemma of Kushner and Clark to
general classes of stochastic algorithms" IEEE-IT, Mar 1984, special issue on adaptive
filtering

A.RUSZCZYNSKI, W.SYSKI (1983): "Stochastic approximation method with gradient
averaging for unconstrained.problems" IEEE-AC 28 n°12

'S.V.SHIL'MAN, A.LLYASTREBOV (1976): "Convergence of a class of multistep stochastic

adaptation algorithms" Avtomatikha i Telemekhanika n°8 111-118, August 1976

~ S.V.SHIL'MAN, A.LYASTREBOV (1978): "Properties of a class of multistep gradient

and pseudogradient algorithms of adaptation and learning” Avtomatikha i Telemekhanika
n°4 95-104, April 1978 '

B.WIDROW, J.M.McCOOL, M.G.LARIMORE, C.R.JOHNSON (1976): "Stationary and
nonstationary learning characteristics of the LMS adaptive filter" Proc of the IEEE
64 n°8 ) .

B.WIDROW, E.WALACH (1984): "On the statistical efficiency of the LMS algorithm
with nonstationary inputs" IEEE-IT, Mar.1984, Special issue on adaptive filtering

-39 -



ty

R




