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ABSTRACT :

We consider two-dimensional steady flows about airfoils of a compressible, inviscid
fluid governed by the Euler Equations. Thus, the solution may present singularities
such as stagnation points or shocks. In this work, a finite-element method based
on triangular elements is presented that includes a self-adaptive local mesh
refinement procedure permitting the singularities to be captured economically

and accurate results to be obtained with relatively few meshpaoints.

RESUME :

On s'intéresse & des écoulements bidimensionnels stationnaires autour d'un profil
modélisés par les Equatiohs d'Euler des fluides parfaits compressibles. Avec ce
modéle. la solution présente des singularités telles que points d'arrét et chocs.

Dans ce travail. on présente une méthode en ‘éléments finis triangulaires avec
raffinement local automatique du maillage. qui permet de capturer ces singularités

avec économie et d'obtenir des résultats précis avec peu de paints.
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O. INTROBUCTION

The idea of adapting the mesh utilized in a numerical simulation to the solution
(or to a crude approximation to it} is undoubtedly as old as the notion of
discretization itself. A preliminary celculation is made. using an initial mesh,
and an adapted mesh is then constructed as a "perturbation” of the initial mesh.
Two types of "pe_rturbations" can be considered - the two types are seldomlyA

used at the same time,

1) moving the meshpoints without modifying . the topology or total number of
them (see {1}. {3}, {4}. {8} {9}, {10}, {11}, {12}, {15}. {19}, {21}. for examplel.

2) adding additional nodes (or constructing subgridsl(see{5}. {7}. {22}. for examplel.

_The first approach is _attractive because it preserves the topological regularity

of finite-difference meshes and also because it permits to cheaply fit
discontinuities.

The second approach has recently regained interest, despite its necessarily more
complicated in;nplementation. mainly because it is somewhat related to the

currently popular multigrid technique (see {6}. {13}, {16}, {18} for example).

In this report we are interested in the second approach in a finite-element context.
The advantage of finite -elements resides principally in the generality of the
representation of the geometry. In particular, keeping the initial nodes fixed.
a local mesh-refinement can be made with no change in the solution method.
that is. problems related to patching grids and subgrids or storage problems are
automatically salved by the finite—elei‘nent methodology.

A numerical simulation in which the Euler Equations are used can be an excellent

test case for a local mesh refinement method for the following reasons :



- At present. simulations utilizing this model are still very onerous in terms of
C P U time per degree of freedom. and it can be of crucial importance to optimize

the locations as well as the total number of mesh points.

- The truly interesting results are located on a relatively small part of the

computational domain : basically on the airfoil of an airplane wing.

- For industrial applications, the definition of geometries requires a large number

of points located on the skin of airfoils.

- The flow contains local singularities such as :

- shocks (discontinuities of dimension n-1]
- stagnation points (discontinuities of derivatives, of dimension n-2)

- slip surfaces, wakes. - _
Several authors have already investigated . the possible use of local mesh
Al
refinement for the Euler Equations in a finite-difference context :

- W.J. USAB.Jr and E. M. MURMAN ({20}) associate this idea with a multigrid

solution method. but are not interested in the automatic construction of mesh

refinement zones.

- Studies of similar nature are announced by M. BERGER [({4}).

Regarding Finite-Element methods. the technique of mesh refinement is still

at an early stage for the solut‘ion of the Euler Equations (see {14 }].

The present report is organized as follows. We first describe the numerical
approximation of the mathematical problem. Then, for a given mesh. we explain
the subgridding procedure. the construction of the new mesh and the
implementation in the computer program. Then three different local mesh
refinements are detailed. One criterion is purely geometrical and is based uniquely
on the fact that a good solution is required in the vicinity of the airfoil. A second
criterion is based on an estimate of the truncation error. The third criterion
is based on the entropy variation. a physical quantity that is very important in

the applications.
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1. THE APPROXIMATION, THE RICHTMYER ;ﬁSDL’VER«

Consider the two-dimensional Euler Equations :

W+ [Flwl) +([Glw]l) =0 inD
t X y

+ Boundary and initial conditions

p ) pu
wherew =] PY 1 : Fewy= | °Y *°P
' pvV puv
pE (pE + plu

and E=l[u2+v2]+ e
2

p= (y-1)pe. y= 1.4
p is the density.

(u.v] are the [x. y) velocity components, E is the total energy by unit mass,

* p is the pressure.

: BIW] =

pV.
ou
2
pVv +p
[pE+pJv

Also of interest are the enthalpy H. the Mach.number M and the pressure

coefficient %

“in the predictor step and P] in the corrector step (see {2}).

For solver an explicit second-order accurate scheme is used with two-dimensional

‘finite elements. This is a two-stage Richtmyer-type scheme with a Pe-approxima'ti.on

Given a triangulation (ogh of D. assumed to be polygonal, define

Hh ={ 12 €L2[D]. ¢continuous and linear on each triangle T of 'Gh }

0.h

]
Vh = Hh nH" (D).

H ={ <peL2_( D). ¢ constant on each triangle T of .Gh }



For every vertex A of 'Gh. an integration area A is defined as in the figure below

i
>

’ -~ . . '
Fig. 1.1 A integration area about a vertex of the triangulation.

Let SD ={ goethD]. <P|£ is constant, for every vertex A of the triangulation 'Gh }

The projection operator from Hh onto SU is denoted by the symbol SO'

With this notation, the predictor - corrector sequence is defined as follows @

'Step.l ; Predictor :

[[]
N
.
~
-
=
m
==}

¥T ¢ 6, , and for k . " 4
h kK 0

Yo o) - .n
"D = e {fJT W, dxdy

_ n n
oAt fa-r [Fk(w )nx + Gk(W )ny] do}



Step 2 ; Corrector :

4 4 :
Wt (V) ", and ¥p e (V) , Vk =1, 2, ook,

n+ ] n

| ka - W .
”D‘So [ B, ¢, dxdy = ()
* ok | agk, |
”D{B[F(W)—x—*-c(w)ay (2)
+ thrk(m 3""‘ + G, W) 3¢k]} dxdy (3)
, . A B
- Ja ¢k[F (Wn + Gk(w.)ny) do' : (4)
JI f(w") <grad WE, grad ¢k> AXdy_ (5)
with
- \i . 20-1 a = L
@=1l+"7, B1 - 2a > B2 20

Expression (4) permits us to introduce the physical boundary condition,

- n
W is a function of W and of the nature of the boundary.

Expression (5) is an artificial viscosity term.



2. LOCAL MESH REFINEMENT PROCEDURE

We intend to introduce in the triangulation a preferably small number of
additional mesh points. The introduction of the new mesh point is decided
automatically by performing a test on every element that relies on one of

the criteria defined further. We proceed in the following way :

2.1 First sub-gridding A sweep on the triangulation permits us to switch

from global numbering to local numbering of the vertices according to
conventional rules dealing with the orientation of each triangle. The

subgridding is performed by two topological transformations :
1 - introduction of additional points.
2 - section of some triangles and construction of the new triangulation.

In doing this. a pointer indicating, for every triangle whether it needs to
be cut into 4 sub-triangles is assumed to be defined, according to the criterion

employed. It remains to construct a finite-element triangulation containing :
I - The sub-triangles coming from the triangles divided into 4,
.2 - triangles identical to those of the initial mesh,

3 - triangles cut in 2, 3 or 4, permitting to patch triangles of type 1 to triangles
of type 2: for example. (see Fig. 2,1). if triangle T is the only one to be
divided into 4, then it is sufficient to divide into 2 its 3 neighbors to obtain

a finite~element triangulation.



Fig. 2.1 Section of an isolated interior triangle.

Finally. for a triangle T of the initial triangulation 3 cases can pccur :

1 According to the criterion., T must be divided into 4 and therefore it is

actually cut into 4,

2 T has n neighbors divided into 4, then T is divided into n + 1 subtriangles
(see Fig. 2.2),

3 T has no neighbor that is divided and remains unchanged.

n=2 . n=3 ‘  p=y
/

Fig. 2.2 Various ways of dividing a triangle T of@l.



Ciearly. the regularity of the mesh can be degraded by this procedure, in
particular, if highly obtuse angles are introduced. Also a good solution
accuracy is required on the airfoil. These two remarks leads naturally to

introduce the following steps 2.2 and 2.3.

2.2 The "Cosmetic step” By several sweeps on all the triangles and until

disappearance of this situation, every triangle divided into 3 is cut into 4,
by the adjunction of the midpoint of the unused side. In addition, triangles
having 2 vertices on the airfoil and that would normally be divided into 2,

are actually divided into 4.

2.3 Projection of the new boundary points The points along the curvilinear

boundary are positioned by the following rule : between 2 existant points A

and B. a point C is introduced on the airfoil such that CA = CAB.[see Fig.2.3).

—

Fif. 2.3 Adjustement of the airfoil definition on a curvilinear portion AB.

2.4 Reorganization At the end of the preceding step, the flow-variables

at each new point are set equal to the mean of the corresponding flow-
variables at the end—poihts of t:he"segrnent. Then the complete topological

definition of the mesh is reorganized.



3. COMPLETE ALGORITHM .

Once the new triangulation is obtained, at the end of step 2, the Euler
Equations are again solved by the method detailed in 1. The whole procedure
is repeated a number of times prescribed in advance. The algorithm is .

summarized in the following flow-chart :

Input Of Physical And Geometrical Data

Y

T

input Of-Initial Mesh

Y

Pseudo - Unsteady Solution Of The System

>

Subgridding Of The Mesh And Construction Of A New Mesh

Pseudo - Unsteady Solution Of The System
¢ Yes New Subgrid ? No

End
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4. CRITERIA APPLIED FOR MESH REFINEMENT

4.1 Geometrical test

The principal interest of the finite-element method relies on the possibility

of performing local mesh refinements with simplicity. However these must

not imply degradation of the numerical approximation, In theory, Pl- elements
converge for families of possibly irregular triangulations. We intend to verify

this point of theory and., more precisely. to investigate what happens when a

shock is present. The method that is employed consist in systematically dividing
into 4 all the triangles with at least one vertex on. the skin of the airfoil. This
procedure being followed by the "Cosmetic“ step and then by the possible projection

of new boundary points.

4,2 Test on the error estimate

We now search for a criterion that would, first diminish the error in the numerical
solution of the Euler Equations and second avoid to intraduce unnecessary points
and still emphasize the shock zone. We recall that the final objective is to solve

the steady Euler Equations

(Fiwi} +(G(w) =0
(4.1 X Y
+ Boundary Conditions

from the calculation of the time dependent solution.

~
= |i . i f
W= lim Wt \A{ solution o
t> «

(4.2) AW, (Fr Wi+ GW]) =0
?t- X ty

+ Boundary and initial Conditions
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If the above system were solved exactly, the following equation would be

satisfied at eVery node (x. y) of the integration domain.

4.3 Elxyl= [F[W]] + (G{WD =0

The function W (x.y)is calculated at every point of the lntegratlon domain D
by means of P] interpolation. But the P‘ finite-element approximation

’ contrastlng with fmlte—dlfferencmg produces a solution that |s determined
over the entire |ntegrat|on domaln and not uniquely at the nodes of the mesh.
A fundamental difference between the obtained discrete solution Wd and the
exact solution W is that the discrete solution does not satisfy the equations

and, for example, we have in general :
{u.4) Ed {x. y)= [F[\A(lj)]x + [G[\%]]y # 0

When F and G are linear functions Ed (x. y) is piecewise constant on i:he
triangles and it is easy to compare it-to 0. In the case where F and G are
not linear. one can replace F[\T\/d] and G [Wd] by the linear interpolants.
F] ['\/sé] and (31 [Wd] so that :

[4.5) E, Do y) 2 (F (0 0, + (B, (W

is again constant on every triangle. It is concei\)able that this quantity truly

‘ represents the discretization error. In fact a test baéed on this quantity-can

be interpreted as the comparison of two approximations of the Euler Equations.
one centered at the nodes (Richtmyer scheme) and the other centered on the

. triangles [Staggered approximation). .
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The method is as follows :

- Is divided into 4 every tr;iangle T_ of fhe t:riangulationéé;for which El

0
(averaged over the triangle TO] is "too large"” in the sense that, for one

component [El]i at teast,

(4.6) (E ]i z C [E] max]i

in which [E] ma’x]i = max [EI]i .

T G%h

The value of the parameter C is obsviously problem-dependent.

4.3 Test on the numerical entropy production

An alternate measure of the discretization error consists in evaluating how

closely the equation :

as 3s
(4.7) U= * Vv 3y

in which 5 = _—E.Y is the entropy.
is satisfied.

Note that (4.7) is only true when the flow is smooth, so that the quantity

X oy
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is expected not to be small. either if the approximation is not accurate
enough, or near a singularity. In both cases, it is advantageous to locally
refine the mesh. This leads us to define an alternate test for dividing

triangles (according to the same rules as previously) in which in the mean :

oS 9s 9s

vV— 2 C[ui'3 + v —)

(4.8) “ax T Voy ax 3y’ max
where [uis + v—a%) = max UE + vﬁg
ax 9 max X 3y

5. NUMERICAL RESULTS

5.1 Model Problems

5.1.1 Test case N° - 1 of the Stockholm GAMM Workshop (1979)

- This case deals with the flow over a 4,2 % thick circular bump at zero incidence

in a constant-area channel
LJ

2,073
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C is the chord. The coarse mesh is made of 23 x 7 = 161 points and of 264
triangles with 11 uniformely-spaced points on the bump. The Mach number

is 0.85. With the resolution of the coarse grid {Fig.6.1, 6.3, 6.7, 6.8, 6.11),

the shock is not clearly positioned in the Mach contours or in the pressure
plots. The compression before the trailing edge is not apparent. The entropy
variation is not equal to zero before the shock. As reference, the solution of
the same problem as in test case N° 1  but obtained over a finer mesh with

72 x 21 = 1512 grid points, also uniformly-spaced over the bump, is used

(Fig. 6.2, 6.5). In this solution, the shock is well defined, as it can be seen

from the Mach contours (Fig. 6.4, 6.6), as well as from the pressure plots

(Fig. 6.8). The discontinuity is more acc;entuated, the shock is steeper. and
away from the shock these curves are smoother. Regarding the entropy
deviation (Fig. 6.10). it is closer to the theoretical result since it is approximately
0 before the shock. Note that this calculation was made with the same solver as
previously with the coarse mesh, but with a sharper selection of the artificial

viscosity coefficient and of the Courant number (see {17}).

5.1.2 A NACA 0012 airfail flow at no incidence

For a Machnumber of 0.72. The initiai mesh made of 600 points and of 1080
triangles, with 60 grids points on the airfoil, is also uniform in the x-direction
over the airfoil (Fig. 7.1 to 7.7),

k3

5.2 Results for Test-Case N° 1 of the GAMM Workshop

For the three methods, two successive mesh refinements are performed. The

artificial viscosity is the same [Von Neumann - Richtmyer) and its coefficient X

is 0.8. As initial solution, a uniform flow is enforced. To test the convergence

of the solver. a tolerance on the residual is taken to be ID—q. In the last two methods,
the constant C has the value 0.05.

Table 1 below permits us to compare the efficiency of the various methods.
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; , ’ . .
.Tecs;;e Coarse Fine Geometrical | Test on the Test on
mesh mesh test error estimate| entropy
N° of v :
. _ 161 1512 C 4T 294 367
grid points :
Total CPU : .
[ 1 [ ) .
time 20 | 480 240 51 - 67
(Cll, HB 68)

Table 1 : Numerical results of Test-Case N° 1 of the GAMM Workshop.

3

5.2.1 Geometrical test

Because the mesh refinement (Fig. 6.13, 6.15) is here very Iocalized;the Mach
contours {Fig. 6.14, 6.16) do not show a very-sehsible_improvement at first siéht.
Nevertheless we obsefve a much thinner shock in the area that is refined. So that
the shock is better captured there. This is confirmed by the'pressure distribution
(Fig. 68.17] that indicatesa clear improvement realized by the calculation on the
refined mesh. |

In particular, the stagnation points are better resolved and the shock is sharper.
In addition, the comparison of thesve results to those obtained over the fine mesh
(Fig. 5;2. 6.4, 6.5, 6.6, 6.8, 6.10) indicatesthat the shock is correctly located.
Therefore these results demonstrate the capability of the approximation used

in these calculations to allow for rather abrupt local mesh refinements.

We would like to obtain a solution accurate everywhere and a sharp shock :

We turn now to mesh refinements better adapted to the solution.

* Here, the evident slow convergence can be explained by the fact that the

successive refinements were made not only along the body but also at infinity.
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5.2.2 Test on the error-estimate

We note very clear inprovement on the number of the rhesh points and the-
C P U - time compared to the previous results, while the Mach contours
and pressure and entropy plots re_m_ain very close (Fig. 6.19 to 6.24). We
also observe that this‘ improvement realized by this solution‘over that
obtained onthe coarse mesh is achieved by the sole addition of mesh
points near the leading and trailing edgés of the bump, This test does not
seem sensitive enoﬁgh to increase the solution accuracy near the whole

shock.

5.2.3 Test on the entropy production

This test defines a mesh made of slightly fewer points than the mesh defined by
the geometrical test.Moreover, the location of these points indicates that

this test is more selective. It introduces mesh points solely at the leading and
trailing edges-and near the shock (Fig. 6.25 to 6.30). It follows a very sensible
improvement in the Mach contours from which the shock is apparent over a
height away from the bump only slightly less then that of the fine mesh
calculation. The pressure curves indicate a thinner shock relatively to the
previous results, while the gain on the entropy is not uniform along the

x-axis. The solution accuracy is globally increased not only at certain

y-stations but over the entire domain,

5.3 Results for the NACA 0012 airfoil

The aim of these experiments is the same as for those conducted on Test-Case _
N° 1 of the GAMM Workshop. Here only |ocal mesh refinement is performed and
this, for the three methods. The initial solution is taken to be a solution obtained
on the coarse mesh and for which the norm of the residual was only converged

to 10-2. No artific?al viscosity is employed (x = 0J. The convergence test for
the solver remains fixed tb the value IU-q. The coenstant C employed in the last

two methods is set to the value 0.05.
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5.3.1 Geometrical test

The number of mesh points increases from 600 to B40. For the NACA 0012
‘airfoil at a Mach number.72. we observe that this test is not restrictive enough
'(Fig. 7.8 to 7.13), Furthermore, in the absence of artificial viscosity added,

oscillations appear. The pressure plots are slightly improved. the stagnation '

points Eeing a little better resolved. since the pressure coefficient at the

leading edge goes from 0.933 to 0.990. The amplitude of the oscillations near
the trailing edge is clearly ' reduced. Regarding the entropy deviation along
the body, the improvement is not evident. Negatives yalues have disappeared
‘but the mean value has increased. Beyond the trailing edge. the entropy produced
is twice émaller. The Mach contours are  smoothed . near the airfoil except for

some small oscillations probaply due to the fact that the Mach number A

approches 1.

5.3.2 Test on the error-estimate

The number of mesh pointsincreases from 600 to 678. The results are far
better than in the previous method (Fig. 7.14 to 7.20). The oscillations have
practicallydisappeared from the pressure plots. Regarding entropy. negative
values have disappeared and the mean value has decreased relatively to the
result of the coarse mesh calculation, The entrapy contours are in a {esser
number near the airfoil. The Mach contours are smoother than in the previous

case and the oscillation that used to appear near the airfoil has vanished.

5.3.3 Test on the entropy production

The number of mesh points increases from 600 to 735. The results of this
method realize an improvement over those of the previous method but each
one to a different degree (Fig. 7.21 tr.; 7.27). The oscillations on the pressure
plots have nearly completely disappeared. The entropy mean value has
decreased. but oscillations at small negative values appear near the leading
edge. The Mach contours are very clearly smoother. The entropy contours
are fewer, indicating fhat the entropy variations are lesser ekcbept near the

leading edge where small oscillations are still present.
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5.4 Conclusion

The results obtained are very encouraging from several view points :

- First, regarding solution accuracy, we note that the scheme performs

fairly well even in the case of rather abrupt changes in the geometry.

The singularities are well positi.oned far the examples presented.

However the calculations indicate a difficulty dealing with the proper
adjustement of the viscosity parameter. To overcome this difficulty, we

plan in a future work to utilize a scheme with no artificial viscosity parameter

to adjust.

- Finally, regarding efficiency, the improvement appears at two levels :
first, the lesser number of mesh points reduces the computational work per
iteration: second, the convergence of the scheme is more répid when a large
meshsize is conserved, as in the present case, far from the airfoil. In the
future we intend to extend this work and further improve convergence by

applying a multigrid methodology.
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6. TEST CASE N° 1 OF THE GAMM WORKSHOP

6.1 Madel problems

M

' Figure 6.1 Coarse mesh (161 points)

<
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<
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_Figure 6.2 Fine mesh (1512 points]
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Figure 6.3 Mach contours {coarse mesh calculation)

Figure 6.4 Mach contours [fine mesh calculation)

-
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Figure 6.5 Blow-up of the fine mesh
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- Figure 6.6 Corresponding blow-up of the Mach contours (fine mesh calculation)
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MIN : -.287B376E+88 - MAX : 0.7438344E+88

_C'p+

Figure 6.7 Pressure {Coarse mesh calculation]

MIN : -.4385572E+00 - MAX : 0.8685267E+88
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MIN ; -.185823§E-81 - MRAX : 8.1825996E -81

-
0.02 |_
0. )
_VA P 1
v-
-

Figure 6.9 Entropy (coarse mesh calculation)

MIN : -.3248958E£-83 - mxr : B8.1170418E-01

4

0.02-

Fi'gure 6.10 Entropy (fine mesh calculation)
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Figure 6.11 Entropy contours [(coarse mesh calculation)
(4s = 0.001)

R T

Figure 6.12 Entropy contours (fine mesh calculation)

(as = 0.001)

»
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6.2 Rer.ults_obtained using geometrical test

M

Figure 6.13 * Final mesh (411 points)

Figure 6.14 Mach contours
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MIN : -.4397351E+88 - MAX : ©.8334796E+B2

Figure 6.17 Pressure

" MIN : -.7181775E-82 - MAX : B.1172383E-81

f

0.02 —

Figure 6.18 Entropy'
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6.3 Results obtained using the test on the error-estimate

Figure 6.19 Final mesh (294 points)

Figure 6.20 Mach contours
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MIN : -.4391187E+88 ~ MAX : ©.8316379E+88

—V

Figure 6.23 Pressure

b

‘MIN : -.S57728PE-B82 - MAX : B.1248111E-B1

0.02 -

Figure 6.24 Entropy
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6.4 Results obtained u_sing the test on entropy .

Figure 6.25 Final mesh (367 points)

Figure 6.26 Mach contours
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Figure 6.27 Blow-up of the final mesh

'0.95

Figure 6.28 Corresponding Blow-up of the Mach contours
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MIN : -.4399544E+B8 - MAX : B.8193751E+00

Figure 6.29 Pressure

MIN : -.1271314E-81 - MAX :.8.1549686E-01

0.02

p—

Figure 6.30 Entropy
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MIN : -.9382911E+88 - MRX : 8.6388564E+80

-

P

Figure 7.5 Pressure

‘MIN : -.1B71563E-B1 - MAX : ©.2186339E-B1
=
0.02 -
0.
"-“—_&
.

Figure 7.6 Entropy



Figure 7.7 Entropy contours (As = 0.001)
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7.2 Results obtained using geometrical test

Figure 7.8 Final mesh (B40 points)

\

/

Figure 7.9 Blow-up of the mesh in front of the airfail
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Figure 7.10 Mach contours

- Pie— o

fi_g_‘ir_‘il'll Entropy contours (As = 0.001)
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MIN : -.9561259E+88 - MAX : B.6745888E+88

o}

0.

Figure 7.12 Pressure
MIN : -.3262222E-84 - MAX : B.2999837E-81

}

o

0.02

Figure 7.13 Entropy
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igure 7.14 Final mesh (678 point

Fig

.
’ —
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Figure 7.16 Blow-up of the mesh at thé near of the airfoil

Figure 7.17 - Mach contours
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Figure 7.29 Entropy contours {As = 0.001]
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7.4 Results obtained using the test on the entropy.
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Figure 7.27 Entropy contours {As = 0.001)
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