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ESTIMATING THE MULTIPLICITIES OF CONFLICTS
IN MULTIPLE ACCESS CHANNELS

A. Greenberg, P. Flajolet, R. Ladnér

Resumé: Cet article propose de nouveaux algorithmes permettant de régler
'accés & un canal & accés multiple partagé par des stations géographiquement
dispersées. On présente d'abord des algorithmes qui permettent aux stations
entrant en conflit d'estimer stochastiquement de maniére coopérative et
distribuée la multiplicité du conflit. La combinaison de nos méthodes
d'estimation avec un protocole en arbre conduit & des algorithmes hybrides de
résolution de conflits sur le canal. La combinaison la plus efficace conduit & une
méthode 20% plus rapide que les autres algorithmes comparables connus.

Abstract: We propose new, improved algorithms for regulating access to a multi-
ple access channel, a common channel shared by many geographically distri-
buted computing stations. We first present and analyze algorithms that allow
the conflicting stations to cooperatively compute a stochastic estimate of the
multiplicity of conflict. Combining one of our estimation algorithms with a tree
algorithm then leads to a hybrid algorithm for conflict resolution. Several
efficient combinations are possible, the most efficient of which resolves conflicts
about 20% faster than any of the comparable algorithms reported to date,
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ABSTRACT

We propose new, improved algorithms for regulating access to a multiple access channel, a
common channel shared by many geographically distributed computing stations. A conflict
of multiplicity n occurs when n stations transmit simultaneously to the channel. As a
result, all stations receive feedback indicating whether n is 0, 1, or = 2. If n =1 the
transmission succeeds, whereas if n = 2 all the transmissions fail. We first present and
analyze algorithms that allow the conflicting stations to cooperatively compute a stochastic
estimate n* of n, at small cost, as a function of the feedback elicited during its execution.
An algorithm to resolve a conflict among two or more stations controls the retransmissions
“of the conflicting stations so that each eventually transmits singly to the channel.
Combining one of our estimation algorithms with a tree algorithm (of Capetanakis, Hayes,
and Tsybakov and Mikhailov) then leads to a hybrid algorithm for conflict resolution.
Several efficient combinations are possible, the most efficient of which resolves conflicts
about 20% faster on average than any of the comparable algorithms reported to date.



1. INTRODUCTION

.. A multiple ;ccess channel provides a low cost means for a large nuprer of
geographically dispersed computing stations to communicate. Se\"eral such channels have
been proposed and some have been implemented, based on either co-axial cable, fiber optic,
packet radio,‘or satellite transmission media. A well known example is the Ethernet [5,22],
which uses a co-axial cable of up to 1.5 km in length to connect stations %mmbering up to

1024.

We consider the following model commonly taken as the basis of mathematical studies
of the multiple access channel [2-3;6‘-8,12-18,21,27]. At steps numbered 1, 2, 3,... any
station can transmit a packet of data to the channel. There is no central control. If n
stations transmit simultaneously, the result depends on n as follows:

e If n = 0 then of course no packets are transmitted.

o If n =1 then the packet is broadcast to every station, an event called a successful
transmission. : ‘

e If n = 2 then all the packets are lost because the transmissions interfere destructively,
an event called a collision.

. Prior to the next step all stations receive the feedback 0, 1, or 2+ indicating whether the

multiplicity of conflict n is 0, 1, or = 2, respectively. In general no a priori knowledge of
n is available, such as its probability distribution.
CONFLICT RESOLUTION ALGORITHMS

In the late 1970’s, Capetanakis [2,3], Hayes [16], and Tsybakov and Mikhailov [27]

independently introduced novel schemes for coordinating access to the channel, which have

some remarkable properties either not known to exist or provably absent in earlier

proposals (see e.g. reference [21]). At the heart of these schemes is an algorithm to solve

the problem of conflict resolution, which is the main problem this paper addresses. This



problem is closely related to the problem of supporting a high rate of packet arrivals, as

| described below.

An algorithm to resolve a conflict schedules retransmissions so that each of the
conflicting stations eventually transmits smgly to the channel. Just the n stations involved
in the initial conflict participate. However, all stations monitoring the channel are able to
detect the algorithm’s termination on the basis of channel feedback. Capetanakis and
Tsybakov and Mikhailov proposed probabilistic tree algorithms for conflict resolution,
whose analysis and refinement have received considerable research attention [6-8,17,21].
Using expected running time (measured as the number of steps used) as a measure of
merit, the best of these is the modified, biased tree algorithm, which Fayolle and

Hofri [6,17] show has expected running time approximately 2.662 n for large n.

Our main innovation is a probabilistic algorithm that at small cost produces a stochastic
estimate of n, the conflict multiplicity. We construct ;a hybrid algorithm to resolve
conflicts, using as subroutines

e an estimation algorithm (there are several versions of the algorithm), and

¢ a binary tree algorithm (again, there are several versions).

The details of the construction depend on results obtained from the precise asymptotic
analysis of the two component algorithms. With expected running time as the measure of
merit, the best hybrid algorithm resolves conflicts of multiplicity n in gxpected time

approximately 2.134 n for large n.

We present our results in two stages. We first give simple versions of the algorithms,
and a precise asymptotic analysis of their behavior. We then present improved versions of
the algorithms, and explain how to adapt the analysis to capture the improvements. The

key technical device at work in the analysis is the Mellin integral transform, which allows



‘us to obtain precise asymptotic results with relatively little effort.

Our first version of the estimation algorithm controls transmission to the channel using
coin tosses with bias 27 for integer i. We call this the base 2 estimation algorithm. In
expected time logon + 0 (1) it produces an estimate of n with mean approximately 0.914 n
and standard deviation approximately 0.630 n (Theo ems 2 and 3).- We consider a
generalization to an arbitrary numerical base @ > 1 and, in particulaf, consider choosing a
close to 1. Varying a gives a certain time/accuracy trade-off. The base a algorithm has
expected running time log,n + O(1). Asymptotically, that is, for a close to 1 and n large,
the algorithm produces a sharp, unbiased estimate of n .in time that remains O(log n)

(Theorems 8 and 9).

As mentioned above, the hybrid algorithm uses an estimation algorithm and a binary

tree algorithm as subroutines. Our first version of the algorithm uses

1. the base 2 estimation algorithm, and

2. the simple tree algorithm of Capetanakis [2,3] and Tsybakov and Mikhailov [27].
We show that this algorithm resolves conflicts of multiplicity n in expected time
approximately 2.490 n, for large n (Theorem S5). We later generalize the algorithm to use

1. the base a estimation algorithm, in conjunction with

2. one of the following tree algorithms

o the simple tree algorithm,

¢ the modified tree algonthm of Massey {2,3,21] and Tsybalfov and Mikhailov [27],
or :

e the modified, biased tree algorithm of Fayolle and Hofri [6,17].
For each of the three choices of the underlying tree algorithm, our results indicat? that the
smaller a the better the asymptotic (large n) performance of the hybrid algorithm. Using
the base 1 + 107 estimation algorithm, the expected running time of -.the hybrid algorithm

Cisen + 0(n), where 0 < €< 1 and apart from negligible fluctuations c¢ is as described in



Table 1. (This data comes from evaluating formulas presented in section 5 2)

TABLE 1. Expected Running Time of the Hybrid Algorithm

tree algorithin c
simple tree 2.3356
modified tree 2.1699

modified, biased tree  2.1403

As the base a goes to 1 the expected running time of the hybrid algorithm goes to that of a
certain idealized algorithm, which obtains at no cost the exact value of n instead of an

estimate.

APPLICATIONS OF CONFLICT RESOLUTION ALGORITHMS

Conflict resolution algorithms are the building blocks of the following channel access
protocols proposed by Capetanakis {2,3], Hayes [16], and Tsybakov and Mikhailov [27].
Initially access to the channel is unrestricted. Thereafter, channel activity alternates
between intervals in which access is unrestricted and intervals in which access is restricted
to resolve conflicts. During an unrestricted interval a station holding a packet simply
transmits it without delay. When a collision arises the conflicting stations execute an
algorithm to resolve the conflict, while all other stations defer. When the algorithm

terminates access is again unrestricted.

The behavior of such protocols is typically studied under the assumption that new
packets arise from an infinite population of stations according to a Poisson process at a
fixed rate of A packets per step (0 < A < 1). Following Fayolle and Hofri [5,15], we say
the protocol is stable if the expected length of each conflict resolution interval is uniformly

bounded. On general grounds, one can show that if a conflict resolution algorithm has



expected running time T (n), then the corresponding channel access protocol is stable for

n

T(n)

and is unstable for all A > lim sup [6,17 21]. It follows from

1A < lim inf —
TS T
our analysis of T (n) for the hybrid algorithm that

o the hybrid algorithm using base 2 estimation and the simple tree algorithm is stable for .
all A up to 0.4025, and

e the hybrid algorithm using base a estimation for a close to 1 and the modificd, biased
tree algorithm is stable for all A up to 0.4686.

Channel access protocols are described in more detail in section 6, where we also discuss

measures of the stability and adaptivity of the protocols.

In addition, algorithms to resolve conflicts are necded to implement certain network
protocols for distributed computations, as described in [12,13]. These protocols proceed in
‘rounds of information exchange, where each round' gives rise to a burst of packets
potentially leading to a conflict, which must be resolved before the next round can begin.
The time efficiency of the protocol depends in part on that of the mderlyiﬁg algorithm for

resolving conflicts.

DETERMINISTIC CONFLICT RESOLUTION ALGORITHMS

In this paper we concentrate ;)n probabilistic algorithms for conflict resolution.
However, it is possible to define deterministic algorithms if each station ‘is uniquely
idcntified by a whole number bﬁtween 1 and N, where N is the total number of stations,
and the algorithm can use the stat\ion numbers. At each step, a set of stations called the
query set is enabled to transmit, chosen as a function of channel feedback. ‘A measure of
merit is the time needed in the worst case to resoive a conflict among n stations (worst case
refers to the maximum over all subsets of sizg n), measured as the number of steps used.
Capetanakis [2,3], Hayes [16], and Tsybakov and Mikhailov [27] independently proposed a

deterministic tree algorithm, which uses channel feedback to guide a search for the n



conflicting stations. This algorithm runs in time &(n + nlog -I:‘i) in the worst case for all
nand N, (2 s n s N). We know of no algorithm attaining an asymptotically smaller
worst case running time. If n is given a priori then the O(n + nlog %) bound can be

achieved non-adaptively, tﬁat is, by a sequence of query sets detérmined as a function of n
and N, independent of channel feedback [18]. No deterministic algorithm (adaptive or
non-adaptive) can do substantially better: With respect to a general model of deterministic
algorithms to resolve conflicts, Q (n(log N)/(log n)) time is needed in the worst case to
resolve a conflict of multiplicity n, for all s and N (2 = n = N) [14]. It can be shown

further that the worst case running time of every divide and conquer algorithm, which
includes the deterministic tree algorithm, is Q (n + nlog -1:'—,) [13). These lower bounds on

dete rministic a]goritﬁms prove that the probabilistic algorithms we consider, which run in
expected time linear in the multiplicity n for any n, are better than deterministic
algorithms, whose running time is a function of n and N. (When n =2, 0 (log N) time is

required.)

OUTLINE

In section 2 we first describe and motivate the model of a multiple access channel. In
subsections 2.1 and 2.2, the simple versions of the estimation and hybrid algbrithms are
presented. In section 3, we present a detailed analysis of the first two moments of n*, the
estimate of n provided by the simple estimation algorithm. In section 4, we present a
comparable analysis of the first moment of the running time of the simple hybrid
algorithm. In section 5, we present the improved versions of the algorithms, and the
corresponding analyses in subsections 5.1 and 52. Finally, in section 6 we address the
stability and adaptivity of channel access protocols based on the hybrid and related conflict

resolution algorithms.



Our analyses produce tighf asymptotic (large n) bounds. At appropriate points, we
include corroborative results obtained from simulations. Preliminary results of the research

reported here appeared in references [13] and [15].

2. ALGORITHMS FOR A TIME SLOTTED CHANNEL

Underlying the formal model of a multiple access channel given in the Introductioﬁ, is
the more general model of a time slotted channel [26]. Figure 1 depicts an example of the
time line with slots demarcated, and each labeled with 0, 1, or 2+ according to whether the
slot corresponds to the simultaneous transmission of 0, 1, or = 2 stations. Tt is assumed
that stations can detect slot boundarigs, and are synchronized so that transmissions are

initiated only at slot boundaries.

-t
-

L -

cee O O 2+ 1 2+ 1 O oo

\
Figure 1. Example illustrating activity on the channel over 7 slots.

The length of an empfy slét (marked 0) depends on the physical characteristics of the
system s_uch as the maximum transmission propagation delay between stations. The length
.of a slot correspopding to a collision (marked 2+) depends .on related physical
characteristics of the system. In local nefworks, stations involved in a collision rapidly
receive feedback indicating this, and can abort the transmissions after having transmitted
only a small fraction of a packet. The length of a slot corresponding to a successful

transmission (marked 1) may depend on the length of message carried in the packet.

In local networks, there is a trend towards driving the channel at higher and higher. bit

"rates. (Transmission on the prototype Ethernet proceeded at 3 million bits/second [20].



On a more recent version, transmission proceeds at 10 million bits/second [5]. Plans for
constructing related networks supporting rates of 200 million bits/second have been
reported [20].) As this trend continues, the difference in the lengths of the three types of
slots decreases, as about the same time is. needéd to transmit a packet, sense the channel
idle, or sense a collision. 'fhus, our formal model of the channel, which accounts for slots
as equal cost steps, grows closer to the real situation along with this trend. Also, the

analytic methods presented here can be easily extended to cover cases where collision slots,

empty slots, and transmission slots have different (but fixed) durations.

Although analyses of multiple access channels nearly universally start with the
assumption that time is slotted, achieving the required synchronization is a non-trivial
engineering problem. Time slotted satellite channels have been built, such as the common
signaling channel used in the Comsat Intelsat Spadc system [26]. In channels for local
networks, like the Ethernet [S] and the Hyperchannel [10], synchronization may be partial.
A tone can be put out on the channel to aid synchronization [20]. An apparent difficulty is
in coping with local clock drift during a long interval of consecutive empty slots, say, one of
length Q(N), where N is the total number of stations. A nice feature of the fast
probabilistic algorithms described. here is that such long intervals of consecutive empty slots
are extremely unlikely during a conflict resolution interval. In the Ethernet, stations use
similar clocks and use the notion of a slot to schedule retransmissions, but need not agree
on slot boundaries. In the Hyperchannel, stations must agree on slot boundaries during the
interval of time following a collision up to a successful transmission. (N -1 empty slots

méy elapse during this interval).

Recently, Molle [23] proposed a way to map low level algorithms designed under a tirme

slotted model (like those presented here) into algorithms that work under a mode! in which



stations have similar clocks but need not agree on slot boﬁndaries (like the Ethernet). .
_.Roughly speaking, his simulation results indi‘cate that eﬁ'icient algorithms unde; the time
slotted model map into efficient algorithms in thg unslotted setting. These results are
enco.uragiﬁ_g in that they show that the rich theory of the slotted channel may lead to more

efficient use of channels like the Ethernet without major changes in their engineering.
21 A SIMPLE ALGORITHM FOR ESTIMATING THE MULTIPLICITY CONFLICT

Suppose that n stations simultaneously transmit to the channel, and that n = 2. We
wish to compute 2 random function n* of n whose value gives an indication of the value of

n itself, while not using many steps in doing so.

Our strategy is to search for a power of 2 that is close to n with high probability.
Suppbse for the sake of argumentAthere is some .evidence that n = 2' for some integér
i > 0. A probabilistic test of the hypothesis. that » > i+ can be arranged as follows.
Have each of the n conflicting stations either transmit or not transmit in accordance with
whether the outcéme of a toss of a biased binary coin is 0 or 1. vThe coin is biased to turn
" up 0 with probability 276+) and 1 with the complementary probability. Since the
expected number of transmitters is 2=+,  feedback 2+ supports the hypotheéis that
n> 2", Figure 2 describes the base 2 esrfmatian algorithm mot.ivated by this
.observation. Each of the conflicting stations executes the algoriM’, resulting in a string of
collisions whose length determine$ n*. We assume that the random decisions involved are

independent. In this way, n* is computed in time 1 + logyn*.
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Figure 2. Base 2 Estimation Algorithm

i=0
repeat
i =i+1

With probability 27 transmit to the channel
until no collision occurs
n* =2
Consider the example given by n =2. At the first step of the loop, each station
transmits with probability 1/2. As a result, with probability (1 - 1/2)% +
2(1 - 1/2)(1/2) =3/4, zero or one stations transmit, causiné the algorithm to halt, and
yielding n* = 2. With the complementary probability, 1/4, both st:ations transmit and the
algorithm proceeds to the second step of the loop. At that step, each station transmits with
| probability 1/4. Thus, with probability (1 — 1/4)2 +2(1 —1/4)(1/4) = 15/>16, Zero or one
stations transmit, causing the algorithm to halt, and yielding n* =4. With the
complementary prob;ability, 1/16, the a]éorithm proceeds to the third step of the loop, and

so forth.

As i increases, the probability that at most one station transmits increases
monotonically, and approaches 1 extremely rapidly as i increases past logan. As a result,
one would suspect that the algorithm proceeds until i is close to logyn and then terminates "
producing n* close to n. It is not hard to confirm this suspicion in the sense that the
m —th moment of logon* is &(logs'n) and the m —th moment of n* is &(n™). We can
pinpoint .the values of these moments much more precisely. Of particular interest are the

first two moments of n*, E(n*) and E ((n* )2):

E(n*) = n( + U(logy n)) + 0(n%),

E((n*)?) = n¥(® + V(log; n)) +0(r! *9),

where
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b= — [T eF(+x) [] (1 —e?F (1 +2%2)) /22 dx = 0.91422..,
log 2 70 i |
= 1 * - _ 2 k . 3 = :
(1) J o eQ+x) [ (1 - (1 +2%x))/x°dx =1.23278 ...,
log 2 Y0 k=1

U and V are periodic functions having in_ean 0 and very small amplitude, and ¢ is an
arbitrary constant with 0 < e< 1. The proofs of thgse results are given in the next
section, where in passing we present precise asymptotic information about the distribution’
of n*. The two integrals were evaluated using double precision numerical quadrature
routines from the Port softwaré library (a licensed product of AT& T Bell Laboratories).

. * .
The fact that for large n, E(n*) = ¢n, suggests treating n* = %— as an estimate of n.

Owing to the contribution of the periodic function U, n” is not an unbiased estimate of n,

in the sense that E@n) is not 1. Fortunately, the amplitude of U (z) turns out to be less
n .

than 2-10 75, so this bias is negligible for all practical purposes.

Iﬁterestingly, a simple variant of the estimation algorithm has provably disastrous
performancé. Consider the algorithm where each station involved in the initial collision
-transmits to the channel with probability 1/2. If this causes anot_her‘ collision then thosev
that just transmitted again transmit with probability 1/2. The others drop out. This
contihues, with the stations continuing to try to transmit always being a subset of those
that just transmitted, until there is no collision. Take 2' as the estimate of the mu]tiplicity
of conflict where i is number of the steps preceding the first step at which there is no
collision. It can be shown that the second and all higher moments of this estimate are

infinite.
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22 A SIMPLE HYBRID ALGORITHM FOR CONFLICT RESOLUTION

We begin this' section with a review of the simple tree algorithm for conflict resolution.
We then discuss a way to improve it, due to Capetanakis, for a special case in which the
stations have a priori information specifying a particular probability distribution for the
multiplicity of conflict n [2,3]. Lastly we define the hybrid algorithm for conflict

resolution, which achieves a related improvement, without using a priori information about

Following Massey [21], we present the simble tree algorithm in a recursive fashion.
Suppose that n stations transmit simultaneously to the channel. If the resulting feedback
indicates n is 0 or 1 then the conflict is already resolved. Otherwise, each of the conflicting

stations tosses an unbiased binary coin, at which point:

1. Stations whose coins turned up O transmit to the channel, which results in a conflict
that these stations now resolve.

2. Next, stations whose coins turned up 1 transmit to the channel, which results in a
conflict that these stations now resolve.

Using a local counter ¢, each conflicting ‘'station can keep track of when it should
trapsmit [21]. Until a station has transmitted successfully, the station checks ¢ just before
each step, and proceeds to transmit only if ¢ equals 0. Prior to the next step, ¢ is updated
according to the following rules:

1. If feedback indicates a collision, then

e if the station participated in the collision, c is set equal to outcome of an unbiased
ooin toss (0 or 1), '

e whereas if the station did not participate, ¢ is set equal to ¢ + 1.

2. If feedback indicates O cr 1 station transmitted, then ¢ is set equal toc¢ — 1.
Table 2 summarizes the rules for updating ¢. By an analogous technique, stations not

involved in the conflict resolution can detect its termination.
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TABLE 2. Tree Algorithm Implementation (toss represents the outcome (0 or 1) of the
toss of an unbiased binary coin). '

2+ ) 0

c=0 c = toss suécess (impossible)

c20|lec=c+1 |ci=c-1 c:=c¢ -1

An execution of the algorithm determines a binary tree in which internal vertices
correspond to collisions and leaves to either successful transmissions or no transmissions.
Figure 3 illustrates a possible execution on a conflict involving three stations, say A, B, and
C, which we take to occur at step 1. All three‘stations indepvendemly toss coins after the
initial conflict. Two stations, say A and B, obtain 0’s and so collide at step 2. After a step
of 'nc; trariginiésions the two collide again at the fourth step, and then transrﬁit successfully ‘
;ltl ste4ps 5 and 6. Station C transmits successfully at sfep 7, which marks the compl'étioh'of
execut'ion.t Table 3 illustrates how the local variables ¢ evolve in accordance with'channel"
f?.edbaclg .

‘ "I"he ?]gorithm runs in expected time approximately 2.885 n, for large n [15]. |

Figure 3. Binary Tree Determined by Execution

A,B,Ck '

§4,B c}

/ —

i i, B
{aY R



-14 -

TABLE 3. Trace of Local Counters

Step cforA cforB «cforC Feedback

1 0 0 0 .
2+
2 0 0 1
. 2+
3 1 1 2
0
4 0 0 1
2+
5 0 1 2
1
6 - 0 1
1
7 - - 0
1

Capetanakis suggested the following improvement, motivated by the fact that the tree
algorithm is most efficient for conflicts of small muliiplicity [2,3]. Assume the initial
conflict has multiplicity » = 2. All stations involved pick a number in the range 1, 2, ..,
m uniformly and independently at random, where m is a global parameter. This divides
the conflicting stations into m groups, which are then processed serially using the tree
algorithm: First, those that picked 1 transmit, and the resulting conflict is resolved using
the tree algorithm. Second, those that picked 2 transmit, and that conflict is resolved us:ng
the tree algorithm, and so forth. Capetanakis defined a dynamic tree protccol exploiting
this idea, under the assumption that the multiplicity of conflict is a Poisson distributed

random variable whose mean A is known a priori.

An appropriate choice of m is crucial. If 2 is too small then the algorithm will
n

behave essentially the same as the tree algorithm. If —':-:— is too large then the algorithm

will behave poorly because many of the m groups will be empty and steps will be wasted.
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In section 5.2, we present a method for finding the best se'ttin'g of -':—:— It turns out that to
minimize the expected running time -’;—'— should be close to 0.9. The fact that

E(n*) = 0.9n suggests the following simple hybrid algorithm for conflict resolution, which
works without any a priori information n.
Figure 4. Slmple Hybrid Algorithm

Compute n* using the simple estimation algorithm, and let m = n"'

2. Divide the conflicting stations into m groups by having each pick a number
uniformly at random between 1 and m. Process the m groups serially using the
tree algorithm. -

Note that the algorithm can be implemented from only the knowledge of channel feedback.

Later, we will generalize the algorithm to force 2 (loser to the optimal value, with
] n

" high probability. A small detail involves handling the case in which the estimation phase

endé with’ one’ station transmitting successfully. To ease the analysis we assume that

nevertheless this station participates in the second phase. This increases the expected

‘running tiﬁm-slightly over ‘the case where this station does not participate but does not

affect the asymptotic results.

3. ANALYSIS OF THE SIMPLE ESTIMATION ALGORITHM

\

In this seétion we obtain; precise asymptotic bounds on the first two morfxenis of n*,
E(n*) and E((n"')z). We pfesent the analysis leading to a bound for E(n*) in detail. We
give a brief outline of the corresponding analysis for E((n*)z), because the details are
much the same as those for E (n*). Higher moments of n* can be #nalyzed in a similay
manner. Two techniques are used over and over in the analyses: a certain  exponential
approximation, and an approach to the asymptotic of sums that involves the Mellin inte egral

transform. Knuth and de Bruijn pioneered the application cf these techniques, in tx'eatii;g
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key properties of radix exchange sort and trie data structures ([19], pages 123-139, 481-
505.) Knuth refers to this style of analysis as the gamma function approach, but this is

indeed an application of Mellin transform techniques, similar to those found in analytic

number theory.
The estimation algorithm corresponds to the transition diagram of Figure 5.

Figure 8. Transition Diagram for the Base 2 Estimation Algorithm

1-s(1,n) 1-s(2,n) -s(4,n)
OHIO=EOTO=T
[N N ]

1-s(3,n)

State i of the diagram corresponds to the i -th iteration of the loop of Figure 2. W;ith
probability 1 — s(i #) the algorithm reaches the next state (iteration), and with probability
s(i ) the algorithm stops, yielding n* = 2'. Here s(i ) represents the probability of Q or
1 transmissions when n stations toss coins with bias 27 to decide whether or not to

transmit:
sip)=@1-27y+@0-27)y"127n

Let q(i;n) denote the probability that the algorithm reaches state i, that is,

q@in) =Prob(n* = 2). Theng(1n) =1,andifi > 1 then

qlin) =0 -s@-1,m)(1 =s@i-2n)) -+ - (1 -s(ln)),

E(*) = S(a(in) - qli+1,m)) 2 . 1)

i=l
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- Our analysis hinges on the fact that this sum s closely approximated by a cer‘tai.n-‘

harmonic sum, that is, by a sum of the form > b; ¥(a; x) where ¥ is a real valued
i . .

function of its érgumcnt, and the g; and b; are two sequences of real numbers. Harmonic
sums arise often in the anaiysis of algbrithms and, in particulaf, in the analysis of
algorithms for a multiple access channel. An approach to the asymptotics of héfmon_ié
sums involving the Mellin integral tiansform often succeeds (cf. reference [9], pages 14}-

158). We will see that such an approach succeeds here.
The harmonic sum approximating E(n*) arises from the exponential approxjmation:
(1 -x)"= e *"if 0 < x < 1. Specifically, we use |
e2'n 4 g,
as an approximation for

s(in) =0 -27)"+ (1 —27y g7,

which leads to q;(-é'i—) as approximation for ¢ (i +1,n), where

’ \Lf(x)=ﬁ(1—e—zjx (1 + 2/ x)).
j=0 -

(The infinite product converges for all x =0, going rapidly to 0 as x goes to 0, and going

rapidly to 1 as x goes to ». Notice that (0) ;0.) The first i terms of the product for
\1:(-;7) are the exponential counterparts to the i terms in the product for g(i +1,n). fFﬁe
other terms are included to simplify the dependence on i thohgh,' beihg extremely close -to
1, these terms have little influence. Substituting d,:(—z'%-) for ¢ (i +1,n) m equation (1) ;-lggés

to
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Fn) = S¥(&) 2 ®
i=0 2
where

(x) = ¥(2x) -~ ¥(x) =7 (1 + x) ﬁ (1 -e?x (1 +2x)).
j=l

Lemma 1: The expectation E (n*) satisfies
E(n*) =F(n) + 0(n°)
for all n = 2, where eis ahy constant with 0 < €< 1.

Proof: A simple rearrangement indicates

Ey =3 aim? - B a0+, m? =1+ 3 qG+1,m) 2 .
i=0 .

i=l i=]

Similarly,
F(r) = ¥@n) + 3 W(-1) 2.
i= 2
Thus, it suffices to show
S lll(—n;‘) 2 - % q(i+1,n) 2l =0(n").
i 2 i=0 :
Let p = [logon]. We need two facts, which are proved in the Appendix:

1. ¥( 5 ) and ¢ (i +1, n) are each less than R and

2. 'JJ(%) —q(i+l,n) = 0(-1—9-5-1), uniformly in i.

Using the bound for xl;(;’:.-') — ¢(i +1, n) we obtain
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A log n :
S (&) -qG+,m]2 =022 3 2
ispiVp 2 " isp+Vp

= o2 y0(,2Y1% ) = o .

Using the fact about the rapid decline of w(—é—;—) and ¢(i+1, n) with i, we obtain

, v
S W) -qi+,m1 2 < 3 i
i>p+Vp 2' i>p+\/}; 2(' p)(t p_+1)

=27 3 27 = 0(n) 0(;1,-) = 0(1).

i>Vp

Following Davies [4], we define the Mellin transform of a real function f(x) as
M(f(x),s) =] f(x)x*7 dx,
0

where s is a complex variable. As a notational convenience, we will write M (f(x), s) as

f*(s). Thus, the Mellin transform of F(x), for F as described in equation (2), is
Fris) = [ [ 22X w5 =" dr.
0 k=0 2
By the change of variable, y = 2—’2—,

Frs)=J, 132D vy ™dy.
Yk
Assume Re(s) < —1 so the geometric sum converges, and

Ft(s) = ) 1

T do YO Yy .

It is not hard to show that ¥(y) = 0(y?) as y ~ 0 and ¥(y) = 0(y ™) asy -~ = for any
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d > 1. Using these bounds, it can be verified that
Ve(s) = [, Yy ldy

is entire (analytic for all s). Thus F*(s), as given by the integral representatioh, is

analytic for Re(s) < -1 and the expression

V*(s)

F‘(J) = 1 _2$+1 ’

shows that it is meromorphic in the whole of the complex plane, with simple boles at

Toa 2’ (These are the roots of 1 — 2° *1) Figure 6 gives a rendition of

|F* (s)| plotted versus s on the neighborhood of the poles at x _j, x, and x;.

Figure 6. |F*(s)]

l',,
’lb, rr7 s

> // i
3 / IR
% ’ "llllllf I//”%-.%' P

By the inverse Mellin transform theorem,

—%+iac - -—é- +ix

1 . - 1 Y*(s) -
F = e—— ’ [ — d.
(x 2mi Fo(s) = 2mi 1-254 x *

-—-x:c —— -z

(The constant _3 appearing in the limits of the integral could be replaced with an
2 pp . y
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constant less than —1.) The analysis is nearly done, because it turns out to be possibk to
derive a precise asymptotic bound for F(x) from this integral representation.
Theorem 2: For any constant ewith0 < e< 1,and all n = 2,

1
log 2

E(n*) = n (¥*(=1) + U (logz n)) + 0(n%),

where

v (-1) 1 T = ot ' 0,
= 1+x)Jf1 -~ 7"+ / x*
og 2 log 2 j(; e ™ ( x)k =1( e (1 +2" x))/ x“dx .

N

= 0.91422..,,

and U (z) is the Fourier series

U(z) = 3 ¥* (-1 + 2wik/log 2) exp(—2mikz),
, K0

which has mean value 0 (k ranges over the integers). (The amplitude of Ui
approximately 2:1075)
Proof: We intend to show that for all x = 2

1
log 2

h F(x)=x (¥*(—1) + U (logox)) +0(1) .

This is sufficient since, by Lemma 1, E(n*) = F(n) + 0(n®). Cauchy’s residue'.theor'et"n'

provides a relationship between the integral

' 3.
. - H=x ,
2
_ 1 Vr(s)
F(I) B 2 f 1 _23+1 x7 ds
~Zx

and the singularities of its integrand. As we remarked above, these singularities are simplé

2nik
log 2

polesats =x, = -1 + ,for k =0, =1, +2, ... Consider the contour integral
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f M)— x %ds
In

1 ___2.1'+1

where Ty is described in Figure 7.

3.

-3 t+iN Xk+1 1+iN
L
*
L]
.
X3
X2
X4
Xge=1
0

Ty x
x-2
X3
L]
*
L]
Xk

3 v

-3-iN LR 1-iN

Figure 7. The contour I'y

N is chosen so that the top and bottom segments of Ty pass halfway between successive
poles.

It happens that for large N, the value of this integral is concentrated along the vertical
segment. Specifically, we claim (and defer the proof)

3

= 4=
£ ds = r(s) -
er 1 2”1 ds = f. T ds +0(1) . (3)
- 3

By the residue theorem, the integral along Ty is —2mi times the sum of the integrand’s

residues inside I'y. Thus,

fr "ds—Z-mE Res (-——J-Lx oXK)

N 1-— 25 +1

summing over all integers k, so
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F(x) =E—Res(1—wl§?q x7%,x) +001) .
e -

The residue at xy = —1 is given by

*
Res (—\-y-.—(‘f)— x™* = hm (s+1) ——L—)—
_ s+l - -1 s+1
1-2 $ -2
_ . s +1
=x ¥*(-1) S{m_l —————1 e
, LI C)]
: log2
Similarly, the residue at x;, = -1 + 2mik is given by

log 2

o .
Ly ( lToze;zkIIOj_Z)_ exp(—2mik logax) .

Hence

(,x) = T (‘l’*( 1) + 2 \I"( -1 +2'mk/log 2) exp( 2‘n’lk log-,x)) ""0(1),
k#0

the desired resilt.

It remains to justify equation (3). Break the integral along 'y into four parts:

3. 3 .

~3HN 14N T
er = [ + [ + [ + N

APV VPP A R

2 2

It.suffices to show that the last three integrals are 0(1), uniformly in N. To show this we

need a crude bound for ¥*(s):
* _ 1
v () = 0(=5)

‘for all s on Iy, uniformly in N as N - ». The proof of this bound is similar in spirit to

the proof of the Reimann-Lesbegue lemma. Inte grating by parts twice we obtain
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W (s) .-=.[; w(x) x*dx = j v'(x) £ dx

s(s +1)

where \P"(x) is the second derivative of ¥(x). (The terms not involving the integral in the
integration by parts formula turn out to be 0.) Taking the modulus of both sides and using
simple estimates (¥'(x)= 0(x%) as x - 0 and V(x) = O(x’d) as x - », for any

d > 1) produces the bound.

Now, consider the integral along the top, horizontal segment of I'y:

14N 1 .
f W‘!S! x—:ds - ! '\I"!t +1N! x-('.H'N) dl ,
3, 1_2-'+1 1_2t+(N+1
E -2
SO
1 .
f ‘I"!’ +1N! _.(g.HN)dt < J- \l"!t +1N! ’ x_(g.H'N)ld"
2t+lN+1 2I+IN+1

=f 0(—7) =™ df =0(=3)

which vanishes as N - = (x is fixed at this point). Similarly, the integral along the
bottom, horizontal segment of Iy vanishes as N - =. Lastly, consider the integral along

the right, vertical segment of Iy:

1-iN

Y*(s) - ‘I”“!l +it) L1t
A xds = f ~ e ide .
1+N 4 7

Taking the modulus and making some simplifications, we find



. +“ N
IM -A+#) gy < -i—_[ [W*(1 +it)] de

N 1 - 22+u
=0(1) .
The last qtep follows from the fact that x = 2, and the fact that the mtegral converges in

view of ¥*(s) —0( 5). B

This completes the analysis of E(n*). We now outline the key steps in a similar
analysis that leads to a bound for the second moment of n*, E((n* )2). Our point of

departure is the equation

E((n*)’) = kz1 4 (qle,m) ~q(k +1,m)) .

The exponential approximation, (1 — x)" = e™ ", suggests that
G(n) = 3 ¥ ()
k=0 2"

should be close to E ((n*)z), and indeed it turns out that
E(("*)) =G(n) +0(x'™),

where e is any constant with 0 < e < 1. The Mellin transform of G is related to that of ¥

by

Go(s) = L6

1 -2

which defines G*(s) as an analytic function of all s, excluding the points

2mik

o which are simple poles of ——LL for k =0, =1, =2, ... By

s42°

s=x, =2+

the inverse Mellin transform theorem,
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G(x) = _1__ _M)_ x™8 ds.

211'1' -5 1 —2:+2

Using the residue theorem (as in the proof of Theorem 2) to relate the integral to the

singularities of its integrand, we find that, for any x = 2,

p
G(x) = =5 (¥*(-2) + V(o 2)) +0(1)
where
Y (-2) 1 p -x - 2t x k .3
= 1+ 1- 1+2% x))/
g2 o 2 v_foe (1+x) kr!l( e ( x))/ x° dx
= 1.23278...

and V (z) is the Fourier series

V(z) = 3 ¥*(-2 + 2mik/log 2) exp(—2nikz),
k+0

which has mean value 0. Numerical calculations indicate that the amplitude of V is
=~ 107, In sum, we have
Theorem 3: For any constant e with 0 < € < 1,and alln = 2,

1

*32) = 52
() =7 o

(w*(-2) + V (logz n)) + 0 (n'™),
where W* and V .are as described above.

4. ANALYSIS OF THE SIMPLE HYBRID ALGORITHM

In this section we present a precise asymptotic bound for the expected running time of
the simple hybrid algorithm, described in section 2.2. Recall that the algorithm works in

two stages:
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1. An estimate n* of n is computed, which leads to a partition of the stations into n*
groups. '
2. The groups are processed serially using the tree algorithm.

It is not hard to show that logn+0O(1) expected time elapses in stage 1 (the additive
constant can be pinpointed up to a o(1) érror term),.and ©(n) expected time in stage 2.
Because the cost of stage 2 swamps that of stage 1, we will not pi'esent a bmcise treatment
of the cost of stage 1. Let T (n) denote the expected time used in stage 2, and let
T (n | 2% denote this expectation conditioned on n* = 2%, Then

T(n) = iT(u | 2) Prob(n* = 2%). , 4
k=1 _

Our aim is to find a precise asymptotic bound for this sum.

To begin, note that T (n | 2%) represents the expected time used in 2* invocations of
the simple tree algorithm. The number of stations involved in each invocation is a
binomially distributed random variable, with parameters n and 2%, By symmetry,
T(n |2¥) = 2* C(n |2*%), where C(n | 2%) is the expected time used in any one of the 2"4
invocations. We claim |

Cn|2)=1+232 (1 - -2*0y - —2%IyloFd ) (5)

j=0 : :
To see this, consider the binary tree associated with one of the invocations (cf. Figure 3).
Each node in the tree corresponds to a step in the course of the execution. An internal

/

node, which corresponds to a collision, occurs at depth j with probability
1-(=-2*0n - - 2 k-jyn-1 2"‘fj n,
since this is the probability of two or more stations joining the same group (out of the 2k

equally likely possibilities) and then agreeing on their first j coin tosses. As there are 2/

possible internal nodes at depth j, the sum in equation (5) represents the erpected number



of internal nodes in the tree. Because the total number of nodes, which is identical to the
running time, is one greater than twice 'the number of internal nodes, C(n | 2") represents

the expected running time.
We now develop a suitable approximation for 7 (n). By the exponential approximation,

1 —}x)" = e™*"  we expect C(n | 2%) to be close to c(-;T) where

Cex)=1+2 327 (1 —e X1 +27 x)).
Jj=0

Indeed, substituting c(;"k—) for C(n | 2% and accounting for the error incurred leads to

T(n|2%) = 2’%(;”,‘—) +0(nY).

This holds uniformly in k, for any constant € with 0 < € < 1. (See reference [19], pages

132-133, for an essentially identical result.) As in section 5 we use ‘lf(-;l.-) to approximate

Prob(n* = 2?),where
w(x) = ¥(2x) - ¢(x) =e* (1 +x) kﬁl(l —e (1 +2%5)).

Guided by these approximations and equation (4), we define the following approximation

for T (n):
t(n) =kz=02" c(—z’;—) \y(;’;- o (6)
Lemma 4: The expectation T (n) satisfies

T(n) =t(n) +0(n%),

for all n = 2, where eis any constant with 0 < e< 1.
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Proof: As noted above, T (n | 2¢) = 2 c(-i"k—) +0(n*),so

T(n) = 2 T(n | 2%) Prob(n* = 2%)
k-=1

= 22" C(T) Prab(n* =2k) +0("()‘
| 2

Thus, it suffices to show
kzl 2"c(-2—';-) Prob (n* =2%) - 2 2k c( )\Il( ) —O(n‘)

Let us recall some notation from section 3, namely g¢(k,n) = Prob (n* = 2¥) and

\P(‘z—';— = ¥( ;: ( ) In these terms, the left hand side of the last equation is

3 2 e(5r ) [q(k, n)- w(—)] zlz"c(—zi',;)[q(k+1,n)—¢(;’1—)1—c(nmn).

k =1
We will prove that the first term is O(n®). The same holds for the other two terms; and

the proofs are similar.
A crude bound for ¢(x) will be helpful. Note

D -exa+27x))< TV <22,
2§x ZEx

and

T2 (1 -e??F1 +27x)) < ]221 (< T2 =2x
V=x jz0

Here we used the fact that e = 1 — z for all real z. Thus,

c(x)=1+2 32 (1 - x(1 +27x))
Jj=0

=1 + 8x.

Now let p = [logyn]. By Lemma A2 of the Appendix, q(k n) - !b(%l’zl);- 0(_3_1" "y,
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uniformly in k, 50
| 2n logn, k n
2% (L) [k n) —WEN =0(2F) 3 2 el
ksz+\/E 2* zk n ksp+Vp 2t

o(ar 2k
<o(Rh) 3 @ +em

= 0((log n) 2Y87) = 0(nY),

forany ewith0 < e< 1. It remains to show that the complementary sum,

p) 2"?(—",;-) [a(k 2) - 622,
k>p+Vp 2 2

is at leasi as small. By Lemma Al of the Appendix, both ¢(p+k n) and q;(-z%%‘-) are less

than 27¥¢-1 s

2n n b (k"
| 2% o(2-) [qk ) — W] < ?PH (1 +8—r) 27F D
I G TGPl < By
=0(n) E 2-k2A+2k
k>Vp

=02"®"y = 0(nYy .

To get a more informative asymptotic bound for T(n), we once again call on the -

Mellin transform. Let
a(x) =c(x) ¥(x),

s0 we may rewrite equation (6) as

t(x) = Zo 2k a(-zl‘;-) i



-31-

The Mellin transform of ¢(x) is

t*(s) = [ t(x) x*1ax =f iZ" u(-—x;-)x"'l dx
0 - 0 k=0 2

x

= J‘ Ezk(s-l»l) afx) x s-1 dx
. 0 k=0 '

= -1__12-;T1{ u(x)x"'l dx

= a*(s) (7)

1 __2:+1’

provided Re(s) < -1 so that the sum converges. It is not hard to show that
alx) = 0(x%) as x - 0 and a(x) = O0(x™%) as x - =, for any d > 1. Using these
bounds, one can show a*(s) is analytic for all s. It follows by the principle of analytic

continuation that r*(s), as given by equation (7), is analytic for all s, éxcluding the points

2nik
s =X =-—1+log2 which are the sxmplepolesof 1+ 2:+1"‘ =0,=1,x2,... By the
inverse Mellin transform theorem,
-2—3- +jx
= — _E_‘.m_ -
t(x) 21" . f 1 oo 1 ds.
2

An asymptotic analysis of this integral leads to the following result.

Theorem §: For any e with 0 < e< 1,and all n = 2,

T(r) = n 355 (* (1) + W (log ) + 0(n)

where



o*(-1) p © ok (1 _ 2%z -k
g2 1082{[“2&%2 - 1+2 x))]

{ T +x) II (1 -5 +2"))]

k=1

= 2.49035..,

and W (z) is the Fourier series

S a*(-1 + 2mik/log 2) exp(—2mikz) -
k»0

which has mean value 0 (k ranges over the integers). (The amplitude of W is
approximately 10'5.)

Proof: By the previous lemma, T (n) - t(n) = 0(n"), so it suffices to show that, for all

x 2 2,

t(x) = x 10; — (o (~1) + W (logx)) +0(1) .

Our proof of this bound is similar to the proof of Theorem 2. Consider the contour

integral

a*(s) -
er 1 _2:+1 x~ ds

where Ty is as described in Figure 7. By the residue theorem,

frn—g—l— “ds=2m Y - Res(-—(-)—x * X)),

1 25 +1 e 25 +1

-::

where k ranges over the integers. After evaluating the residues (as in the the proof of

Theorem 2), we obtain
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at(s) s, _ 2ni _ ' '
im er T ds =x Tog 2 (a*(-1) + W (logyx)) ,

where W (z) is as described in the statement of the Theorem. Moreover, the integral along

T'y is concentrated afong the left vertical segment, that is,

: =3 .,
—x
2
i _o*(s) = a*(s) -
Nh.!nx fr~1_2:+1 x " ds _3f ] — oo H x 7 ds + 0(1).
A Y
2

To prove this, we express the integral along y. as the sum of the four integrals along' the
four segments of I'y. Using a crude bound for a*(s) (a*(s) = 0( -12-) works), we can
s

show that the contributions of the top, bottom, and right vertical segments are 0(1). ®

5. IMPROVED ALGORITHMS
- . »
Consider the estimate of m provided by the base 2 algoritm, n* = "T, where

&= %‘—21)- ~ 09142 (cf. Theorem 2). Even though the expected value of n* is quité

close to n, n* is likely to differ from n by a factor of two. A small generalization of the ’
base 2 algorithm remedies this defect, providing an estimate whose mean is close to n but
whose distribution peaks more sharply about the mean. Figure 8 describes the base a .
estimation algorithm, which differs from the base 2 algorithm only in that it uses coin
tosses with bias a~ insteéd of 27, where a is an arbitrary constant greater than 1. The

improvement alluded to above comes from picking a close to 1.
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: Figure 8. Base a Estimation Algorithm
i=0

repeat
i=i+1

With probability a = transmit to the channel
until no .collnslon occurs
n* :=a

Néxt, consider the complementary generalization of the hybrid algorithm of section 2.2:

Figure 9. General Hybrid Algorithm

1. Compute n*(a) using the base a estimation algorithm and let
m = max{2,|s n*(a)]}, where a > 1 and the slide parameter s > 0 are
constants.

2. Divide the conflicting stations into m groups by having each pick a number
uniformly at random between 1 and m. Process the m groups sernally using a
conflict resolution algorithm.

Of course the conflict resolution algorithm used at stage 2 should be an efficient one,

especially on conflicts of small multiplicity. We will consider three choices for this

algorithm:

o the simple tree algorithm [2,327],
¢ the modified tree algorithm [2,3,21,27], and
e the modified, biased tree algorithm [6,17].

As noted earlier, the ratio -:—'- has a major impact on the performance of the hybrid

algorithm. The role of the slide parmeter s is to steer % close to the optimal values. In
section ‘5.2, we develop a precise asymptotic formula for the expected running time
expressed as a function of -':— This formula coupled with one describing the expected

value of n*(a) (Theorem 6, section 5.1) leads to a good heuristic for choosing s. Our

results indicate that under this heuristic, as a tends to 1 the expected running time for

large n tends to that of the idealized algorithm in which m is fixed a priori so that s at
) n
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the optimal value.

We now -give‘ a brief description of the altémate tree algorithms under consideration.
Let us reconsider the example in section 2.2 of the exeéution of the sirdple tree algorithm
on a conflict of multiplicity 3. At step 1 there is a collision, at step 2 thefe is another
collision, and at step 3 there are no transmissions at all. From the feedback these three
steps produce, all stations could infer that step 4 is doomed to hold a collision. To avoid the
sure collision and save ;l step, Massey and Tsybakov and Mikhailov [2,3,21,27] suggested a
modified tree aigorithm that uses slightly different rules governing how a station updates
its local counter ¢, which in turn governs transmission. In addition to ¢, each station must
maintain a local variable d, wh_ich assumes the value 0 when the situation just described

arises and the value 1 at all other times. Table 4 describes the new rules. |

TABLE 4. Modified Tree Algorithm Implementation (A station maintains two local
variables ¢ and d, updating them in response to feedback as indicated below.)

2+ 1 0

c=0 ¢ := toss success (impossible)

c=21lex=c+1]lc=c-11{ifd =0thenc := toss
elsec i=c -1

cz22lci=c+l jci=c—-1 ci=c—-d

Under these rules, the algorithm resolves conflicts of multiplicity n in expected time
approximately 2.667 n, for large n, an improvement of about 8% over the simple tree

algorithm [21,27].

However, the new rules lead to a certain imbalance: After a collision the expected time
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to resolve the conflict among those that toss O slightly exceeds the expected time to resolve
the one among those that toss 1. It happens that using a coin that is slightly less likely to
come up O than 1 reduces the expected time to complete the whole tree. Fayolle and Hofri
found that biasing the coin to tum up 0 with probability 4175 minimizes the expected
running time for large 'n [6,17]. (Under this bias, the expected running time is
approximately 2.662 n for large n). What's even more important for our purposes is that
4175 is close to the optimal bias for small n as well. We will be content here to fix the

bias at 4175, instead of treating it as another parameter.
§1 ANALYSIS OF THE IMPROVED ESTIMATION ALGORITHM

The results of this section have the flavor: As a - 1, the base a estimation algorithm
produces an increasingly sharp estimate of n. We note that the cost of the algorithm,
measured as its expeeted running time, also increases as @ - 1. Itis not hard to show that
this cost is log,n + O(1). Howewer, in our main application -- conflict resolution using the
hybrid algorithm -- this cost figures in as a low order term, while the attendant increased

sharpness lessens the high order term.

The choice of base did not play a crucial role in the analysis of estimation algorithm in

section S, so that analysis generalizes readily. The first moment of n*(a), is given by
E(n*(a)) = F(n) +0(n%),
where € is an arbitrary constant with 0 < e< 1,

F(x) = Sat v,
A k=0 a

© and
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W(x) =e™ (1 +x) [T - ™ +atx)).
k=]

As in the base 2 case, the Mellin transforms F* (é),and V*(s) of F(x) and ¥(x) are

simply related:

poey = Y2060

1_a3+1 '

Inverting F*(s) leads to an integral representation of F(x). Using contour integration to
determine the asymptotics of the integral, we arrive at the folio\ﬁng counterpart of
Theorem 2.

Theorem 6: For any constant ¢ with 0 < e< l,and alln = 2,

ey (7 (1) *+ UgCloggn)) +0(n,

E(n*(a)) =n
where
gr(-1) = [ e+ 1A - e +a*x))/a? dx,
0 k=1

and U, (z) is the Fourier series

Uy(z) = 3 W*(~1 + 2nik /log a) exp(-2wmikz),
k»0 :

which has mean 0 and amplitude tending to 0 as a tends to 1.
(The fact that the amplitude of the U, tends to O is proven below.) A similar analysis

for the second moment of n* (a) leads to the following counterpart of Theorem 3.

Theorem 7: Fof any constant ewith 0 < e< 1, and alln = 2,

1
log a

E((n*(a)))) = n? (¥* (=2 + 2mik/log a) + V,(log 4n)) + 0(n1™),

where
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wr(=2) = f e*(1+x) [[( -1 +a*x)) /5% dx,
0 k=0

and V,(z) is the Fourier series

Va(z) = 3 ¥*(2 + 2mik/log a) exp(—2mikz),
k+0 .

which has mean value 0 and amplitude tending to 0 as a tends to 1.
We now turn to the problem of constructing a sharp estimate of n using n*(a). Since

: *(__
n*(a) = &(a)n where &(a) = -\2—(—1)-, a natural choice for an estimate of n is

loga

4
It turns out that the bias of n*(a), as measured by |1._!_5_(£'_uQD_|, is close to 0 for small
a, and sufficiently large n.

Theorem 8: For all n greater than some constant ny(a),

EC@) i< @),

where € (a) - Oasa - 1.
Proof: It suffices to show that the Fourier series

U,(z) = S ¥* (-1 + 2mik/loga) exp (~2mikz)
k%0

tends to 0 as a tends to 1, uniformly for all z = 0. To do so it is convenient to-work with
W) =L @ -e™*+a*x)),
k=0

rather than ¥(x) = Y(ax) = ¢(x). The transforms of the two are related by
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Theorem 9: For all n greater than some constant ny(a),

@) < ),

where a) ~ Oasa - 1.

Proof: As in the previous proof it is more convenient to work with ¢(x) and its

transform y*(s) than ¥(x) and ¥*(s). To emphasize the dependence on a, we write

P*(s) as 4

Ya(s) = fox 11(1 — e (1 +a’x)) *1dx .
J

By Theorems 6 and 7 and the correspondence 4i;(s) = (@™ * _ 1) ¥ (s), we have

+ 2y _ + 2
E((n (a)).) = (E(n™(a)))” _ K, + W,(log n) + o(1)

where W, (u) is a periodic function of u that tends to O uniformly as @ - 1, and

g o fatDloga ¥ (-2)
L=

a-1  (y(-1)?

Thus all we have to prove is that K, tends to 0 as a tends to 1. This last fact follows

directly from Lemma A3 of the Appendix, which states

1y
Ty - .

. 1
‘J’a(s) - _’S_ (log a —

To complement these asymptotic results, we present results from a simulation study,
which suggest that the tfends described by Theorems 8 and 9 hold for small n as well.
Specifically, we simulated the base a élgorithm and computed the sample mean (Table Sa)
and standard deviation (Table 5b) of n*(a), averaging over 103 trials. We found from

these experiments that a small variation on the definition of n*(a),
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*(a) -1

n*(a) = L L

@)= "4

works slightly better in estimating n than does n*(a) as defined above. We used this
definition in the experiments. (The theorems hold for this definition as well.) It follows

from the proof of Theorem 9 that, apart from negligible fluctuations and o(1)

+
s n(a)) .
contributions, EL_J_ll is
n

N

[(av+1)10}_a_ Ve (-2) _1]
(@-1)  (¥*(-1)) J

which is 6892 when a =2, 3438 when a =1.1, and 2127 when a=1.01. We note that these

numerical values agree well with the simulation data of Table Sb.

TABLE 8. Simulation Results

Sa) Expected Value of n*(a) b) Standard Deviation of n*(a)
n=10 n=100 n=1000 n=10 n=100 n=1000
a=2,00 9.552 99.965 987.212 a=2.00 6886 68432 666.990
a=110 11310 101876 995864 a=1.10 3440 35.055 341695
a=1.01 12762 102725 1002.467 a=1.01 2107 21359 211823

52 ANALYSIS OF THE IMPROVED HYBRID ALGORITHM

In this subsection we generalize the analysis.of section 4 to obtain a precise asymptotic
bound for the expected running time of the improved hybrid aléorithm. The dominant
term in this expectation is the expected time T (n) that elapses in processing the n stations
nsi_né a tree algorithm on each of the m = max {2,{sn* (a)]} groups:

T(n) = xz T(n | max {2, [sa*]}) Prob (n* (a) = a*),
k=1

where T(n | m) denotes the same expectation conditioned on m. Naturally, the analysis



-39 -

we(s) = (a1 —1) $*(s),

Us(2)] = 0(1) 2 * (- 1+2mk/log a)|.

Let us consider the asymptotic behavior of
W) =f, ) =*dx.

Integrate twice by parts to get
* = ._______. $41
O =T f, ¥y st
where d:" denotes the second derivative of ¢(x). Thus,

[* (- 1+21nk/loga|——(l—°i—)-f NJ (x)ldx

and
Uy(z) = 0(og? @) f, W (x)|dx .
We will show log?a [ o |0 (x)|dx tends to 0 as a tends to 1.

Let pj(x) =1- e 0'x a +a/x), so ¥(x) = ]I pl(x) The first two denvanves of
j=0

U(x) are
: pj(x)
x PRY)
¥ (x) 2 E) ¥x)

and
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Y =) A2 ) U= #i)

D ——

]
g [y a0 ) 5 _pl(_xl}z!
j

where p; and p; denote the first two derivatives of p;. A straightforward calculation

indicates that for some constant ¢ > 0, |\b"(x)| <cif0< x s 1and
o'(x)| = (3 pi(x)) ¥(x)
J

if x > 1. Applying the Euler-McLauren summation formula, we find

x

TR
- 0(xe ™)

log a
if x = 1. Thus,
log? a fox I'(x) |dx = 0(log? a) + [: W(x) 0(x%e ) dx .

Of course, the first term goes to 0 as a goes to 1. To see this for the second term, note

x%e ™™ = O(x’z) if x = 1,and

x x
fl -‘l’é-z-ldx~0

asa - 1 by Lemma A3 of the Appendix.

A similar argument indicates the Fourier series V,(z) that arises in the asymptotic

analysis of E ((n* (a))z) (cf. Theorem 7) tends to O as g tends to 1. - B

Next, we show that the distribution of n*(a) becomes more peaked as a - 1. Let
o(n*(a)) denote the standard deviation of n*(a). For every a, o{n*(a)) is &(n), but the

implicit constant goes to 0 as a goes to 1.
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begins with T(n |m). A spinoff of the analysis is a successful hueristic for deciding the

value of the slide parameter.

Let us first assume that the underlying tree algorithm is the simple tree algorithm

described in section 4.

In section 4 we gave formulas (equations (4) and (5)) describing T (» | 2K}, These

generalize easily to

1

T(n |m) =m C(n|m)

and

d : 1 1 4 n
C =1+2%2/.1-@1- L R e i I
(n|m)=1 Jgo (1-( 2fm) ( 2jm) 2,m)

for any integers n, m = 2. We use c('"l’-,) to approximhte C(n | m), where

c(x) =1+232 (1 -2 +27x)),
j=0

and can show

T(n|m)=m c(%) + 0(n*®)

= (L:--c(-'%-)) n + 0(n%) .

~

where e is any constant with 0 < e< 1.

A nice properfy of the last equation is that the coefficient of n depends just on Z I
' . . n

the hybrid algorithm, m is a random variable. Specifically, m = max {2,sn*(a)]}. Of.



course we would like x = -'—:— to minimize x c(i-). Figure 6 debict.s x c(-‘l:) plotted vs. x.

The numerical results reflected in the plot indicate that x c(i-) attains a global minimum
sl

of =2.3282 at x = xg = 0.8710. By Theorems 8 and 9, -'-:— =g -‘%;é—;l-)-, for small a

and large n. This suggests the hueristic of setting the slide parameter s as -

5 = log a

ve(-1) ¥

where xg minimizes x c(l). Henceforth, we assume that s is fixed in this way.
. X

Figure 10. Plot of xc(—:‘-)

2.2

2.4

-
~
.0 1.0 z.e0 3

We now return to the analysis of T (), and define the exponential approximation

() = 3 sata (),
k= a

where a;(x) = c(f—)*ll(x). The approximation works in the sense that
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T(n) =t(n) +0(n®)

for any constant e with 0 < e< 1. The Mellin transform of ¢(x) is

. sa,*(2)
HE =T
where a[(z), the Mellin transform of a,(z), is

at(e) = f, a (x)x"dx

It can be verified that o*(z) is_enﬁre and r*(z) as given above is analytic for all z

, ’ i so,*(z
excluding the points z = x;, = —1 + 2k ohich are simple poles of ka2 LT ( )
. lo 1 - az+1

s fOI"k =0,'
g a '

=1, =2, .. By the inverse Mellin transform theorem,

2
sa,*(z)
t(x) = x*dz.
) _3.[ 1 __az+1

—_— -jx

Using contour integration to evaluate this integral, we obtain the following bound for 7 (n ).’
The proof is essentially the same as the proof of Theorem 5.

Theorem 10: For alln = 2,

s
log a

T(n)=n (a,* (=1) + Wy(loggn)) + 0(n%),

where W,(z) is the Fourier series

Wa(z) = 3 op*(~1 + 2nik/loga) exp (—2mikz),
ke0

which has mean value 0 and amplitude tending to 0 as a tends to 1.
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*(1 . i *(-1
2% rovie 6 describes S )
log a log a

Thus, for small @ and large n, T(n) = n
for @ =2, 1.1, 1.01, 1.001, and 1.0001 and s chosen according to the hueristic described
above. Numerical results indicate that for these choices of s and a the amplitude of

W ,(log,n) is less than 1074,

The analysis is readily adapted to handle other choices for the underlying tree
algorithm. The choice of tree algorithm affects the formulas for C(n | m) and c(x) only. '
Suppose that the underlying algorithm is the modifisd tree algorithm. A small variation on

the combinatorial method of Fayolle and Hofri [6,17] then leads to

< 1 1 1 n
= 232/ (1 - - n_(] - —)1 LT
ClnIm)=1+252 -0 - 0 = (= 5o i)
= 1 1 1 w1
- 271(1 - — n (1 - (] - — n-1 )

The first line is the same as the old formula. The sum on the second line accounts for the

expected number of steps saved by avoiding sure collisions. The corresponding exponential

approximation c(ﬁ-) for C(n | m) is given by

c(x) =1+ 32 200 - e +27x)) —e P 4 (1 427 )]
j=0 ‘

Theorems 9 and 10 hold under these substitutions. Numerical calculations indicate that

x c(-ch—) has the same shape as before, and has a global minimum of 2.1632 at

= x5 = 8000. Again, we set the slide parameters to be -:yl—f%:al—) xg. Table 6 describes

“3(—1)
log a

T(n)=ns under these substitutions, and shows that the substitutions improve
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performance by about 7 or 8%.

Lastly, sﬁpp.dse the underlyiné irce algorithm is the modified, biased tree algorithm.
The new formula for C(n | m) is once again casy.to derive by the combinatorial method of
" Fayolle and Hofri [5,15], but is quite »complicated. We present pnly the exponential'
approximation |

(o) = AN V) I i1 - Y=
c(x)=1+23 lm[l e PY7x (1 + pi(1 - p)*Ux)

" where . p =-.41737 is the bias. Now x c(-i-) attains a global minimum of 2.1338 at

x =.7900. We see from 'fable 6 that using the biased, modified tree algorithm results in

the best performance (through the gain over the unbiased version is quite small).

e | |
TABLE 6. ——-————a'l'og( ) is given for @ =2, 1.1, 1.01, 1.001, and 1.0001, and the underlying
a .
tree algorithm being the simple tree, the modified tree, and the modified,
biased tree.
simple modified modified, biased
tree = tree tree
a=2 - 24842 23034 22725
a=11 2.3798 2.2095 21791
a =101 2.3495 2.1830 . 21832
a = 1.001 2.3393 2.1732 21436
a =1.0001 2.3356 2.1699 . 2.1403

Recall that the idea behind the setting of the slide pérametcr s is to steer E— close to
' n

the optimal value. If somehow we could fix % at the optimal value, then T (n) would be



~2.3282n, or 2.1663n, or 2.1338n , depending on whether we use the simple, the modified,

or the biased, modified tree algorithm (respectively). (These values are the global minima

of the appropriate functions x c(-i-).) Table 6 shows that as @ tends to 1 performance

tends to this ideal level.

6. CHANNEL ACCESS PROTOCOLS

Capetanakis [2,3], Hayes [16], and Tsybakov and Mikhailov [27] introduced channel
access protocols that in an appealing simple way coordinate access to the channel using

algorithms for conflict resolution.

Let us review the relevant definitions and introduce some terminology. A channel
access protocol proceeds as a sequence of sessions. At the beginning of every session, alvl
stations holding packets transmit. If as a result 0 or 1 stations transmit, then‘ the next
sessions begins at the next step. Otherwise, the conflicting stations execute a conflict
resolution algorithm, causing each of the packets involved in the conflict to be successfully
transmitted, while the other stations defer. All stations sense the algorithm’s termination,

at which point the next session begins.

Capetanakis [2] and Tsybakov and Mikhailov [27] introduced a pmbabiliStic model
describing packet arrivals, which we call the Poisson model. It is assumed that an infinite
number of stations share the channel. At a given moment, a statioxi is either active, having
a single packet ready for transmission, or inactive, having none. New packets arise among
the inactive stations according to a stationary Poisson Process with intensity (mean number
of packet arrivals per step) A: At each step, for all i > 0, i new packets arrive with
probability M e™VMi), each to a different (previously) inactive station. The packets are ‘

ready to be transmitted at the same step.
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In the remainder of the section we examine the performance of channel acce_s;'
protocols, including ones based on tree algorithms and the hybrid algorithm, with respect to
measures of long term stability in the face of a steady stream of packet arrivals, and short

term adaptivity to sharp bursts of packet .arriv'al,s.
61 STABILITY

Following Fayolle and Hofri [6,17], we say a channel access protocol is stable if the’

expected length of each session is uniformly bounded. A simple criterion for stability at

~ arrival rate A (cf. [627]) is

x<lunmf——

T(n)

where T(n) denotes the expected time used in resolving a conflict of multiplicity n.

Similarly, the protocol is unstable at arrival rate A if

A > lim sup

n

T(n)

(In the case of the hybrid and tree algorithms, the liminf and the limsup are extremely
close but not equal, due to the contribution of a periodic term in the asymptotic formula

for T (n).) By the analysis of section 5.2, T (n) for the hybrid algorithm is given by
T(n) =n(C, + U, (log n)) + o(n®)

where the constant C, is described in Table 6 (section 5.2) and the periodic term
U, (log n) has amplitude less than 10~ for the values of a we considered (a =2, 1.1,

1.01,1.001, and 1.0001). The data of Table 6 indicates, in particular, that

e the hybrid algorithm using base- 2 estimation and the simple tree algorithm is stable for
all A up to approximately 0.4025

¢ the hybnd algorithm using base 1.001 estimation and the modified, biased tree
algorithm is stable for all A up to approximately 0.4672.
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It is possible to raise the. degree of stability higher if the statistical nature of the
Poisson model is taken into account. Several procedures have been pmpdsed for controlling
accéss to the channel, some of which attain stability at intensities up to 0.488, which do not
fall in the category of channel access protocols just defined [1,11,23,25]. As an example of
a scheme tuned to take advantage of the Poisson model, we briefly describe Capetanakis’
dynamic tree protocol [2,3], which, as we mentioned earlier, inspired the discove:y of the -
hybrid algorithm. Instead of computing m by running the estimation algorithm, m is
computed as a function of the packet arrival intensity A and the length‘L of the previous
session: m =1 if A\L =170, and m =[(xA L - 0.55)/1.15] otherwise. Capetanakis |
showed that under the Poisson model the dynamic tree protocol (using the modified treg

algorithm at stage 2) is stable for all A up to 0.462.

62 ADAPTIVITY TO BURSTY TRAFFIC

Consider a number of sessions in the execution of a random access scheme, or the
dynamic tree protocol. We define the throughput during the sessions as the ratio of the
expected number of packets that arrived ip the expected 'lenlgth (number of steps) of the
sessions. If the packets arrive according to the Poisson model at intensity A then the |
throughput converges to A, as the number of sessions increases, provided of course that the

scheme is stable at intensity A.

However if packet arrivals do not suit the Poisson model then this need not be the case.
In this section we consider the throughput achieved over a small number of sessions in
processing a sharp burst of packet arrivals. Specifically, we present simulation data

contrasting, under this throughput measure,

e the channel access protocol based on the hybrid algorithm using base 2 estimation and
the tree algorithra,
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e the channel access protocol based on the simple tree algorithm, and

e the dynamic tree protocol using the simple tree algorithm. For concreteness, we assume -
the algorithm is tuned for an intensity A of 0.4. ' '

It turns out that the scheme based on the hybrid algorithm adapts best to large bursts of
packets, followed by the scheme based on-the tree algorithm, followed by the dynamic tree

protocol.

Consider three sessions in the operation of a channel access pmﬁwl, immediately .
following a session mvolvmg no transmissions. At the begim;ing of the first session, assume
exactly 2 stations transmit packets, causing a collision. In the resulting conflict resolution,
b new packets arrive, where b is a parameter. During the second session, the b packets
are successfully transmitted, while 2 additional packcts arrive, which are in ﬁxm
Suc;:essfully transmitted during the third session. A measure of merit is the throughpuf the
access control scheme achieves during the three sessions, (4 + bY E(Ly + Ly + L3) where
L; denotes the number of steps consumed in the i —th sgssion. Intuitively, the closer this: '

measure is to 1, the better the scheme adapts to the offered traffic.
Table 7 depicts throughput data collected by a simulation, averaging over 64,000 trials.

TABLE 7. Throughput Data
b . simple tree  simple hybrid dynamic tree
' (tuned to A = 0.4)

2 0402 0.363 - 0.347

10 0.369 0.367 0.310
100 0.352 0.392 0.263
- 1000 0.346 0.401 0.258

As b gets large, the throughput of a channel access protocol whose underlying conflict..
resolution algorithm works in expected time =c n +o(n) (for some constant c¢) will
achieve a throughput of =1/c. Thus, the scheme baséd on the tree algorithm has-

throughput = 1/2.885 = 0.347 for large b, and the scheme based on the hybrid algorithm
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ﬁas throughput =1/2.490 = 0.402; for large 5. In contrast the dynamic tree protocol
adapts poorly to the burst of arrivals, either predicting two few packets will belong to a
session (in session 2), or predicting iwo mary will belong (in session 3). For large b, usiné
the fact that the simple tree algorithm runs in expected time § for conflicts of multiplicity

2 and = 2885 b for conflicts of multiplicity &, throughput for the dynamic tree protocol is
= (4 + B)/(5 + (2.885 b)}+(2.385 b M1.15))

which is =0.257 for A = 04.

7. EXPBCTED DELAY

In this papér we presented new algorithms for estimating the multiplicities of
transmission conflicts, new algoritluﬁs for resolving conflicts, and precise asﬁﬁptotic
analyses of the algorithms’ performance. Molle and Massey have recommended the simple
tree algorithm as the conflict resolution élgorithm of choice in practice [24, 19]. Some
virtues of this algorithm include: simplicity, analytic tractabiltiy, robustness, and stability
at arrival rates A < 0.3466. To a large degree the simple hybrid algorithm presented here
§hares the first three traits, and it maiﬁtains stability at arrival rates A < 0.4025, more
than a 10% improvement. In practice, an equally important performance measure is the
mean packe.‘t delay, which is a function of thé arrival rate. 'A packet ﬂiat arrives at step ¢
and is transmitted successfully at step s is said tc have experienced delay s-r-1.
Pinpointing the mean packet delay appear§ to be much narder analytically than finding the
range of stability. (Using a method of Massey [21] and Tsybakov and Mikhailov [27] itis
possi'ble to develop certain lower and upper bounds for the mean pac‘ket éelay. But tight
bounds for, in particular, the channel access protocols based on the simple tree or simple
hybrid aigo.rithms are not yet available.) We sirzulated, various channel access protocols,

and computed the following statistics on racan packet deley. (In these hybrid algorithm



.53 -

* simulations, if the estimation phase ends with one station transmitting successfully, then

this station does not enter into the second phase.)

TABLE 8. Expected Delay Data
Dy; Dpy3s Dmis Do Do

A =0.100 042 0.42 042 041 0.47
0.200 145 143 1.50. 1.41 1.83
0.300 741 712 835 646 1093
0350 2771 2792 3556 - -
0375 80.11 7905 9623 - -

Dy5, Dyy3s, Dy s and D, refer to the mean packet delay of the channel access
protocols based on the simple hybrid, of the improved hybrid using base 1.75
estimation, the improved hybrid using base 1.50 estimation, and the simple tree
algorithms (respectively). The two improved hybrid algorithms have the simple
_tree as the underlying tree algorithm. D, refers to the mean packet delay of the
continuous entry version of the simple tree algorithm [7]. (We took this column of
data from the precise analytical results of [7], not from simulation.

As a final conclusion, use of the hybrid algorithm with a base in the range 2-1.5 results
in improved throughput without appreciable increase in delay for small arrival rates. It
thus appears to be the method of choice among the class of collision resolution aigorithms ‘
that are based on the tree algorithm idea and resolve collisions in sessions. Continuous

entry schemes are easier to implement but the price to be paid is both lower capacity and

increased delay.
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APPENDIX .

We first give two technical lemmas about the functions

Y(x) = ﬁ 1-e?x (1 +2/x))
Jj=0

and

q(i+1,x) = ﬁ (i -1 =279y - -2y,
j=1

which arose in the analysis of the simple estimation and hybrid algorithms. Let a be any

integer, » = 2, and let p = [logy n).
Lermma Al:

Both ¢(i +1, n) and \b(z—':-) are less than 2-(-P)¢ -2 +1),

Proof’:

The j-th term in the product for g (i +1,n) is

1-@-2-a-2H)t2lnc1-(1 -2 +27n)
<1-Q1-272)@ +27n)

< 2720-p)

Therefore,
i . . ,
qi+,n) < JJ 0 - -27)" - (1 - 277y 27n)
j=p

< [T 2°20-7) = 2-GP)ip D),
j=p
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as desired. éhnilarly, the typical term in the product for du(-é";-),

1 = e _ g2 gmly < 220D,

which leads to the same bound for q:(-zl'-'—). ]

Lemma A2:
The bound, ¢(:—,) —q(i+1,n) = 0(1‘35—"-), holds uniformly in i.
Prodf:

Ifi = 2p then

41('2’![') - q_(i+1, n)< 2- 9P(P+) = o( long n) ’

by Lemma Al. Suppose i < 2p. Further, suppose q;(;';-) > q(i+l,n). (A minof -
change to the argument is needed if \b(—;;-) < q(i+1, n).) Break the product for ,];(.é'l_) in
two:

i X x
Wy =T a-e?"a+2/m) - e (1 + 2n)) .
2 = j=0
It is not hard to prove the crude estimate for the second product:

f] (1-e?" (1 +2n) =1+0"?).
Jj=0

By this bound, it suffices to simply prove
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[T Q-e?™ - e 27n) - Ma-a-27-@-27y" 27 =0(.‘—°§.4') :

j=1 J=1

It happens that corresponding terms in these last two products differ by less than l.
) n

Specifically,

e —@ =279+ eI @ -2 P 27in <

We prove this for the first term; the proof for the second is similar. Note

-2/ < 2™

and

(1 =27y = "8 -2 5 @7 +4)

2% (1 -2y < e - e

< e 4ip < 1
n

since e < z2forall z > 0. (Here 27/n plays the role of z.)

Returning to the main argument, these observations imply

f[ (1-e2m @1 +27/n)) = f[ 1 - s, n))
Jj=1

j=l

. i i
<M Q-sGm+ 2y - a-sG.m),
j=l j=1

. . i
where s(j,n) =(1-277)" - (1 - 27) 27/n. Factoring out [] (1 - s(j, n)), which is

j=1

2
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jess thah 1, we obtain

M1 G- sGm + 2T @ - sm) < 010+ S ) -3

j=

2 ) B .
ass@m)

<1+

= o(2) = 0B,

" as desired. @
| ‘The next lemma concerns the behavior of the integral
Yt (s) = fo U (x) x* 7 dx

=f JIQ — o (1 +a*x)) x*dx
0 k=0 .

asa tends to 1.

Lemma A3:

For any fixed real s < 0,as a - 1, one has

. - 1 s
Wa(s) s (loga-l) .
Proaf:

We shall only briefly sketch the main steps of the evaluation of {, (s).

(@) The contribution of the integral between 0 and 1 is exponentially small as ¢ ~ 1:

Ya(s) = flx f_[o a- e (1 +a*x)) x*1dx +0(e™@ -1y

for some constant ¢ > 0. This follows easily from the fact that for x < 1, the infinite

)
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1

p 1) factors each bounced sbove oy f(2) where t(u) is the

product compriscs 0(
increasing function (1 - e™#(1 +u)). Hence the zwoduct is exponentially small in

1/(a — 1) for any fixed x in [0, 1].

(ii) Towards evaluating the integrand for x = 1 ccnsider

—log Ys(x) = 3, R‘(xaf) (A1)
jd) :

where Mu) = —log(1 = (1 +u) e7*), a function which is positive when u > 0. ‘Se'tting '
a=¢,asa- 1(e t~ 0) —logi (x) caz be approximated by means of the Euler-

McLauren summation formula, so that

—log ¥, (x) = % f; Aze") dv +%— A(x) + 0(r)

where the error term is uniforr in x for x = 1, being of the form O(e ). Thus,

= M o) +06E™)
Ua(s) = fl e ! 2 ldx + 0(e X)) (A2)

where

Ax) = f: A(xe®) du m;: A) .‘_3‘_ ,

and X is 2 constant (K > 0). Taking out the ervor teyms ‘n (A2), we obtain

Ua(s) = J,(s) 1 + 0(cg a)) + Oe ~K/(6-1))

where

o w XL i) |
; Jas)=f ¢ 2 ldx . (A3)
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The integral in (A3) is of the type Classically evaluated by meanis of ‘the Laplace method.

We set v = A(X), and find: Dived e M

AQ . '
Jals) = -, «(_)er"-"(‘xw._(v)dv B - (Ad)

where
. 3

o —% NAMW))

- (—1)‘ | s-1
A oy &Y

w(v)

The main contribution in (A4) comes in the neighborhood of 0, since for any fixed v the
integrand in (A4) decreases as et | that is, exponentially fastin¢ as ¢ - 0. Splitting the

integration interval, we find that

Jo(s) = [/ e w(v) dv + 0(eE) (AS)

Now the integral in (AS) can be evaluated by expanding w(v) in the vicinity of 0; from

the expansion

w(v) = % (~log v)* ™! (1 + 0(1))

one finds that
' tlg2t _ -1 dv
Ja(s) ~ _[0 et (—log v)* 1 ==

! .
~ foogz' e (-logt —log y)'™ dy

which through integration by parts leads to

1 el L dog iy
J,(s) ~ (-log 1) J, e g‘+ mg:) dy.

Lot e
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The last integral has its dominant contribution concentrated in the interval (M, log?t],
. X lo $ s b m f. ds
where, expanding (1 + _ulog ” )’ in powers of _Lzlog .’ m

24 - 1
Ja(s) ~ %(—los 6y f\? e”dy ~ < (-log1) . (A6)

Since t =loga,we havet ~ a —lasa - 1 and (A6) is equivalent to the statement of

the lemma. B
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