archives-ouvertes

Evaluation of parallel execution of program tree
structures
Philippe Mussi, Philippe Nain

» To cite this version:

Philippe Mussi, Philippe Nain. Evaluation of parallel execution of program tree structures. RR-0318,
INRIA. 1984. <inria-00076239>

HAL Id: inria-00076239
https://hal.inria.fr /inria-00076239
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.inria.fr/inria-00076239
https://hal.archives-ouvertes.fr

Uﬁ@ﬁm N@ﬁﬂ
deR

@m

France

A R AT

i
Lo O T

Rapports de Recherche

N° 318

EVALUATION
OF PARALLEL EXECUTION
OF PROGRAM
TREE STRUCTURES

'Philippe MUSSI
Philippe NAIN

Juillet 1984




EVALUATION OF PARALLEL EXECUTION OF PROGRAM
TREE STRUCTURES

M ' ’ Philippe Mussi - Philippe Nain
INRIA
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex

France

RESUME
Nous nous intéressons 3 1'exécution paralldle d'un distribution du temps total d' exécytion‘ pour un
ensemble de tiches auxquelles les contraintes de nombre arbitraire de processeuré. Cette mém‘e
synchronisation assignent ime structure d'arbre. . transformée est obtenue, pour la politique A,

dans le cas de deux processeurs, moyennant la
Nous définissons deux politiques pour 1' exécution résolution numérique d'un systime linéaire.
~ascendante~ de ce type de structures. Ces
politiques se différencient par 1'existence (NA) Nous comparons ensuite 1les temps d' exécution
ou ;ion (A) de synchronisations supplémentaires 2 moyens d'arbres binaires pleins sous les deux
la fin de 1'exécution de chaque qiveau. politiques et nous sommes amenés 2 conjecturer le

comportement asymptotique du temps moyen

Sous 1'hypothdse que les temps d'exécution des . d'exécution sous la politique A, en fonction du
différentes tiches constituent -des variables nombre de tiches.
aléatoires  indépendantes de méme loi

exponentielle, nous obtenons, pour la politique
NA, la transformée de Laplace~Stieltjes de 1la

! - | ..
N PAPIER RECUPERE ET RECYCLE



o«

" EVALUATION OF PARALLEL EXECUTION OF PROGRAM
TREE STRUCTURES

Ph. MUSSI = Ph. NAIN

INRIA

Domaine de Voluceau = Rocquencourt
BP 105 - 78153 Le Chesnay Cedex -

ABSTRACT - -

We define and  evaluate two policies (NA-poliey,
A-policy) for parallel execution of program tree

structures.

Via a probabilistic model we
analytically. determine, for each policy, the
Laplace*Stieltjes transform for the tree

processing time distribution. The acceleration of

the program execution time .achieved when adding
processors to a single .processor environment,

computed and plotted for each policy.
1 - INTRODUCTION .
With the growing development of multiprocessor

algorithms
computation recently appeared in the literature.

systems, -~ various for parallel
Let us quote, for instance, the parallel parser of
arithmetic [1,2], the
multiplication of two binary N-bit numbers in VLSI
architectures [6],
partial differential

analysis [4].

expressions parallel
the parallel computation of

equations in . numerical

More formally, many program executions can be

represented as a set T of tasks and a set R of
precedence relations between these tasks, such
that (R, T ) be a tree. Such tree structures are
: ' for a parallel

particularly appropriate

is

France

-

‘.
execution. Given a tree ‘structure and a

multiprocessor is
different policies for the execution of the tree
will generally yield different performanceé (e.g.
execution time of the :
availability,...). * Consequently,
scheduling péiicies have to be evaluated and
compared the
efficient. Most studies related to this subject

deal with a number of available processoré'equal

system, it clear that two

tree, processor

various
order to determine

in more

to the number of tasks to be processed, which is
referred in the literature to as the case with
"infinite avallable processors" [1], [2], [3].

Theoretical tools involved in these works .in view
of

processes [1],

performance evaluation. (e.g. branching
(2], convolution equations (3])
cannot be used if we consider a.small number of
aQailable processors compared to the number of
tasks to be executed. An illustration of this
last case arises in the evaluation of arithmetic
expressions aﬁd also in many‘probiems with vector
and matrix computations. For instance, let us
cbnsider the scalar prodﬁct of two m-vectors X,Y,
where xi[resp y1] is the ith component of vector
X [resp Y], 1 = 1,...,m. This scalar product can
be computed using éﬁe .tree structure given in
Fig.

of available processors will be alﬁays smaller

1, where in practical situations the number

than 2m for large values of m.



Scalar product of two m-vectors

Figure 1 :

In this paper we consider a tree A, with M (M is
the
tasks)

deterministic) total number of nodes and
(the

processors N, with N < M.

leaves and a fixed number of

For two different tree execution policies and if
the
random

times of tasks are independent
the
Laplace~Stieltjes transform (L.S.T.) of the tree

distribution (total

execution

variables, we determine

processing time program

execution time).

In Secfion 2 we introduce the two tree execution

policies, which will be refer to as the
Non-Anticipatory policy (NA-policy) and the
Anticipatory policy (A-policy). The existence or
not of the anticipation ié related to the
existence (A-policy) or not (NA-policy) of

synchronization constraints between processors at

under the A-policy with N = 2 (Section U); up to

a fixed number of unknown constants.

It is shown that these constants satisfy linear

recurrence relations, whose solutions can be
easily determined’ wusing an exact numerical

procedure.

Mean tree processing times obtained under the two
policies under consideration are compared for N=2
and N== to the corresponding result with a single
processor (Section 5). A kind of speeding up is
defined and estimated.
for the A-policy and N=2 lead us to conjecture an

Numerical results found

asymptotic result for the mean tree proceésing

time.

2 = BASIC ASSUMPTIONS

We consider a tree A, consisting in M nodes, with

the entry of each execution level. A more thorough -

description will be given in Section 2.

Under probabilistic assumptions characterizing the
program tree structure (Section 3) we explicitly
obtain using pure death process and for arbitrary
N (1 SN < M), the L.S.T. of the tree processing
time distribution under the NA-policy.

Similarly an analytic expression is derived for

the L.S.T. of the tree execution time distribution

D its depth.
All the nodes of A represent tasks.
The execution time of an arbitréry task of level

i (i 0,140, D) is
distributed random variable with parameter Hye

= an exponentially

These M random variables are supposed to be
mutually -independent.

A task can be executed' iff. all its sons have
been executed and no other conflicts can occur
between tasks. We assume that the time required

for allocation of a task to a processor is

negligible regarding to tts execution time.

Let M1 and T be respectively the number of tasks
at level i and the total execution time of the
tree (M = Mo + M1 + ... M M° = 1). Note that
Mi is
variable.

constant D;nd T a random
the expected total
execution time Tf(s) = E [e‘ST] for
Re s 2 0, the L.S.T. of the distribution of T, We

now extensively define the two policies under

a known is

T will denote

and

consideration.



£

L

. Thus, the Mi tasks of T

Let 'l'1 be the set of tasks of level i

(i = 0,1,...,D). Under the NA-policy, each of the
N available processors will behave as follows,
where initial values of (E,E',i) are (TD.T , D) :

Step 1 If. E* = go to Step 6
Step 2 Choose arbitrarily e
Stép 3 Remove e from E'
Step 4 Execute e
Step 5 Remove e from E
Step 6 If E = 0 then

if 1 A0 then

(E,E',1) « (T T i-1)

e E

go to Step 1 =17 1
else END
else
if E* #D then go to Step 2
else R
if 1 # 0 then WAIT until 'E' # 0
go to Step 1
~else END

At any instant of the tree execution, the set E
indicates -the total number of tasks of the current
either

non~-executed. Similarly, the set E' represents the

level which are being executed or
total number of tasks of the current level which
are non-executed (E'¢:'E5. Under this algorithm,
the D+1 D' Tp-ptecer To are

therefore successively processed in that order.

subsets of tasks T
Instant of end of execution of each subset is a
synchronization point for the N processors.

i are executed by the N

brocessors with maximal parallelism.

Under the A-policy each of the N proceséors

behaves as follows (we assume that all the nodes

of A are initially in the state "non-marked")

Step 1 If there exists non~marked leaves, then
choose arbitrarily one leaf L among

those with maximal depth.

Else END
Step 2 Mark L
Step 3 Execuge L
Step 4 Remove L from A

Go to Step t

Hence, it is seen that a processor executing tasks
under the A-policy do not. wait for the other
processors for synchronization constraints. When

1£ becomes

there is no more executable tasks,

free.

Example :

N =2
D=2

T, = {a} ; T, = {d,e}.

T, = {b,e} ; P

Execution times of a,b,c,d,e are respectively -
2,6,5,10,3. '

level 0
A level 1

level 2
We assume, for instance, that at time t = O,

tasks d and e are respectively allocated to

processors P1 and P2 (P1+ d, P2 «e).

We then have the following sequences :
NA-policy

04 P, «d, P, « e ;

1 2

34 end of e (PZ) H

104 end of d (P1) ,

P1 «C P2

154 end of ¢ (P1) H

« b (for instance) ;

164 end of b (PZ) '

P1 «aj; P

184 end of A
v

5 idle (for instance) ;

time

A-policy

01 P

1 ¢ d, P, + e

2

34 end of e (P2) ;
91 end of b (P,) ;
P2 becomes free ;

10-] end of d (P1) H

154 end of ¢ (P1) H

171'end of A .



3 - PERFORMANCE EVALUATION OF THE NA-POLICY

3.1 - Notations

For level i of the tree (i = 0,1,...,D), let us

define,

- N = min number of available

processors,

(N’Mi) the

non-executed tasks

- v, (t) . the number of
executed) at time t

(incl%ding the one(s) being
(t 20),

- Qi(t;n) =P (vi(t) =n) ,n=0,1,..., M1

- T the execution time of 1level 1, 151 its
expectation,

. * -
- T, (t) = P(T; S t), and T,(s) = Ele 8T17,Re s20.

From model assumptions, it is readily seen that

* D *
T(s)= 1 T,(s)

(3.1)
i=0 v

and Ti(t) - Qi(t;O). (3.2)

In the following of this section, we are then
concerned, for given 1 (i1 = 0,1,.44,D), with the
determination of T;(s) (Re 8 2 Oj;lthe L'szf of
Ti(t)' For sake of clearness and without loss of
generality, we assume that execution of level 1

begins at time t = O.

3.2 - Determination of ‘the distribution of T

From model assumptions, the process { vi(t), £>0}
is a death with death
uimin(Ni.n), which is the rate at which deaths
occur when the population (non=executed tasks) is

rate

pure process

of size n (n=0.1,...M1).
Consequently, we have the resulting equations,

_d% Qi(t;n) = “uyn Qi (tin) + ui(nﬂ) Qi(t:nﬂ).

for n=0,1,...N.=1 (3.3),

i
d .
e Qi(t.n) = cu N, Q,(tsn) + wN, Qi(t:nﬂ).

for nan",‘,’,'Mi‘? (3-“)

) _HIN t .o
Q,(t;M) = e ' (3.5)
Q;(03n) = 1{n-M1} ' . (3.6)

where 1{ } is the indicator function or‘the event
(.} .

Solving for Q(t;Ni). we easily have from egs.
(3.4) and (3.5),

M. -N

: 17 “u;N. t ’
N
Q,(t:N,) = (ugN,t) N ¢ K )
M, =N !

Interpretation of this result is quite obvious,
since when all the Ni processors are busy (which
occurs when the number of non-executed tasks 'is
at least equal to Ni)' then the death rate of the
pure death process is ”1“17

Solving now for Qi(t;n) for n = 0.1.....N1-1 we
obtain from eq. (3.3),

~u,n(t=
uyn( X)Qi(x; n+1) dx.(3.8)

t
Q (tsn) = uy(n+1) foe
Taking Laplace transform at point s (Re s 2 0) in
both sides of eq.(3.8), we get,
forn=1,2,... N1 -1,
-
w(n+ 1) - .

Q (sin+1) , (3.9)

Q (s3n) =
i

+
uin ]

where ai(s;k) def f et Q(tik)at ,
o

k=1,..., N1‘1, Re s 2 0.

Iterating eq.(3.9), we finally have,

- N
i
- ' Ny -
Qi(s;1) = Qi(s;Ni) , Re s20.
' Nl_1 . . :
I (ugk+s)

k=1

From the wellknown identity,

(3710)

dx = (A>0,keéeN)

° 2Kk

I"’ K _=AX k!
X €



and eq.(3.7), it comes

u.N M, =N +1 "
~ i 101
Qi(s;Ni) - [ ) Re s 2 0.
Ny LI
. .
So, using €q.(3.10),
N, =1 -
~ TR R L M7y
01(8;1) - ( ) ’
Ni uN, + 8
I, (u,k+s) 11
k=1 ""{'Re’s 2 0. (3.11)
Since from eqs.(3.2),.(3.3),
T Q '
i(s) =y Qi(s;1) ,Res 20
then (cf. egs.(3.1), (3.11))
N
. b PN uy Ny M =N
T,(s) = ( ,
N
i uiNy ’
KDy (ugkes)
(3.12)
and
N :
« b M oM HeNy Ny
T (s) = T ( ),
i=0 N
i (4 kes) MMy e
k=1 ‘¥
Re s 2 0. (3.13)

have

s (3.74)

which is the mean execution time of level 1.

The mean execution time of the entire tree under

the NA-policy is then given by (cf. 'eq(3.1)),

_ Db Mg
T=.2
1=0 Ny &1

Y

). (3.15)

Differentiating eq.(3.12), then making s = o, we

The first term

Mi,-'Ni¢ 1
of the right side

Ny
of eq.(3.14) is the mean execution time of the
(MI-N1¢1)st tasks ‘of level i, since for these

‘ tasks the death rate i; ﬁiNi.

N, -1

1 i 1.
Similarly, the second term — I — - glves
ui k=1 k

the mean execution time of the N1-1 last tasks,

_since for these tasks the death rate decreases

from “1(N1-1) (for the (M1 - N1¢2 Yth task) to My
(for the last task to be executed at level {).

3 - PERFORMANCE EVALUATION OF THE A-POLICY

‘~

In this section, we compute the L.S.T. of the

.execution time distribution of a given tree A of

M tasks, when two processors work under the
A-policy [see Section 2 for details on the
A-policyl.

4,1 - Assumptions and Notation

Let us recall the main notations introduced in
Sections 't and 2. T is khe total execution time
of a given tree A with D levels (D 2 2) and M
nodesf At level_ i, . the ‘Mi tasks have
exponentially distributed execution times, with
parameter By We denote as ny the number of tasks
of level ‘i, which are neither executed nor being

executed. L

In the following, we call a state of the system

(A, Processors) one of the objects :

- (i,J,ni), 1si1isjsb, Sn,s Mi“ 1=

{i#j} i
1{1-J}‘ which represents the event { the
processors are executing 2 tasks of level i and

§, 1 S 3§, and n
level i} ;

| tasks remain’ unprocessed at

- (1,3j) , 0 £ 3 S D, which represents the event
{one processor is idle, the other is executing a
task of level j 1 ; ’



- F (the "final" state : all the tasks have been

executed).

We denote by E the set of these states. We assume,

without loss of generality.' that the two

processors begin working at time t = 0.

4,2 - Computation of the distribution of T

It is easy to see that, under the assumptions made
above, the process {E(t), t > 0} is a Markov

process, where E(t) denotes the state of the

system at time t.

Hence, we can write the following evolution

equations for the function P(t;E) 9ef Probability
of state E at time t, E € E,

0<n, §M-1

1) 1si1i<ysDp , i 4

_fL.P(t;i.J.ni) = =(u*u

) P(t51,3,ny)
dt

J

+ ¥yaq 1{J<D] P(t;i.J+1,n1)

* 1{n1 su-2) M P(til,Jun 1)

oy 2w 1 oy P(E:3,3,0)
{n, = M=1} 3 loy=j}

+ u011{°i<J}P(c;o1,J.1)]. (4.1)
def

where o, °€" min {ke[1¢1,....D;/Mk>1},1-1,....0—1;

1) 1 s1isD, 035 n, s H1‘2

d
— P(t;i,i,nl) = ‘Zui P(t;i,i,ni)

dt

e 1E1<D} P(t;1.1*1,ni*1)

+ 2u P(til,d,n+1), (4.2)

'{n1+1 < M1-2]
i11) 2s1isD

d
- P(t;I,1) = =u P(t;1,1)

Wiy Tgepy POBITLI#D#WP(E31,1,1), (4.3)

P(t ;4,5 , ni) - 0 and

1) L P(651,1) = =PI, 14 wP(E51,2)
dt .
+ 2u,P(t31,1,0),

(4.4) *
v L P(150) = =y Pt 5 T 04w P(EIL)

dt :
(4.5) N

vi) & Pt s F)muP(t 1,0,  (H6)
dat .

with, for instance and without loss of generality
the following initial condition

P (O;D,D.MD-Z) =1, . 4.7)

(i.e. we assume that at level D there exists at
least 2 leaves, which in turn ensures that 9 is
well~defined for { = {,...,D=1)

and the convention
P(t ; I ,i) defo
it (1 , 3, ni) or (1,i) are not in E.

The last term between brackets in the right-hand
side of equation (4.1) expresses that the "head
processor®™ jumps from level J to level j=1 iff.
Mo > 1 (cf. Section 2); otherwise it jumps to
the nearer level i (i<j=1) that contains at least
two tasks (ife. M1>1), if any.
R

In order to obtain tractable equations, we make
the additional assumptions udffuf it= 0,..., D.
Introducing ﬁ(s;E). the Laplace transform of i:he
function P(t ; E), we obtain from eqs. (4.1) to
(4.6) the following equations, Re (s) 20, a

1)1 s1<JsD,0<n, § M1-1

i

F(s;i,J.ni)- Ld F($1J+1,n1)

o <o)

"{nisnl—z

}P(S H i ’J ] n1’+1)

+ 1{n1-M1f1 }[1 {oi_J}2P(s;J,J,0)

+1 {oiq}!’(s;ai.jJ)J]. (4.8)



&

-+ 1li-D.n

1v) P(s;I,1) = M

i1)1si1sp,05 n, s Mi-2

P (s ) u Plae.
P(sii,d,ng) = [1{1<D}P(s,i,i*1.ni*1)
8+2u

v 1{ni+15M1‘2} 2P(sil,d.my*1)

' ] (4.9)

- - ’

o M-2h 5o ,

where C s a constant determined by initial
condition (4.7),

"111) 2's1 s D

P(s;I,1) = _*
R

[1{1<D}P($;I,i+1)

+ P(s;1,1,1)], (4.10)

[P(s;1,2) + 2P(s;1,1,0)],
S*+u .

(4.11)

v) P(s;I1,0) = _* P(s;I,1). (4.12)

sS+u

From model assumptions, and eq.(4.6),it is readily

seen that
T*(s) = y P(s;I,0) , Re s 2 0,(4.13)

where T*(s) is the L.S.T. of the total tree

execution time.

Since we have assumed that P(O;D,D,MD-Z) - 1
(ef(4.7)), then

E(s;D.D,MD-Z)- ! » Re 3 2 0, which in turn
s+2p

entails that C = 1 (cf.(4.9)).

We now remark that for all (1;J.ni) e E,

ﬁ(s;i,j,ni) may be rewritten as :

uN'l(i'J'ni) .

l;(s;i.J.‘ni) = a(itjvni)
N 11 »
. (s+21) 2( J ni)

with a, N1, N2 three integer state functions.

More precisely, we obtain from eqs.(4.8) and
(4.9), ’

a(i,3,ng) u
n s+2p

N(i,d,n0)

P-(sfinj'ni) =

o (4.h)

¢

‘ der D
where ﬂ(i.J.ni) 5 kfl M = ngtimdif 4 <y,

D

kEl Mk - ni-1, ir i = j,

def

and a(i,J,ni) is the integer state function
defined by the following linear relations,

1) 1si<jspb, 0<n, 8 M1'1

i
a:(itjoni) = 1{J<D} a(i.J"’] ,'ni)
*Vin g -2} 3 deng )

* Vo -1} o, =}220300:0)

+ 1{01<J} a(oi,J,l)], (4.15a)

'11) 1sisb, 0% n H Mi-Z

a(i.i.ni) - 1{1 <D} a(i.1+1,pi+11

* 1{n_1+1 s Mi-Z}Za(i'i'n1+1)

* Yyiup,n (4.15b)

M2k

i11) a(i,J,ni) = 0 - for all other values of
L3, (4.15¢)
On the other hand, iterating eq.(4.10), we easfly

derive for i=2,...,D,

- D k=1 .
<P (8;1,1) = r (Y ) P(s;1,k,1).

(4.16)



Then, using eqs.(4.11) to (¥4.13) we get

2 _
Y P(s;1,1)
s+yu

T™(s) = pP(s;I,0) =

(gan

_ - )
- ¥ [B(s;1,2)+2P(s;1,1,00 ).
(50“)2

Finally from eqs.(4.14),(4.16),(4.17), we obtain
that for Re s 2 O the Laplace-Stieltjes transform
of the total execution time distribution is given

by :
,uM
T™(s) = [2a(1,1,0)
V(s*u) (s+2u)"_2
D 2 )k“l
s oroatn ”_1 1, (4.18)
k=2 (¥

where the a(i,J.ni)'a are given by recurrence
relations (4.15).

Differentiating T®(s) at point s = 0, we get the

following expression for the expected total

execution time

T-1 [at1,1,00 M2
o 2M—2
D . .
+
+Loalnk,1) L ke (4.19)

5 = NUMERICAL RESULTS

We consider a full binary tree A of depth D (D21),

where tasks execution times are exponentially

distributed random variables with mean 1/p (u>0).
Let S(D) be the expected execution time of A with

a single processor. We obviously have S(D) =

, Wwhere M = ZD*1

3]

of A.

Similarly let us define NA(D,N) [resp. A(D,N)] the
expected execution time of A under the NA-policy
[resp. A=policy] with N processors.

= 1 is the number of tasks

AFD(x) =1 -8 ,

From Section 3, it is seen that (ef. 3.15),

D ' e

)

NA(D,2) = - (2 +
M

and

D _, 2'-1 _
Mo, =1 (£ t+  xH).
1}

i=0 k=1
On- the other hand, A(D,2) is computed from
eq.(4.19) where the a(i,J.ni)'s are exactly

deterﬁined using recursive relations (4.15).

We have found the following interesting results,

A(1,2) = 1 (2 +0.5),
; .
A2,2) = 1 (2% + 0.75),
M
AG3,2) = 1 (2* + 0,7968750...),
'] L :
Ak,2) = 1 (2 + 0,79785156...),
" ;
A5,2) = =1 (2% + 0,79785172...),
"
AG6,2) = 1 (2% + 0,79785172...) ... etc.
" SRUARLY

These results lead us to conjecture that

ZD ] -
H L

a

%}m (a(p,2) - and that 0,79785172 is
+m

. R
the eight digit decimal approximation of a. .

In the where infinite number of
processors is available (i.e. N 2 2D) let us ¥
define Fi(x)Athe probability distribution of the ’
execution time of a sub-tree rooted at level i,

i =0,1,..., D.

case an

It is readily seen, from our assumptions, that
-ux
FI(X) - pe WX » [Fi*1(s)]’. for i = 0,1,.1..0-1,
-ux

(n20)

where * denotes convolution,



-

In one case (NA-policy) results have been

We have found :
obtained for the distribution of the tree

A(2,®) _‘_‘l_ (22 + 0,30555... ), processing time !‘or. an arbitrary number vor
o . processors and for exponentially distributed task
AG3,=) = 1 (22 - 1,69247... ), execution times.
. 1Y : - .
A4, ®) = _V (2% - 7,5582094... ). In the other case (A-policy), similar results
u . " have been derived either for two available

These three values have been exactly computed processors or for an infinite number of available

using the MACSYMA program for  symbolic processors.
calculations. '
Unfortunately less restrictive assumptions (eg.
arbitrary non-lattice distributions for the
execution times of tasks) yield theoretical

difficulties and need further research

For D 2 5, we have used numerical methods based on
Laguerre transforms (ef, [ 31, [ 5 D).

For u = 2, we have plotted [Figure 2] S(D), investigations.
NA(D,2), NA(D,»), A(D,2) and A{D,s) for different
values of D, the depth of the tree A, As already
observed in [ 3 ], the mean processingv time A(D,®)
grows almost linearly as the depth of the tree .

increases. . .
Mean processing time

In order to estimate the gain achieved when adding 16 4
Single -

processors to a single processor environment, we
processor

have also plotted [Figure 3] for different values 14
of D, quantities 1 - with

X e{NA(D,Z),NA(D.A-),A(D,S?,A(D,O)}. which can be 32
interﬁreted as a kind of acceleration of the tree

processing time.

Two

From [Figure 3] we see that results obtained for processcrs

the NA-policy are a gdod approximation of the

. 0@or‘r‘espondi.ng results with the A-policy. Infinite
number of-

However the accuracy of this approximation will processors

probably decrease for more general trees and for 2

arbitrary distributions of task execution times.

. 0 . + . —
6 ~ CONCLUSION 0 1 2 3 4
Depth of the tree
In a tentative to evaluate ahd to compare Figure 2': Mean processing time

different -policies for ﬁarallel execution of
program tree structures, we have investigated two
particular policies called the NA-policy and the
A-policy.



Mean acceleration

Infinite
NA“ number of
processors

R —- Y

NA TQo )
.’ processors

i 2 3 4 5 6 71 8
Depth of the tree :

Figure 3 : Mean acceleration

REFERENCES

11

)]

[3]

Baccelli, F. and Fleury, T.,

"On parsing arithmetic expressions in a

multiprocessing environment®

Acta Informatica, 17 (1982) pp. 287-310.

Baccelli, F. and Mussi, P.,

*A decentralized control parallel

- interpreter for arithmetic expressions and
- its evaluation®

Proceedings of "Parallel Computing 83",

Berlin, September 26,28 1983, North Holland.

Fayolle, G., King, P.J.B. and Mitrani, I.,
"On the Execution of Programs by Many
processors®

Proceedings of "Perrormaﬁce 83", Maryland,

‘May 27,29 1983, North Holland.

[ul

[s]

6]

Imprimé en France

par

Gelenbe, E.,
Staphylopatis, A.,

Lichnewsky, A. .  and

"Experience with the Parallel Solution of

Partial Differential Equations on a
Dlstrlbqted Computing System".

IEEE Trans. on Computers, ¢=31, 12 (1982)
pp.1157-1164.

Keilson, J. and Nunn, W.R.,

'Lagherre transformation as a tool for
the numerical solution of integral
equations of convolution type"

Applied Mathematics and Computation, 5
(1979) pp. 313-359.

Vuillemin, J.,

"A very fast multiplication algoritham for
VLSI implementation”

INRIA Report, n° 183, 1983.

I'Institut National de Recherche en Informatique et en Automatique



s? A
A4
‘~
<
«
.
4
o
3
o

R



