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ABSTRACT

This paper introduces a class of probabilistic counting algorithms
with which one can estimate the number of distinct elements in o
large collection of data (typically a large file stored on disk) in
single pass using only a small additional storage (typically less
than a hundred binary words) and oniy a few operulions per ele-
ment scanned. The algorithms are based on stalistical observa-
tions made on bits of hashed values of records. They are by con-
struction totally insensitive to the replicative structure of ele-
ments in the file, they cun be used in the context of distributed
systems without any degradation of performances and prove espe-
cially useful in the context of data bases gquery optimisation.

1. INTRODUCTION -

As data base systems allow the user to specify more and more complex
queries, the need arises for efficient processing methods. A complex query can
however generally be evaluated in a number of different manners, and the
overall performance of a data base systern depends rather crucially on the .
selection of appropriate decomposition strategies in each particular case.

Even a problem as trivial as computing the intersection of two collections of
data 4 and B lends itself to a number of different treatments:

1. sort A, search each element of B in A and retain it if it appearsin 4;

2. sort A, sort B, then perform a merge-like operation to determine the
intersection; )
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Résumé: On présente dans cet article une classe d'algorithmes probabilistes qui
permettent d'estimer le nombre d’'éléments distincts d'une collection de
données de grande taille (typiquement un fichier sur disque). Les algorithmes
proposés opérent en une passe, utilisent une mémoire additionnelle trés réduite
(généralement moins de 100 mots suffisent) et un petit nombre d’opérations par
élément du fichier. lls sont par construction totalement indépendants de la
structure des duplications dans le fichier d'origine et peuvent &tre utilisés au
vol, ainsi que dans le contexte des bases de données distribuées sans
dégradation de performance. De telles méthodes sont utilisables dans le con-
texte de l'optimisation de requétes en bases de données.
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8. Do like 1 or 2 after eliminating duplicates in 4 and/or B using for
instance hashing or hash filters ... . ‘

Each of these evaluation strategy will have a cost essentially determined by the
number of records a, b in A and 5, and the number of distinct elements o, gin
A and B, and for typical sorting methods, the costs are:

for strategy 1: O(aloga + b loga);
for strategy 2: O(a loga + b logb +a+b) ...

In a number of similar situations, it appears thus that, apart from the sizes
of the files on which one operates (i e. the number of records), a major deter-
minant of efficiency is the cardinalities of the underlying sets, i. e. the number
of distinct elements they comprise.

The situation gets much more complex when operations like projections,
selections, multiple joins in combination with various boolean operations appear
in queries. As an example, the relational system system R has a sophisticated
query optimizer. In order to perform its task, that program keeps several statis-
tics on relations of the data base. The most important ones are the sizes of rela- '
tions as well as the number of different elements of some key fields [7]. These
informations are used to determine the selectivity of attributes at any given
time in order to decide the choice of keys and the choice of the appropriate
algorithms to be employed when computing relational operators. The choices
are made in order to minimise a certain,ccst function that depends on specific
CPU and disk access costs as well as sizes and cardinalities of relations or fields.
In System R, these information are periodically recomputed and kept in catalo-
gues that are companions to the data base records and indexes.

In this paper, we propose efficient algorithms to estimate cardinalities of
multisets of data as are commonly encountered in data base practice. A trivial
methed consists in determining card{#) by building a list of all elements of #
without replication; this method which has the advantage of being exact has
however a cost in number of disk accesses and auxiliary storage (at least O(a)
or O(aloga) if sorting is used) that might be higher than the possible gains
which one can obtain using that information.

The method we propose here is probabilistic in nature since its result
depends on the particular hashing function used and on the particular data on .
which it operates. It uses minimal extra storage in core and provides practically
useful estimates on cardinalities of large collections of data. The accuracy is
inversely related to the storage: using 64 binary words of typically 32 bits, we
attain a typical accuracy of 10%; using 256 words, the accuracy improves to
about 5%. The performances do not degrade as files get large: with 32 bit words,
one can safely count cardinalities well over 100 million. The only assumption
made is that records can be hashed in a suitably pseudo-uniform manner. This
does not however appear to be a severe limitation since empirical studies on
large industrial files [5] reveal that careful implementations of standard hashing
techniques do achieve practicallly uniformity of hashed values. Furthermore, by
design, our algorithms are totally insensitive to the replication structures of
files: as opposed to sampling technigues, the result will be the same whether
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~elements appear a million times or just a few times.

From a more theoretical standpoint, these techniques constitute yet
another illustration of the gains that may be achieved in many situations
through the use of probabilistic methods. We could mention here Morris’ approx-
imate counting algorithm [6] which maintains approximate counters with an
expected constant relative accuracy using only

logplogen + 0(1)

bits in order to count up to n. Morris’ algorithm (see [2] for a detailed analysis
that has analogies to the present paper) may be used to reduce by a factor of 2
the memory size necessary to store large statistics on a large number of events
in computer systems. '

The structure of the paper is as follows: in Section 2, we describe a basic
counting procedure called COUNT that forms the basis of our algorithms. It may
be worth noting that non-trivial analytic techniques enter the justification, and
actually the design, of the algorithms; these techniques are also developed in
Section 2. Section 3 presents the actual counting algorithms based on this
COUNT procedure and on the probabilistic tools of Section 2. Finally, Section 4
concludes with several indications on contexts in which the methods may be
used: most notably they can be employed on the fly as well as in the context of
distributed processing with minimal exchanges of information between proces-
sors and without any degradation of performances. '

Preliminary results about this work have been reported in [3].

2. A PROBABILISTIC COUNTING PROCEDURE AND ITS ANALY SIS

The Basic Counting Procedure

" We assume here that we have at our disposal a hashing function hash of the
type: ‘

function hash (x records) : scalor range [0..20 —1],

that transforms records into integers sufficiently uniformly distributed over the
scalar range or equivalently over the set of binary strings of length L. Fory an
integer, we define bit(y k) to be the k-th bit in the binary representation of y,
so that ‘
y = Y bit(y k)2 .
k=0
We also introduce the function p(y) that represents the position of the least
significant 1-bit in the binary representation of y, with a suitable convention for

p(O):



in bi if y>0
min bit (y.k)#0 Yy

ply) =
L if y=0

(Thus ranks are numbered starting from zero.)

We observe that if the values hash(z) are uniformly distributed, the pattern
0%1 - - - appears with probability %=1 The idea consists in recording observa-
tions on the occurrence of such patterns in a vector BITHAP[0..L—1]. If M is the
multiset whose cardinality is sought, we perform the following operations:

for i:=0 to L-1 do BITMAF(i]:=0;
for z in M do
begin
index:=p(hash(z));
if BITMAF|indez]=0then BITMAPindez]:=1;

end;

Thus BITMAP[i] is equal to 1 iff after execution a pattern of the form O has
appeared amongst hashed values of records in M. Notice that by construction,
vector BITMAF only depends on the set of hashed values and not on the particu-
lar frequency with which such values may repeat themselves.

From the remarks concerning pattern probabilities, we should therefore
expect, if n is the number of distinct elements in M that BITMAP[0] is accessed
approximately n/ 2 times, BITMAP[1] approximately n/ 4 times ... . Thus at the
end of an execution, BITMAP[i] will almost certainly be zero if i>>logem and
one if i<<logen with a fringe of zeros and ones for i®log,n. As an example, we
took as M the on-line documentation corresponding te Volume 1 of the manual
of the Unix system on one of our installations. M consists here of 26692 lines of
which there appears to be 16405 different ones. Considering these lines as
records and hashing them through standard multiplicative hashing over 24 bits
(L=24), we found the following BITMAP vector:

111111111111001100000000

The leftmost zero appears in position 12 and the rightmost one in position 15
while 214=16384. :

We propose to use the position of the leftmost zero in BITHAP (ranks start
at 0) as an indicator of logzn. Let R be this quantity, we shall see that under the
assumption that hashed values are uniformly distributed, the expected value of
R is close to:

B(R) ~ logapn, ¢=O.77351 SR (1)

so that our intuition is justified. In fact the "correction factor” ¢ plays quite an
Important role in the design of the final algorithms we propose here. We shall
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also prove that under reasonable probabilistic assumptlons the standard dev1a—
tion of & is close to )

o(R) ~ 1.12 S (2)

so that an estimate based on (1) will typically be one order of magnitude off the
exact result, a fact that calls for more elaborate algorithms to be developed in
Section 3. '

Probability Distributions

We now proceed to justify rigorously the above claims (1) and (2) concern-
ing the distribution of the value of parameter £ in the basic counting pro-
cedure.

Probabilistic Model: #e let B denofe the sel of infinite binary string. The model
assumes that bits of elements of B are uniformly and independently distri-
buted. Lguivalently strings can be considered as real numbers over the interval
[0;1], and the model assumes that the numbers are uniformly distributed over
the interval. Functions bil and p ore exiended lo B trivially. We denote by R,
the random variable defined over B® (assuminyg independence) that is the analo-
gue of the parameter R above:

Rp(z)za -+ - xg) =7 Yf (i) for all 0<j<r there is an i; such that p(z;)= _7

and (ii) for u,ll 1 plzy)=r.

We also introduce the following notations concerning the probablhty distribution
of K, under the uniform model:

Prre = PI‘(RR)ZIC v Gne = Pf(}?n)?'_k
En :4E(Rn) = kan.k

k=0
. 0'7% = E((Rn—ﬁn)2> = Z kzpn.k “ﬁ,’? ,
. k=0
and we let v(n) denote the nurnber of ones in the binary representation of n, so

that for instance ¥(13) = v((1101)z) = 3. We have

Theorem 1: The probability distribution of K, is characlerised by. -

dnie = i( 1=

J...

Proof: For each integer k=0, we define the following events {i. e. subsets of B):
Ee =tz | plz)=k}; K=tz |p{z)=k]

Thus, for each k, Fo. E;, -+ Ep_1, K form a disjoint and complete set of events.
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When n elements are drawn from B, the formal polynomial:
Pi™) = (Bot Byt - +Bp oyt Ke)" | (3)

represents the set of all possible events in the following sense: if we expand (3)
taken as a non-commutative polynomial in its indeterminates, interpreting the
sums as (disjoint) unions of events and the products as successions of events
(each monomial has degree n), we obtain a complete and disjoint representation
of B*. ' .

We are interested in obtaining from F{™ an expression for the polynomial
@) that represents in a similar fashion the succession of all events correspond-
ing to R,=k. Polynomial @™ is formed by a subset of the non-commutative
monomials appearing in P{™).

] Let us start with a few examples. If k=0, we have: P§™ = (k)" and
Q) = Pf Tt k=1,

Pi™) = (Eg+K,)", Q) = (Ey+K)" = K7,

since @ is obtained from P in this case by taking out from P the monomial KT
corresponding to the situation where all strings drawn have a p-value at least 1.
For k =2 now, we have:

QM = (Egt Ey+Kp)* — (B 1+Kp)" — (Eg+ Ko)™ + K3

since we have to take out from P the cases where either p-value 1 or p-value 0
does not appear but in sco doing, we have eliminated the case where all p-values
are at least 2 (i. e. K3) twice.
In general, for P a polynomial in the indeterminates E,, Es, - - - , the polynomial
@ formed with monomials of- degree at most 1 in each of the indeterminates E;
can be obtained from P by the inclusion-ezclusion type formula:
Q@ =P = ) P[E~0] - Y, P[E,E;~0) + Y, P[E B F~0]— -, (4)
i inj in] %k

where the notation P[x,y-0] means the replacement of z,y by 0in P. Thus
@) can in general be obtained by applying (4) to the expression of P{™ given
by (3).

To evaluate the probabilities 9nk. &ll we have to do is to take the measures
M of the events described by polynomial @ using the rules:

\ 1 1
#(E;") = o (K ) = prat

using additivity of measure u over disjoint sets of events as well as the relation
(A B)=u(A). u{B) since trials in B are assumed to be independent. On our previ-
ous examples, we find in this way:

1 3 1 1
gno = 1; n1 = 1’(5’)"' i Qn2 = 1—('4—9”‘('2;—)“"'(:}—)1‘ '
and in general;

Gni = L+€+€atbat - | (5)



where
— (1)t S S S
ft_( 1) 2(1 ‘21;1 2.,',2 2_,;‘%.
and the sum extends to all t-uples of integers i), -+ - of distinct integers in

the interval [1..k]. Notice that by changing the summation indexes to l; = k4,
£: can be rewritten as: ,

Lol L
2 1+2 2+ o 21
g =(-1)' Y (- - "
2
where now the l; are distinct integers over the interval [0..k—1]. In other words,
we have shown that:

b= (-1 Y (1-Lo (6)
v(ji)=t 2 .
j=ok

Using (6) inside (5) completes the proof of the theorem. B

We now turn to the derivation of asymptotic forms for these probébilities.
We prove: '

Theorem 2: The distribution o f R, satisfies the following estimates:
(i) If k <logzn — 2logglogn, then: '

Gnx = 1-0(ne 5")
(i) If k< 2—log2’n, then

”Jz% _logtn
Qn k =j1=_[0(1—e )+0( ~T )

v(j) ;g:_ log®n |
= Jgo[('“l) e ] + O( ~T ) )

(i) If k= —g—logzn +6, with 6_::0, the tail of the distribution is exponential:

(S

N

Qn,kzo( ).

$

Proof: The main device here consists in using repeatedly the exponential ap-
proximation:

(1—a)* me™ .

inside the terms that form the expression of gn ¢

Ink = Jgo(l"'z‘z;;—)" . . ’ (7)



where
t(jmk)= (1‘5?%:)" .

(i) The case when k<logzn — 2logglogn. |
Pulling out the 1 corresponding to the first term (j=0) in (7), and noticing that,
as j increases, the terms £ (j,n k) decrease, we find:

=gy 5 < zk(l—zlﬁn .
Since 2¢<n and 1og(1——217c—)"> _lgi_n_‘ the above inequality becomes:

1=Qnp < me ~logn ,

as was to be established.

(ii) The case when k< -g—loggn.

. ,
We set here g(n) = 1—9-%—7-”-: When j>&(n)2¥, for k. in the given range, t(j,n k) is
0(e °8°n); since there are less than 2¢ such terms, and 2% = 0(n¥?), we get:

G = L (F1Y0t(Gnk) + O(n¥2e l&n) (8)
j<e(n)2k

We let g, » denote the sum that appears in (8), and we define similarly:
Inke = 2 e mi/2"
j<e(n)2k
For j<&(n )%, we have:
|t (G m.k)—e -nj/ gk | = 0(e -njs 2k le b(-njz/z%)_l) )
= O(ne?(n)) ,
so that, since g’ and g” comprise 2¥g(n ) terms:
|Gnk~gn.el = O(n2*e3(n)) (9
a quantity which is. O(log®n/ V).

Thus the first terms of g, , are adequately approximated by (7). To derive
the final expression, all we have to do is to "complete the sum" in g, &; We set:

G = k20<—1)”0>e~"f/2’° +E ~ (10)
3

where the error term F satisfies:

|E| < ) emi/? (11)
i>e(n)2k .
g eln) R*  _lg?n 1/2,, -logtn
= = = —iog
0(———-%1_8 e 0(—-en ) O(n'/?e ).
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Combining equations (8),(9),(10),(11) therefore establishes the sum expression
that appears in claim (ii) of the statement. To derive the product form, we
appeal to the general identity:

Y (=13 = TT(1~¢™).

j=0 m=0

(iii) The case when k = g—logz +6.

We bound the probabilities g, ; by observing that since the p-value k-1 is taken
-at least once: '

Pr(R,=k) < 1'(1‘217)” , (12)
< 1—exp(—2.n/2F).

‘The last expression is O(J—E—) which is itself in the given range of values of k of
P 2

-5
order Of \2/—7_;); thus the proof of part (iii) is now completed. ®

In the sequel we introduce the real function:
Wz) = [J(1-e %) = P (=1)"Dexp(~jz) . (13)
: j=0 j=0
Thus Theorem 2 expresses essentially the existence of a sort of limiting distri-
bution for the probability distribution of i, as n gets large: ‘

Ink Mﬁ(-;%—) \ Prk “W(gg—)—#’(#ﬁ . (14)

Table 1 describes the values of the probabilities compared to the approximation
‘given by (9). It shows excellent agreement between the g, .'s and their approxi-
mations. It also reveals that the tail decreases sharply (actually a decrease fas-
ter than that of Theorem 2 may be established).
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k=4 k= =6 k=7 k=8 k= k=10 k=11

100 0.0019 0.0439 0.200 0.3452 0.2767 0.1088 0.0212 0.020
0.0016 | 0.0417 | 0.1985 | 0.5476 | 0.2789 | 0.1087 | 0.0209 | 0.0020

k= =8 =9 | k=10 | k=11 | k=12 | k=13 k=14

1000 0.0004 0.0201 0.1389 0.3166 0.3216 0.1586 0.0388 | 0.0047
0.0004 | 0.0200 | 01387 | 0.3167 | 0.3219 | 0.1586 | 0.0388 | 0.0047

k=10 k=11 k=12 k=13 k=14 k=15 k=16 k=17

16000 || ©0.0001 0.0076 0.0863. | 0.2673 .3469 0.2150 £.0659 0.0101
0.0001 0.0076 | 0.0863 | 0.2673 | 0.3469 | 0.2150 | 0.0659 | 0.0101

Table 1: Values of exact probabilities (g, ) and of the approrimations (9) (in
italics in the table). '

Asymptotic Analysis
From Theorem 2 follows that:

Lemma 1: The expectation R, of R, satisfies:

R = DEIWZOY(FD] + 0( =5 . (15)

k=1

Thus the problem of estimating :fi‘—n asymptotically reduces to that of estimating
the sum in (15), . e. the function:

- Ty g E
F(z) = TEIVED-U D], (16)

for large z. To that purpose we appeal to Mellin transform techniques whose
introduction in the context of analysis of algorithms is due to Knuth and De
Bruijn (see [4], pp 131 et sq.). The Mellin transform of a function J (z) defined
for z=0, z real, is by definition the complex function F*(s) given by;

£7(s) = HIf (=) ] = ,Zf (2)e"ldz )

We succinctly recall the salient properties of the. Mellin transform, referring the
reader to [1] for precise statements. The Mellin transform of a function J is
defined in a strip of the complex plane that is determined by the asymptotic
behaviours of f at 0 and . It satisfies the Important functional property:
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M(f(az)is] =a™ f"(s). (18)
Finally there is a complex inversion formula:
1 ¢ +iv .

1) = g [ fi(s)zs | (19)

where ¢ is chosen in the strip where the integral in (17) is absolutely conver-
gent. The interest of the inversion formula is that, in many cases, it can be
evaluated by means of the 7esidue thecrem, each residue corresponding to a
term in the asymptotic expansion of f.

Lemma 2: The Mellin transform of F(z) is for —~1<Re(s)<0:

F(s) = N(s)T(s).

1-2%
where T(s) is the Fuler Gumma function and N(s) is the analytic continuation
of the function defined for Re(s)>1 by:

N(s)= 13 L%EJ—)—

j=1

Proof: Let ¥(z)=%(z)~1. The transform of ¥, is for Re(s)>1:
Yils) = (-1 0s) (0)

j=1

= N{(s)I'(s) .

as follows. from the basic functional property (18), and the fact that the
transform of exp(z) is the Gamma function I'(s). Similarly, for Re(s)>1, we get:

¥ils) = Mpz) (D] = ¥i(s)(1-2) . (21)

Since ¥(x)—¢(x/R) is exponentially small both at 0 and e, the transform Ys is
actually analytic for all complex s; this observation thus establishes that N(s) is
analytic for all s since:

_ %als) :
Ns) = i | (22)

Thus, again by the basic functional property:

F'(s) = 93(s) Y k2"

k=1

. os
=94) e (23)

where (23) is valid for Re(s)<0.
Putting together (20),(21),(23) establishes the claim of the Lemma, with the

existence of N(s) for all complex s being:guaranteed by (22). ®
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We now need to establish some more constructive properties of N (s) for
Re(s)<0. We prove:

Lemma 3: The function N(s) satisfies N(0)=—1. Furthermore, for s =c+it and
0>—0.99, it satisfies uniformlyin s:

N(s)=0(ls]*.

Proof: Terms in the definition of N(s) may be grouped 4 by 4; using the pro-
perty:
v(47)=v(y); v(4j +1)=v(45 +2)=1+v(5); v(4j +3)=2+v(j) ,
we find: ' .
N(s)=~1""-27543"" ' C(R4)
SN N S T
_l .

. L 5 s B
=EF T ey el el

"We observe that the general term in the above sum is 0(j7° %) as j gets large.
This confirms that N(s) is defined and analytic when o>—1. To obtain the bounds
on N(s), we split the sum (24): the terms such that j<|s |? contribute at most
O(|s |*) to the sum; since

1—(142) S —(1+2u) = +(1+3u)™ = 0(|s |2u?)

uniformly in s and © when u< 1/_[s [?, we find that the contribution of terms
such that j>|s |®is

o(Is|? 3 52) = o(s|?),

i>ls|?

~uniformly in s when ¢>—0.99, say. ®

We can now come back to the asymptotic study of F(z) and hence of R,
using the inversion formula (19).

Theorem 3.A: The average value of parameter R, satisfies:
E, =logg(pn) + P(loggn) +o (1),
where constant phi=0.77351 - - - is given by:

112472 B5F] (40 + 1) (4p +2)
=P /27y 2.
v 3 RH[ (4p)(4p +3) |
and P(u) is a periodic and continuous Sunction of w with period 1 ond ampli-
tude bounded by 1075, :

](—1)!’(10)
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Proof: By Lemma 1, the problem reduces to obtaining an asymptotic expansion

of F(z) as -0 up to o(1) terms. The principle consists in evaluating the com-

plex integral of the form (19) by residues. From the inversion theorem for Mellin

transforms, we have: '
—1/R+iw

- 1 - -3 » ’
F(z) B _V{HWF (s)z%ds . (25)

We consider for m a positive integer the rectangular contour 'y, defined by its
corner points {and traversed in that order)

Tm = [-1/R~i(Rk+1)n/ logRi~1/ 2+1(2k +1)m/ log;
1~i(Rk +1)7/ log2; 1+i Rk +1)m/ log2] .

By Cauchy's residue theorem, we have:

' 2371_ I{‘F’(s Yrids = —si§m}?es (F..(S )z7%) .

For fixed =z, as m -gets large, the integral along the segment
[—1/2—i(2k +1)m/log2 ; —1/ 2+i{2k +1)n/ logR] tends to F(z) by (25). From
Lemma 3 and the exponential decrease of I'(s) towards i, the integrals along
[—1/2+i(2k + 1)/ logR ; 1~i(Rk+1)m/ log2] and
[1+4(2k + 1)/ logR; —1/ 2~i(Rk+1)n/logR] tend to zero exponentially fast (as
functions of m.). As to the integral along [1—i(Rk+ 1)/ logR;1+i(Rk +1)m/ logR],
it stays bounded in absolute value by:

K

+w
1 » . _
57_;—:{]1‘—' (l+’Lt)lx ldt < :’;:—.

for some constant K. (Again the exponential decrease of I‘(s) guarantees con-
vergence of the above integral). We have thus found that, by letting m -»ee:

Flz)=- Y Res(F'(s)z)+ 0(>). (26)

Re(s)=0 z
(The sum of residues is also absolutely convergent because of the decrease of
T(s) towards i=). It only remains to evaluate the residues in (26). F'(s) has a
ik
log2"’

double pole at s=0 &and simple poles at each xi= with & an integer

different from 0, and we find easily:

-__ b4 ~f.q = = L—*.M_L
.Res(F' (s)x—s;s=0) 1og2z+1og2 gz 2

which we may rewrite as loggpz, and:

_ 4 “§ g o= '_—_ 1 Xk
Res (F*(s)z™:s Xie) fgé-z.—if‘(xk)N(xk)x \

which is of the form pye — o8
Thus summing the residues, and using (28), we find the announced asymp-
totic form for F{z) (and hence K,), with P{u) given by:



Plu)= 3, pe?*m™ =
z

We can evaluate the standard deviation of B, in a sirnilar fashion. Let S, be
the second moment of R,: S,=FE(RZ2). As before, S, is approximated by the
function G(n) where

6(z) = T U EI—¥(ED].
k=1

whose transform is found to be for Re(s)<0:

&(s) = EUB) riyw(s),

(1-2%)?
which now has a triple pole at s=0. Computing G{z) is done from G’(s) via the
inversion theorem followed by residue calculations, and one finds:

Theorem 3.B: The standard deviation of R, satisfies:
or = 0% + Q(logan) + o0(1) ,

where g, = 1.12127..., and Q,(u) is a periodic function with mean value 0 and
period 1.

We can mention in passing for o. the "closed form" expression:

02 = —L _Tantiog2-12N(0)-12N"(0)]-2 ¥ e |2 .
12(logR) _ k>0

where the p, are the Fourier coefficients of P(u) defined above.

3. PROBABILISTIC COUNTING ALGORITHMS

We have seen in the previous section that the result R of the COUNT pro-
cedure has an average close to logagn, with a standard deviation close to. 1.12.
Actually the values of

' 1 R
A n = ottn
(n) pa
are amazingly close to n as the following instances show:
A(10)=10.502 ; A{100)=100.4997 ; A(1000)=1000.502 .

This observation justifies the hope of obtaining very good estimates on n from
the observation of parameter X, using the correction factor ¢. However, the
dispersion of results corresponds to a typical error of 1 binary order of
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Mmagnitude which is certainly too high for many applications.

The simplest idea to remedy this situation consists in using a set H of m
hashing functions, where m is a design purameter and computing m different
BITMAP vector. In this way, we obtain m estimates K<, R<?> ., 'R<™> One
then considers the average: ' _

<I>, p<R>y ., <m>
- BS7+R ; + 5 (27)

A

When n distinct elements are present in the file, the random variable A has
expectation and standard deviation that satisfy: ‘

E(4) ™ logapn ; 0{A) N —=e .
vV T

Thus we may expect 24 to provide an estimate of n with a typical error (meas-

ured by the standard deviation of the estimates) of relative value N\/Irfn— .

Such an algorithm using direct averaging has indeed provably. good perfor-
mances (with an expected relative error of about 10% if m =64) but it has the
disadvantage of requiring the calculation of a number of hashing functions, so
that the CPU cost per element scanned geis essentially multiplied by a factor of

It turns out that an effect very similar to straight averaging may be
achieved by a device that we call stochastic averaging. The idea consists in using
the hashing function in order to distribute each record into one of m lots, com-
puting a=h(zx) mod m. We update only the corresponding BITMAFP vector of
address o with the 'rest” of the information contained in h(z), namely
h(z) div m. At the end, we determine as before the F</>'s and compute their
average S by (27). Hoping for the distribution of records into lots to be even

enough, we may thus expect that about T—i—elements fall into each lot so that
—1—25 should be a reasonable approximation of ;?;

The corresponding algorithm is called "Frobabilistic Counting with Stochas-
lic Averaging", or PCSA for short. It is described in Figure 1. Its cost per ele-

ment scanned is hardly distinguishable from that of the COUNT procedure and

its relative accuracy is seen to improve with m roughly as 3/;75 In the sequel,

we'shall call standard error the quotient of the standard deviation of an estimate
of n by the value of n; this quantity is thus a precise indication of the ezpected
relative accuracy of an algorithm estimating n. Neglecting periodic fluctuations
of extremely small amplitude (less than 107°), we shall call bias of an algorithm
the ratio between the estimate of n and the exact value of n for large n. Stan-
dard error and bias of algorithm PCSA for various values of the design parame-
ter m. are displayed in Table 2.

In the remainder of this section, we are going to justify these claims
rigorously and in particular show how the estimates of Table 2 are deduced. We
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program PCS4,

const nmap = 64, {with nmap = 6';, accuracy is typically 1073
{nmap corresponds to variable m in the anaiysis }
@ = 0.77351 {the magic constant]; mazlength = 32;
{with maxlength =32 (==L), one can count up to 1083

var M: multiset of data of type records;
z: Tecords; hashedz, indez, @, R, S, E: integer,
BITHAPS: array [ 0..nmap-1,0..maziength-1] of integer;

function getelement (uar zrecords);
{reads an element z of type records from file ¥}
.| function hash(z-records)-integer;
thashes a record z into an integer over scalar range [0..2maslsngth _1 )}
-function p (y-integer)-integer,
treturns the position of the first 1—bit in y; ranks start at 0. }

begin
while not eof (M) do
begin
getelement(z); hashedz -=hash(z);
o.=hashedz mod nmap, indez . =p(hashedz div nmap),
if BITMAP{a,indez]=0 then BITMAP|a indez] =1,

end,
S =0,
for i:=0 to nmap-1 do
begin
R:=0; while (B/TMAF[i,R]=1) and (R<mazlength) do R-=R+1; S:=S+R:
end;

E:=trunc (nmap /g 2 *¥(S / nmap ));
{Result = of the PCSA programme that estimates n |
end

Figure 1. Probabilistic Counting with Stochastic Averaging (PCSA).
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m bias standard error
21 1.1862 61.0 7%
-4 | 1.0792 40.9 %
B || 1.0388 RB.2 %
16 | 1.0191 19.6 %
32 || 1.0095 138 %
64 | 1.0047 0.7 %
128 || 1.0023 8.8 %
256 | 1.0011 4.8 %
512 || 1.0005 3.4 7%
1024 || 1.0003 2.4 7%

Table 2: Fias and standard error of PCSA for several values of m, the number
of BITHMAP wvectors used.

let Z, denote the random variable = when n distinct elements are present in the
file; we denote by E[E,] the average value of =, and o{Z,) the standard devia-
tion of &, . We propose to establish:

Theorem 4: The estimate =, of algorithm PCSA has overage velue that satisfies:

— 1 1 1
EZ,] = %{Eg—zi’\’(*a—w(—

the second moment of =, salisfies:

rri}l—)(l—.‘Z“V"‘)]m + an.(logzn) +o(n);

B3] = '%rjéﬁ(-—%er(——i—)(l—z'zf'")]m + n*Qn (logzn) + 0 (n®) .

In the agbove expressions, P, and @, represent periodic functions with period ]
, mean value 0 and amplitude bounded by 107°,

Theorem 5: Using the notation w(n)~v(n) to express the property:
SnoVn>ng |u(n)—w(n)|<10°

one has the following characterisations of the bias and standard error of algo-
rithm PCSA:

ItI

BEn]

=~ (1+&g(m))

r‘ﬁa

—
~
Znl

n

o

mn(m),
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where quantities e(m ) and n(m) satisfy:
A
&8m)~ o

/2

where

B S S V7Y logR?
A= T N'(0)*—N"(0)+ Tk

The analysis of algorithm PCSA

We now proceed with the pro.of of Theorem 4. We start with an estimate of
E[ﬁR"] for 1=f=2 that is needed throughout the rest of this section and prove:

Lemma 4: Setting § = Y9, with g=1, one has
E[;?R"] =nl/e (dq +Py(logzn))+o(nt/9)
where

- 1 1— -1/q _..._ __

and P, is a periodic function of amplitude less than 1075,

Proof: (i) We start with a strengthening of bounds on the tail of the distribution
of R,. Consider the probability Pr[R,>k] where k= glogz'n +6, with 6>0. When

" Rp>k, positions (k—1) and (k —2) of BITHAP are set to 1, an event that has pro-
bability:

1 l \7
Bk zlc—l /

1an i
1=(1= 2" =( 2k —) +(1

a quantity which is:

1—g "/ F+0ns/2%*)_ /214 0(ns2%) |, ~ns 2k 14 O(n s 22)

or O —2 o2 3, which in the given range of values of k is 0(n~"3247%) Thus
2 zlcp."”,c - 0(n5/4—3/224:—626) = O(n—-l/‘l-) , (28)
lc)i—logzn 6=0 '

and the same bound applies if 2 is replaced by g in the above sum.

(il) We now consider the error that comes from the replacement of the p,, by
their asymptotic equivalent for "small” k. From the bounds of Theorem 2, one
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finds:
P e (5,%1—)1 G ) = 0oy, (29)

lcs—logzn : .

a quantity which is <<n'/?. Thus completing the sum and defining the function:
x z
= DB W) =]
k=1 2 2

we have from (28),(29):

[ n]_ n)+0( O’?G/q)'

The asymptotic behaviour of H is determined by Mellin transform techniques as
before; the transform of function X is
28
H(s) = B2 _ris)vis)
() = LTI )
2'1Jc7r
1og2

H’ has poles at s =— and we find the claim of the lemma, using the

inversion theorem with

dy = ~Res(H'(s)is=-1) . ®

The next step in the proof of Theorem 4 is to establish that algorithm PCSA4
behaves asymptotically as though the n elements were perfectly distributed
into m groups.

Lemma 5: If n elements are distributed into m cells, where the probability that
any element goes to a given cell has probability ;’%— then the probability that af

least one of the cells has a number of elements N satisfying:
|N—2| >V logn
m

is O(e 18" for some constant h>0.

Proof: Set p=i—. q =1—-—;—L—; let N, be the number of elements that fall into cell 1.
N ; obeys a -binpmial distribution:

Pr(N,=k) = [,";]pkq"-" . | (30)
and taking logarithms of (30), for k=pn +6 and 5<<.n., one finds: '
62;75);5) L0/ 6‘; ) .

If 6 =Vnlogn, the probability (30) is exponentially small. We conclude the
proof by observing that the binomial distribution is unimodal and:

Pr(Ny=pn+6) = ezp(~
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Pri U |N; ——|> nlogn] < mPr[]Nl———|> nlogn].

1=j<m

We can now conclude the proof of the first part of Theorem 4. Let S denote
the sum R<>+R%®>+ - - - + R<™> We have:

) 1 n .
Pr(S=k) = ’2 i na, iy [PrukiPrgks T Pk, - (31)

ny+ngt - Ny =N
k1+lc2+ ey, =k

Thus:
E( 25/m ) -

n l'n, cee
”1+nz+ Cng,En m u7e, T

Call £ the quantity (32), and E¢ the sum of the terms in (32) such that for all 7,
l=j<m;

/m

B2 ™™™y B ()

Inj—::b—l <Vnlogn .

From Lemmas 4,5, F—E; is O(re "'1"@&"). As to the central contribution Fe it is
bounded by:
Lp ‘ g
(E[Z"‘ n/m—ﬁlogn])m, <Ep< (E[Z"‘ n/m+\f1'flogn])m '

so that finally:

E[25/m] = (B2 ™)™ +o(n) . (33)
or ‘

E(E,) = %{n{zﬁ“’"‘nm ro(n).  (38)

Equation (34) combined with Lemma 5 is sufficient to establish the estimates on
Epn from TheorBm 4, provided we check that the amplitudes of the periodic
fluctuations do not grow with m, a fact that will be proved in the next section.

Estimates on the second moment of £, are derived in exactly the same way
through the equality:

E(E?) = —’;—‘—( [zm ™y, +o(n?). (35)
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Dependence of Results on the Number of BITHAPs

We finally conclude with an indication of the (easy) proof of Theorem 5.
From Theorem 4, all we need is to determine the asymptotic behaviour of the
quantities '

a(m) = AN (== (=27 ™), (36)
pim) = —{ (- 2= 2y e—gwmypm (37)
p°  log m m _

7(m) = (B(m)=c?(m))2 (38)

as m gets large since we neglect the effect of the small periodic ﬁuctuations.
This is achieved by performing standard (but tedious) asymptotic expansions of

(38), (37), (38) for large m. (This task as been carried out with the help of the.

MACSYMA system for symbolic computations.) We notice that the bias and stan-
dard error are for all values of m closely approximated by the formulae:

bias ; 14+ 281 | (39)
m ,
standard error: | 9\7_;% .  (40)

4. IMPLEMENTATION ISSUES

There are three factors to be taken into account when applying algorithm PCSA:

(i) The choice of the hashing function.
(ii) The choice of the length of the BITMAP-vectors, L.
(iii) The number, nmap, of BITMAP used (corresponding to quantity m in
our analyses).
Also corrections of two types may be introduced:
(iv) .Cor.rect;ions to the systematic bias of Table 2.
(v) Corrections for initial non linearities of the algorithm,

We briefly proceed to discuss these issues here.

1. Haoshing F‘wn.ctions:_ Simulations on textual files (see below) ranging in sise
from a few kilobytes to about 1 megabyte indicate that standard multiplicative
hashing leads to performances that do no depart in any detectible way from
those predicted by the uniform model of Sections 2, 3. There, a record
z = (zgxy, * .zp) formed of ASCI/ characters is hashed into:

h(z)=|M + N ioord(xj)l»?ﬁj mod 2l |
= ,
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with ord (k) denoting the (standard ASCII) rank of character «. This good agree-
ment between theoretically predicted and practically observed performances is
in accordance with empirical studies concerning standard hashing techniques
and conducted on large industrial files by Lum et al. [5].

2. Length of the BITMAP wector: Since the probability distribution of the R-
parameter has a very steep distribution, it suffices to select L in such a way that

+ 4. (41)

L>lo gznmap

Thus, as already pointed out, with nmap =64, taking L=16 makes it possible to
safely count cardinalities of files up to n ~ 10°, and L=24 can be used for cardi-
nalities well beyond 107. The probabilities of obtaining underestimates because
of such truncations (the probabilistic model assumes L to be infinite) can be
computed from our previous results and when (41) is satisfied, the error intro-
duced is below 51073,

3. Number of BITMAFS: The expected relalive accuracy of Lhe algorithm or slan-
dord error is by Theorems 4,5 inversely proportional to Vm, being closely
approximated by:

0.78

v
Thus nmaop =64 leads to a standard error of about 10%, and with nmap =256, this
error decreascs to about 5%. (See Table 2).

4. Bias: The bias of algorithm PCSA as presented in Table 2 is negligible com-
pared to the standard error as soon as nmap exceeds 32. If smaller values of
nmap are to be used, it can be corrected using the results of Theorems 4, 5. For
a practical use of the algorithm, it suffices to use the estimates of Theorem 5,
which one achieves by changing the last instruction of the programme to:
£ = trunc (nmap /(o *(1+0.31 /nmap)) *2**(S /nmap));

In so doing, we obtain an algorithm which apart from the small periodic fluctua-
tions of arnplitude less than 107 is an asymptotically unbiased estimator of car-
dinalities n. ~

5. Initial Non-linearities: The asymptotic estimates which form the basis of the

algorithm are extremely close to the actual average values as soon as nmap

exceeds 10-20. If very small cardinalities were to be estimated, then based on
the characterisation of probability distributions, corrections could be computed
and introduced in the algorithm. (These corrections would be based on calcula-
tion of exact average values from our formulae instead of on the asymptotic
estimates) -

Simulations

We have conducted fairly extensive sirmulations of algorithm PCSA applied
to textual data. The files called mani, mangd, - -, manB correspond to
chapters of the on-line documentation available on one of our systems, and the
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versions manl.w, mand.w, - -+ correspond to the files obtained from the
preceeding ones by segmentation into 5 character blocks. Standard multiplica-
tive hashing was used as described by equation (41). We counted in each case
the number of different records and compared with corresponding values
estimated by algorithm PCSA (here, a record is a line of text for man1, - - - and
a 5 letter block for manl.w, - - - ). Some sample runs are reported in Table 3,
and they show good agreement between cur estirnates and actual values. Notice
that the files are mixtures of text in English, names of commands and typeset-
ting commands. ‘ '

file | card. 8 16 32 64 128 256

manl | 16405 || 17811 | 16322 | 14977 | 15982 | 16690 | 17056
1.08| 099 o0s81| o9r| 101| 103

manl.w | 38846 || 40145 | 40566 | 40145 | 43290 ; 41230 | 42592
096 1.01, 096, 107, 102, 106

man2 | 3149 2427 2887 3016 ;. 30156 2840 2982
0.77 081 0895 0.95 0.80 0.94

manZ.w | 10560 || 10580 | 8711 | 9100 | 9100 | 10032 | 10734
100! 091) 086:. 086 095, 1.01

man8 8075 || 4452 | 3744 3360 | 3252 | 3097 | 3108
1.44 | 1.21 1.08° 105 1.00] 1.01

man8.w | 11334 || 10590 | 10580 | 10363 | 10705 . 10999 | 10676
0.93 .83 2.81 0.4 087 0.94

Table 3: Sumnple execulions of algorithm PCSA on 6 files with the same multipli-
cative hdsh.ing Junction. The figure displays the file nome, the exact cardinality,
the estimated cardinality for nmap = 8, 186, 32, 84, 128, 256, and the ratio of es-
timated cardinalities to exact cardinalilies (below in ifalics).

We have also taken these 18 files, and have subjected them to algorithm
PCSA, varying the constants M and N in (41). This provides empirical values of
the bias and standard error of PCSA (averaging over 10 simulations X 16 files)
that again appear to be in amazingly good agreement with the theoretical pred-
ictions. Such results are reported in Table 4 and should be compared with Table
2. (The correction for small values of nmap described above has been inserted
into the algorithm PCSA of Figure 1.)
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m || bias standard error
B || 1.01689 31.927%
18 || 1.0104 19.63%
32 || 0.9798 12.98%
64 || 0.9961 9.67%
128 ! 1.0035 6.687%
256 || 1.0073 |  4.85%

Table 4. Empirical values of bias and standard error based on 160 simulations
(10 different hashing functions applied to the 16 files man1, - - - , manB.w).

Applications to Distributed Computing

Assume a file F is partitioned into subfiles F';, F';, ... Fy, where the F; and F;
need not be disjoint: Such a situation occurs routinely in the context of distri-
buted data bases. Then the global cardinality of file ' may be determined as fol-
lows:

Process separately each of the s subfiles by algorithm PCSA. This gives
rise to s BITMAP vectors, BITMAP,, ... . Each bf the s processors sends its
Tesult to a ceniral processor that computes the logical or of the s BITMAPs.
The resulting BITMAP vector is then used to construct the estimate of n.

It is rather remarkable that the accuracy of the estimate is, by construction,
not affected at all by the way records are spread amongst subfiles. The number
of messages exchanged is small (being O(s)), and the algorithm results in a net
speed-up by a lactor of s. :

Scrolling

The matrix of BITMAP vectors has a rather specific form: it starts with rows of
ones followed by a fringe of rows consisting of mixed zeros and ones and fol-
lowed by rows all zeros. This suggests naturally a more compact encoding of the
bitmap that may be quite useful for distributed applications since it then minim-
ises the sizes of messages exchanged by processors. The -idea is to indicate the
left boundary of the fringe, followed by a standard enceding of the fringe itself,
For instance if the BITMAP matrix is
|

el
e s R

1
1
1
1

= e e
= O
e i ik |
O 00~
e R e N
O~ oo
s e Neole
el el oo
< OO0
cooco
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then, one only needs to represent the leftmost boundary of the fringe (here 4),
and the binary words 10100, 11000, 01011, 11010.

This technique amounts to keeping only a small window of the BITMAP
matrix and scrolling it if necessary. For practical purposes, a window of size B
should suffice, so that the storage requirement of this version of PCSA becomes

close to %logzn +nmap bytes.
Deletions

It instead of keeping only bits to record the occurrences of patterns of the
form 0% 1, one also keeps the counts of such occurrences, one obtains an: algo-

rithm that can maintain running estimates of cardinalities of files subjected to .

arbitrary sequences of insertions and deletions. The price to be paid is however
a somewhal increased slorage cost.

5. CONCLUSION

Probabilistic counting techniques presented here are particular algorithmic
solutions to the problem of estimating the cardinality of a multiset. It is quite
clear that other observable regularities on hashed values of records could have
been used, in conjunction with direct or stochastic averaging. We mention in
passing: : ' »
-the rank of the rightmost ene in B/TMAP: this parameter has a flatter dis-

tribution that results in an appreciably less accurate algorithm (in terms of

standard error);

-the binary logarithm of the minimal hashed value encountered (hashed

values being considered are real [0;1] numbers) provides an approximation

tologyl/m, but the resulting algorithm appears to be slightly less accurate

than than PCSA. _ . ‘
The common feature of all such algorithms is to estimate the cardinality n of a
multiset using storage O{loggn) with a relative accuracy of the form:

o
vm

It might be of interest to determine whether appreciably better
storage /accuracy trade-offs can be achieved (or to prove that this is not possi-
ble from an information-theoretic standpoint},

For practical purposes, algorithm PCSA is quite satisfactory. It consumes .

only a few operations per element scanned (maybe 20 or 30 assembly language
instructions), has good accuracy described at length in the previous sections,
and may be used to gather statistics on files on the fly (therefore eliminating the
additional cost of disk accesses). On a VAX 11/780 running Berkeley Unix, a
non-optimised version in Pascal used for our tests is already typically twice

C et
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faster than the standard system sorting routine. A version of the a_lg_ori}:hm has
been implemented at I.B.M. San Jose in the context of the System R* Project.
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