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Qualitative properties of a nonlinear system

for laminar flames without ignition temperature
..-' %
Martine MARION

Abstract : We are interested in a system of two nonlinear differential equations

.o

-u" 4 ey = fe(u)v, - A" + cv' = -fg(u)v on R, with the boundary conditions
u(~®) = 0, y(-©) = 1, u(4) =1, v(+o) = 0, where the unknowns are the functions
u,v : R~->[0,1] and the scalar c. This system arises in the combustion of laminar
plane flames. f e 15(%5 with f >0 on ]O,1] and £ (O) = 0. Different qualitative
properties-of the model are studled here : ex1stence of solutions (we prove that
there is a continuum of solutions for c 2 ), asymptotic behaviour of these so-
lutions for an infinite activation energy, relatlonshlp with the model of ignition
temperature, and lastly convergence of the bounded interval approximation.

Etude mathématique d'un mod&le de flamme
laminaire sans température d'ignition : II - Cas du systéme

Martine MARION *

Résumé : On s'intéresse 3 un systéme de deux &quations différentielles non lingaires

-u" +cu'= fe(u)v, - W'+ ecv' =~ f (u)v sur IR, avec les conditions aux 1li-

mites : u(-®) = 0, y(-») = 1, u(+) 1, v(+w) = 0, ol les inconnues sont les deux

applications u,v : R > [0,1], et le scalaire c. Ces &quations intervienmnent dans
la combustion de flammes laminaires planes. fE est(%g avec f >0 sur 10,17 et
.f (0) = 0. Différentes propriétés qualitatives du mod&le sont étudiées dici : exls—

tence de solutions (on démontre qu'il existe un continuum de solutions pour ¢ > Cni ),
: n

comportement asymptotique ‘de ces solutions pour une énergie d' activation 1nf1n1e

lien avec le modé&le de 1la température d' 1gn1t10n, et enfin, convergence de 1' ap-

proximation sur un intervalle borné.

* ~ INRIA, Domaine de Voluceau, Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex.
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0. INTRODUCTION.

One of the simplest problems of combustion is the planar premixed flame,
that is the one-dimensional deflagration wave. In a case of a single-step reaction
involving one reactant, it reduces to the following system of two reaction—-diffusion
equations (see Buckmaster and Ludford [2], Williams [10]), where the unknowns are the

functions u,v : R »[0,1] and the scalarce R :

- u"+cu' = f(u)v,

- Av"+;v'= -f(uw)v,
©D ) u =0, ugr =1,

v(-») =1, v(+o) = 0.

u is the (reduced) temperature of the mixture, v is the (reduced) concentration of the
reactant and c¢ is an (unknown) massflux. The parameter A > 0 is the inverse of the Lewis
number. f is a renormalized reaction term depending on a parameter € > O which is the

inverse of the activation energy.

The exact term f arising from Arrhenius Law satisfies f > 0 on [0,1]; in
particular, since £(0) > 0, it is easily seen that (0.1) has no solution ; this is
the classical "cold boundary difficulty" well known to the chemists. Therefore, one
modifies the reaction term. A first approach is to introduce an ignition temperature

6 : one assumes that there exists some 8 ¢ 10,1[ such that

(0.2) £ = 0 on [0,6) and £ > 0 on (0,1].

Another way is to alter the reaction term so that f satisfies

(0.3) £ > 0 on J0,1] and £(0) = 0.

Our purpose here is the study of this latter model. The first model has
been considered in many works and more recently by Berestycki, Nicolaenko and Scheurer
(see [1],and the references given theiren). Under condition (O.Zj.with f Lipschitz
- continuous except possibly at 0, these authors proved, by a topological degree argument,
that (0.1) has a solution (whose uniqueness they conjectured) ; moreover, they derived

the asymptotic behaviour of this solution, as € -+ 0.

The second model was only studied rigorously in the caseA = 1l,which is very particular,

because it reduces to a scalar equation (indeed, one then has v = | - u). For this
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equation, Fife [4], Johnson [5], Uchiyama [9] showed that there exists a continuum
of solutions (for c > € 7 0). Their approach relies on a phase plane argument. In
[7], we derived the same result by a shooting method, and we obtained many further

qualitative properties ; in pasticular, we investigated the asymptotic behaviour of the

different golutlons, as €0, )

The present paper is a sequel of [7] and deals with the model with no igni-
tion temperature in the case of any Lewis number (that is any A > 0). Following our
study of the scalar case in [/] we consider the model from a triple point of view.

- Determination of‘the set of the solutions. ~ Asymptotic analysis of these solutions
for an infinite activation energy (this type of asymptotics is very much uéed in’
practice; see [2;10]). - Relationship with the model with ignition temperature. Further-
more, in view of numerical calculations., we investigate the approximation of Problem

(0.1) by an analogous one on a bounded 1nterval I = [~a,+ al .

For a technical reason (monotony lemma), we obtain much more detailed
answers in the case A < 1. The paper is divided into two parts : in Section I, we
consider the general case A >0 ; then, Section 2 is devoted to the case A< 1. More

precisely, the plan of the paper is as follows

0. Introduction.

1. General results.

1.1 The solutions of (0.1).

1.2 The role of the ignitidn temperature.

1.2.1 Construction of a solution of (O.IL

1.2.2 Asymptotic analysis.
1.3 The problem on a bounded interval.
3. Case of the Lewis number larger than 1.

2.1 Monotony lemma.

2.2 Applications.

2.2.]1 Determination of the set of solutions of (0.1).

2.2.2 Relationship with the model with ignition temperature.

2.3 Further remarks on the asymptotic analysis.



while the proofs for the scalar case ([7]) are elementary, the study of the
system asks for more elaborated techniques, namely, here, the topological degree

and the (local) theory of dynamical systems.

The principal open questions are the asymptotic analysis (essentially the determina-

tion of lim ¢ , see below) and the case A > 1.
O,
>0

Main results.

We assume that f satisfies

Sf is Lipschitz continuous on [0,1],

(0.4) :
(f>0 on J0,1] and £(0) =

The main existence results that we obtaln (Theorems 1.1 and 2.7) can be

summarized in the following :

Theorem 0.1 ¢ Unden conMcn (0.4)

(a) Let any X > 0 be given. There exist fwo constants 0 < c < ¢ such that ¥c < c
(0. 1) has no Aczu,tcon of Zthe foam (u,v,c) and ¥c 2 ¢ (0. 1) has a solution of the
gorm (u,v,c). Moreover, unden the additional condition that £ L5 of class % -1
An a nedghbourhood of 1, ¥e > 0, there exists at most a couple (u,v) lup Zo a

trhanslation of the ornigin) such that (u,v,c) 48 a solution of (0.1).

(b) Suppose that § is of cZaAA(@l in a neighbourhood of 1 and Lot 0< A< 1. Then
Lthere exists c,>0 such that (0.1)has a solution 0§ the form (u,v »e)Af and only L

c 2c .
e}

The methods that we employ here enable us to show a new uniqueness result relative

to the model with ignition temperature. Namely, we derive :

Theorem 0.2 : Suppose that condition(0.2) holds with § Lipschilz continuous on [o,11,
except possibly at 8, and of c@aM% An aneighbouthood  of 1. Forn any 0 < A < 1,
(0.1) has a unique solution (up to a 2ranslation of the ofidigin) .

Hence, as it is the case in the 'scalar equation, the existence results for the

two medels are quite ditferent.




Next, we -consider the relationship between the solutions of the two models. Let

t satisfy (0.4) and, for any 6 €10,1[, let us introduce the following problem :

-u" +cuy' = £(u) x [e’l](u)v,

Il

AVt 4 e v = —f(u) x (u)v,
(0.5) ‘ [6,1]

“Yfu(==°) =0, u(0) = z s u(+e) = 1,

v (—®) ls. v(+o) = 0,

where ¥ [6.1] denotes che characteristic function of [8,1] and z is some fixed real
s

€]JO,1[ (the condition u(0)=zO is a . normalization related to the translational inva—

riance). From [1], we know that, for any A > 0, (0.5) has a solﬁtion (ue,ve,ce) 3 in

the case A< 1, this solution is unique (Theorem 0.2 above). We will show here that

there exists a sequence (en) with lim en = 0 such that (ue Vg »Cq ) converges to
n n n
a solution of (0.1) ; moreover, in the case A< 1, the whole family (ue,ve,ce) con-

verges, as 0 -+ 0, and the limit is the solution (uo,vo,co) of (0.1) corresponding to

the lower c, Co’ defined at Theorem 0.1 (b).

Lastly, we consider the question of large activation energy asymptotics. We

4 assume that f = fE behaves like %:(x) = —%-exp (i-z:l)(see Section 1.2.2. for the
: ‘ > £ x
Precise conditions ; let us recall that € is the inverse of the activation energy).

» In general, we only determine the asymptotic behaviour as ¢ + 0 of the particular .
solution obtained above from the limiting model with ignition temperature. Indeed,

for any € > 0, let us denote by (u ,C ) this solution. We show that ¢

»V
0,€" 0,€” T0,c
is bounded independently of > 0 5 moreover, if (en) is a sequence with lim €= 0

and 1im c = c then (u
0,£ o’ ( 0,€

3 b

»V ) converges to the unique solution (u v ) of
0,€& : o’ o
. . n n
the following system :

( —-u" + ¢ u'=¢ ¢ ,
o o o 0 Tx=x
- av' o+ v o= -¢ .,
o o o 0 x=x
uo(‘@) = 0, uo(+w) =1,
A . =
vo(-w) =1, vo(+w) =0,



where xo is uniquely determined by the condition u (0) = z, - One of the main steps in

the proof of this result is to remark that the functlon ho,€= ué E( ) is differen-
tiable at 0 and hé’g(O) = 0, ,

In the case A < l, we obtain informations on the asymptotic behaviour of all the
déther solutions of (0.1) ; if ¢ is large enough, the corresponding solution of (0.1)
(defined for e<¢ ) or, at least,a subsequence converges as €>0 to a couple (u,v)
which does not satlsfy any more the boundary conditions at - . This illustrates quite
well the cold boundary difficulty. The absence of any ignition temperature leads to
infinitely many solutions. But, here, we show rigorously that, at the limite. = 0, only

one solution satisfies the correct boundary conditions.

<
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1 - GENERAL RESULTS

This section is devoted to the study of the laminar plane flame for any Lewis

number. Section 1.1 deals with existence results. In Section 1.2, we investigate the

- relationship between the considered model and the one with ignition temperature and

we deriwve the asymptotic behaviour for large activation energy of a particular so-
lution of (0.1). In Section 1.7 :w.c swady Lie problem analogous to (0.1) on a bounded
interval [-a,+a] and the convergence of solutions as a-+ +. Through out this section,

we assume condition (0.4) and we déenote :

(1.1) g = sup £ U s
x€10,1[ X
A = max 1 , 1
: A+[A-1] 14|21
(1.2)
A= min [ 22-1] 0 [e1]n

A A

1.1. The solutions of (0.1).

Our main results can be summarized in the following :

Theo)wm [ UVldQ/L condition (0.4.)

(i) ¥e #ZAJ‘ £(s) (1-s) ds , (0.1) has no so0lution of the foam (u,v,c).

(11) ¥z J0,1[, ¥e =2 YoM, (0.1) has got a solution (u,v,c)
satisfying u(0) =

(11) If we assume, in addition, that £ is of § class %1 i a neighbourhood 05 1,
thew, ¥c > 0, there emu at most one solution of the gorm (u,v,c) (up fo a
thanslation of the onigin).

The proof of this theorem will be given in three steps.

\



a) Prelimimary results ; proof of (i).

Let us extend f to R by setting;

f(x) =0 ¥x < 0, f(x) = £ (1) ¥x = 1.

The first lemma states a classical and very useful result ; let us assume

that, for some ¢ > 0, there exist Xgs X; €] =o+x]and two functions u,v e(%ZZ
([xo, xl[ » R) satisfying the following conditions :

(1.3) -u"+cu' = f(u)v and -XA v" + cv' = - £(u)v on [xo,xl[.

n
1}

u(xl) = lim u(x) 1, v(xl) = lim v(x) 0,

X > X X * X

1 1

(1.4) u'(x.) = lim u'(x) 20, v'(xl) = lim v'(x) £ 0 (one assumes that those
X > X X > X
1 1

limits exist).

(1.5) v =20 on ]xo, Xl[‘,

Lemma 1.2 : Under conditions(1.3), (1.4).and (1.5), we have ;

v

(i) u' 20and v' <0 o0n [xo, x, L.
(i1) Moreover, unden the additional assumption : .

(1.6) There exists xze [xo, x1] such that 49'(x2? + Cll(XZ) —X‘v'(xz) + cxz(xz) = c

w
e have, ¥x e[xo, xlj,

(1.7)3 lu ) + vE)-1] < [A-1]v(x)
lu (x) + v(x)-1] < |A-1](1-u(x))
A
lu ) +wx)-1] < |A-1]v(x)
(1-8) lu ) +w(x)-1] < |A-1] (1-u(x))




The proof, wich is easy, will be omitted (see for example Berestycki, Nicolaenko

and Scheurer [1]).

Corollary 1.3 : Under conditions (1.3), (1.4), (1.,5) and (1.6), we have

(1.9) ¥x efxo, xl] A(l-u(x)) < v(x) < A'"(1-u(x)).

Lemma 7.4 :SuppOAelu,v,c 5 a solution of (0.1). Then :

-C
c >0, 0 <u' <¢ — <v' <0

2 )\ >
u and v satisfy the inequalities (1.7), (1.8) and (1.9)

Proof : Let a < b and let us integrate the equation for u on [a,b] to obtain the
relation :
‘ b
“(1.10) -u'(b) +u'(a) + ¢ (w(b)-u(a)) = j- flu)v dx
' a

From (1.10), it is easily seen that :
A +00 A
lim u'(x) = 0 and c = jﬂ f(uv dx > 0

-0
X > + o

So we can apply lemﬁa 1.2 (and Corollary 1.3) to (u,v).

Therefore it remainsto show the .inequalities : 0 <u' < ¢ and - F Svos 0.
Suppose that ] x, € R with u'(xo) =O! If f(u(xo))v(xo) > 0,from the equation sa~
tisfied by u, we have u"(xo) < 0, which is impoésible (Lemma 1.2). On the other hand,
if f(u(xo)) v(xo) =. 0, then u(xo) = 0 or v(xo) = 0, hence u = 0 or v = 0 which is

again a contradiction. oo

Lastly e ¥ u'(x) = ’/- e €S f(u(s))v(s)ds < e—cx.[ f(u)v ds = e “F¢
pe . X

Thus we have proved that 0 < u' < ¢. In the same way, it can be shown that

<v' < 0. 0

>0

Leyma 1.5 : Suppose u, v, ¢ 45 a solution of (0.1). Then :

- 1
c > ﬁ/\f f(s)(1-s) ds
0
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Proof : Multiplying the equation for u successively iby u and u' and integrating

over [a,b] C R, we obtain :

b 2 2 b
(1.11)  -u(b) u'(b) + u(a)u'(a) +./~ u'%dx + g'(u (b) -u”(a)) ijﬁ f(u) v u dx
a

a
b b
1 2 1 2
(1.12) - E-u' (b) + E—u' (a) + ¢ .}f u'2 dx fjﬂ f(u)v u' dx
a a
We can let a > ~©and b -+ +oin (1.10), (1.1i} ana ;'i.u;.~

+ oo ' + ©
Since~/- f(u) v u dx <-/ﬂ f(u) v dx , (1.10) and (1.11) imply :

(o4 e}

Thus combining this last inequality with (1.2) and using the fact that ¢ > 0

(lemma 1.4), we deduce

+ 2
f f(u) v u' dx<'c7

o}

It is now easy to conclude the proof, as v2A(l-u) and u' > 0. D

(b) Proof of Theorem 1.1 (ii)

The first (and main) step will consist in proving the following Propbsi~

tion :

Proposition 1.6 : Vzo € 10,10 and ¥ ¢ > 0 , there exist u,v e(éz(IR,IR) such

that
—u" +cu' = flu) vand - Av" + c v =-f(u) v on R,

u(0)
(1.13)

]
]

z2gs () =1, v(s) = 0,

u' >0 and v' <0 on R,

u and v satisfy the relations (1.7), (1.8) and (1.9).
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We will then show that, if ¢ is large enough, the couple defined by Proposition

1.6, satisfies u(-x) = 0 and v(-2) =1 and hence is a solution of (0.1).
This will complete the proof of Theorem 1.1 (ii).

Let z ¢ 10,I[ "and ¢ 5 ‘0. The couple (u,v) of Proposition 1.6 will be obtained
as the limit as a > +® of the solutions of an auxiliary) problem posed on a bounded
interval [0,a]. More pret¢isely, ¥a > 0, let us consider the following problem :

To find u, v € (ﬁz ([0,a], R) and p =0 such that :
-u™cu' = f(u)v and -Av" +cv' = - f(u) v on [0,al,

u(0)=z0, u(a)=1, u'(0)=y,

AVTO) + e v(0) = ez )+ 1,  v(a) = 0.

Oar purpose is to show that, Wa > 0, (1.14) has got a solution (u Vol ) and that
(ua,va) converges, as a > + ©, to (u,v) satisfying the conclu31ons of Propositlon
1.6.

We solve (1.14) by using a topological degree argument. More precisely,

¥1e[0,1] let us denote by (1.15) the problem analogous to (1.14), where f is repla-

ced by Tf. Let E =G ([0,al, R) ¥G([0,a], R)xR. vt e[0,1], let K,

E > E be defined by :

R (v, ) = U u,v,W), V(u,v,u), B~ u (a)+ 1)

where (U,V) is the unique solution of. the following linear system :

-y cuU' = Tf(u)v, AV 4 e V' = - T (u)v , .
u(0) = z Uu'@) =
- AV'@©) + c V(@) = ¢ (1-20) + U, V(a) =

Then the solutions of (1.15) are precisely the fixed points of K in E. It is easily

seen that, ¥T , KT is a compact operator and that the application T - K is con~
tinuous. In the next two lemmae, we derive the a-priori estimates which w111 enable

us to use a topological degree argument.



-12-

Lemma 1.7 : Suppose us Vs W 8 a solution of (1.15). Then :

v =0 on [0,al, u' >0and v' <0 on [0,a],
a - a a

u and vaéaiiéﬁy-the.heﬁaiiﬂnA. 1.7), (1.8) and (1.9) on [0,a].

Proof : Let us argue by contradiction and suppose that min va(x) < 0.
[0,a]

Then either there exists xe[0,al] with va(x) < 0 and v'a(x) = 0, or ¥xe[0,al such

that va(x) < 0, one has v'a(x) > 0. In the first case, the maximum principle leads
to a contradiction. In the second case, we would have —)\v;(o) + CVa(O) < 0,which
is impossible since —)\v'a(0)+cva(0) = c(l—zo) oy Now, since v. > 0, one has

a
v' (a3< 0 (thus v' < 0 on [O,a]). Hence, from -u' + cu - Av' + cv = ¢ on
a a a a a a

[O,a], we can deduce u"a(a) > 0 (thus u'a> 0 on [O,a]). Lastly , according to

lemma 1.2 and Corollary 1.3, u v, satisfy the relations(1.7)-(1.9) on [O,a]. 0

Lenma 1.8 Vao > 0, there exists a constant k (=k(ao)) such that,

va 2 a , ¥1el0,11, one has ||u || < k and

* @ (0,1, R)

I < k , where (u_,v_,u) 48 any solution of (1.15).

vl
% ([0,a],R)

a

Proof : Let a » a > 0. From (1.12 ),we have :
2 2 X2
¥xeld,al u'“(x) =u'() + 2 ¢ f u'” ds- Zf( Tf(u ) v u' ds
a a a a’” 'aa
0 0

We can now deduce,using the lemma 1.7 (and (1.9)), that :

1
¥xe [0,a] u'i(x) > u'i(o) - 2 A'Tf f(s)(1-s) ds
VA
o
1
Thus, if u;(O) > 2A'Tj. f(s)(l-s) ds = c s we obtain
z

[¢)

1,_z° = ua(a)—ua(o) > a Vua'lz(o) - cfzao vuéz(O)— Ci
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' JZ- l—zo’ 2
L
that is : ua(O)s c +< " )

(e}

1-z 2
Therefore, in any case, we have u;(O)S \/22 +.<—__9>

. | 1 1-z 2 - :
hence : u;(o)s 20T .f. f(s)(l-s)ds + ( aoo> = a(ao)
, z :
o

Notice that a(ao) does not depend on T. Besides, from Lemma 1.7, we know that

z,su <1, 0<v_<A'(l-z) and u' >0 on [0,a]. Hence, since -u' + cu is an
o a a o a a a
increasing function, we obtain ¥xe[0,a] u;(x) < alay) + c(l—zo). It is now easy to con-

= l 1 - '
a =3 ( uaf c11a+ c v, c) on [0,a]. 0

clude the proof;,as v

We can now state an existence result for the problem (1.14)

Lemma 1.9 : va > 0, there exists a solution (ua,vé,ua)oﬁ the problem (1.14).
Moreovenr, Vao > 0, u, andva are bounded independently of a = a in C&ZZ([O,a],I{).

Proof : Let a 2 a > 0. According to the lemmael.7 and 1.8, we have : ¥te[0,1],

(0,0,0) ¢ (I-KT)(BQ), where

@ = (v ek | ol vl

L <2k(a), 0 <p<2k(a)}
G (0,a) g (0,a]) ° °

Thus the Leray~Schauder degree of (I_KT) with respect to 2 and 0 is well-defined
and further is independent of T €[0,1](see [8] for the definition and the main

propertiesof the Leray-Schauder degree).

It rehains to compute this degree (and to show that i; is different from O).‘In

order to do this, let us explicitly write down @oéI—KO

Cpé((U,V,U):(u‘UO(U), V_VO(U), u.(a) -1)

where Uo(u) is the function : x -~ %-(ecx—l) and Vo(u) the function : x - (1—z0+‘%-)

c i
(1- e A (x—a)). ¥t € [J,1], let us introduce the operator @t: E—-E:

2 (v, 1)) = (amu (), V=V (W), (1-0) (@(@)-1) + e( & (e%-1)+z )

It is easilyseen that the map : t +~®t is continuous and that, ¥te[0,1], (0,0,0)¢ ®£
(982) . Therefore (e, 2, 0) = d(@,, €, 0) =1, since the function : u'+-%»(eca—1)+zo

is increasing.
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Thus we proved d(I-K,, $,0) # O. It follows that there exists a solution(url,va,ua)

l 3
of the problem (1.14) and ua and v are bounded independently of a 2 aO in

% 210,21, R). 0 ‘

End of the proof of Proposition 1.6 : We claim that (ua,va) defined .: Lemma 1.9
converges as a > +®to (u,v) satisfying (1.13). Indeed let us extend u and v, to
R by setting ¥x 2 a ua(x)=1 and va(x)=0. Since, by Lemma 1.9, u_ and v are bounded

independently of a 2= a in Hioc(IR +), there exists a sequence (a ) with lim a =+
n n

X 1 +
-> -> 1 . .
such that u u and va‘ v in %10(:(]1{ )
n . ' n

We remark that (u,v) satisfy;

-u" + cu'= f(u)v, on IR+
-x'"+ cv' ==f(u)v,
and
' <! +
- u'+cu- Av'+cv=con R ,
u' ZOandzoSu <1 ,v' SOandOSvSA'(l—zo),
= > -
u(0) 2, v(0) =2 A (1 zo).
We can now see that £1=u(+°°) = 1 and 22=v(+°°) = 0. Indeed, integrating the equation

satisfied by u (resp v), we get that u'(+®)=1lim u'(x)(resp v'(+»)) exists and hence
, oo

is equal to 0. Then, the equation satisfied by u yields u"(+»)=0 and f(SLl) 52,2=0.

Therefore, as z < SLl < 1, we obtain 22=0, and thus 2,1=1, since —u'(+®)+cu (+») -

Av'(+9)+ cv (+0) = ¢,

(u,v) can be extended in a unique way to a maximal solution, denoted again by (u,v),

_of

~-u" +cu'= f(u)v,

“Avte v =-f (u)v.

We know that v > 0 on ]R+ and v(0) > 0. On the other hand, according to Lemma 1.2,
if v20on [xo,+°°['for some x ¢ R, then v' < 0 on [xo,+ o[, Therefore obviously
we have v(x) 2 0 W¥x. Then it is easily seen that u and v are defined on R and that

Lemma 1.2 and Corollary 1.3 can be applied to (u,v) on R.

Finally it can be proved easily that u' > 0 and v' < 0 on R. 0
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Notice that the couple (u,v) defined by Proposition 1.6 is solution of
(0.1) if and only if u(-®)=0 and v(-©)=1. In the next two remarks we derive very

simple conditions for a couple (u,v) satisfying (1.13) to be a solution of (0.1).

Remark 1.10 :Let (u,v) satisfy (1.13) . There are tWO'prossibilitiesv: either there
exists x < 0 with u(x)=0, or ¥x < 0 one has u(x) > 0. In the latter case it is
easily shown that (u,v) is a solution of (0.1) ; in this 51tuat10n,we set X =-c.
Thus in any casethere exists an unique x e [-»,0[ such that u(x)= 0 ; then one has
¥x elx, 4o u'(x). > O and u € ég ([x,+ w] [0,11). Moreover u '(x)=0 <« X = -0 &

(u,v) is solution of (0.1).
Remark 1.11 :To (u,v) satisfying (1.13)>we shall henceforth associate the unique
function h eC%Z([D,l])nC%Zl(]O,l[),defined by :

vl e))£(s)
h(s) ?

¥sc J0,1[ h(s)=u'(u—l(s)) and jﬁg'h(5)=c -

(1.16)
h(1)=0, h(0)=u'(x),

whefe X is defined in Remark 1.10. Thén h(0) = 0 < (u,v) is a solution of (0.1).

We are now ready to complete the proof of Theorem 1.1 (ii). Let z e J0,1[ be

fixed. For any ¢ > 0 let us consider the couple (u,v) defined by Prop081t10n 1.6
and the-function h associated to (u,v) by (1.16). We have :

1] ]
A'f(s) (1-5) > e - A'os

¥se 10,1 h'(s) = ¢ -
» h(s) h(s)

We claim that, if c¢2> 2 'V OA' ', one has.h(0)=0 (this will complete the proof ac-

cording to Remark 1.11). Indeed let ¢ 2 2 oA'. The linear function
' . - 1 Mo _
H(s) = c 2c 4 Ao s i1s such that ¥s ¢]0,1[ H'(s)=c- H(sf ." Thus, since
Ch(1) < H(1), it is easily shown that h < H on 10,1]. Hence h(0) < H(O) = 0. O

c) Proof of Theorem 1.1 (iii)

One has the following more general result :

Lemma 1.17 : We assume that the condition (0.4) helds. We suppose
furthesmore that £ s of c@ms% n a neighbourhood o4 1. Then gz 5]0 1,

¥c > 0, there exists one and only one couple (u,v) satisfying (1.13).
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Remark 1.13 : Proposition 1.6 dealt with the existence of such a couple (u,v). We
shall here check the:uniqueness under an additioqal hypothesis of regularity on f in

a neighboﬁrhood of 1.

Proof : To prove Lemma 1.12, we replace the system of two differential equations
of the second order considered up to now by a system of three differential equations
of the first order. Then we perform a local analysis about a singular point, which

will enable us to prove uniqueness.

More precisely, by assumption, there exist Se ]0,1[ and f:[0,1+6[+ R such that
f e le(]l—5,1+6[) and £ = f on [0,1]. Let us introduce the vector field F defined
on ]0,1+8[ xRxR by : ‘

(L17) Fllxy sy sx50)= (e =1+ 3, S, - % x3,-E(xl)x2)

Let (u,v) be a couple satisfying (1.13). Let us denote w = ~\v' +cv. One has

¥xeR w'(x) <0, and w(+©)= 0. Thus X = (u,v,w) is such that

dx _
ax - F(X) on R,
(1.18) X(+°) = (1,0,0),
X s, ¥x 2 xO , X(x?e 3(x1,x2,x3) le <1, X, > 0, Xq > O;.

Next consider the singular point (1,0,0); the derivative DF ((1,0,0)) of F at
(1,0,0) has two positivé eigenvalues and one negative eigenvalue. Thus the Stable
Manifold Theorem (see [37) yields the uniqueness (up to a translation of the ori-
gin) of a vector field X ec%gl(ﬂi, 3{3) for which (1.18) holds.

This implies that, if (ui,vi),i =1,2, satigfy (1.13), then there exists § ¢ R such
that ¥x ¢ R ul(x) = uz(x+6).and vl(x)= vz(x+6). It is now straightfcrward to con-

clude the broof, since, ¥i = 1,2, ui > 0 and ui(0)=zo. ‘ 0
The proof of Theorem 1.1 is now complete.

1.2 The role of the ignition temperature. -

In this section, we show that we can obtain a solution of (0.1) by passing to

the limit as v — 0 in the solutions of the model with ignition temperature. We then
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study'the asymptotic behaviour of this sclution, as the activation energzy goes to +%,

1.2.1 Construction of a solution of (0.1).

-Let us fix some 2 €10,1[ and, for any 6 « 10,10, let us consider the pro-

blem :
. qgl :
To find u, v €®@” (R,[0,1]) and ¢ 2 0 such that :
-u"+cu' = f(u)y (u)v, |
' [6,1]
(1.19) ¢ =X'"+cv' = -f(u)x )v,
(6,11

u(-oo):O’ U(O)=ZO, u(+°°)=1’

v(=)=1, v(+)=0,

where ¥ [6.1] denotes the characteristic function of [6,1].
s - :

From the study of the model with ignition temperature‘(see [1]), we know that,

¥0e10,1[, (1.19) has got a solution (ue, Vg » Cg ) ; moreover :

0<u,, v, <1, 0< <c., - %;-s vl <0on R,

1 ]
6 Vo Yp 9°

c2 > 2A_j” f(s)(14s)ds (wﬁere A is given Ey'(l.2)),
] 6 X

ug and Vg satisfy the relations (1.7), (1.8) and (1.9).
‘Yur main result is then the following :

Theorem 1.14 : Under condition (0.4), vz e 10,10, there exists a sequence
(e ) , With Lim e =0, Auch that the Aoku/aon (ue Vg ’Ce ) 0f (1.19) converges %o

n

a solution (827g1¢5) 0F (0.1 NGHRYBHR) x R.

Proof : According to the results that we recalled above , it suffices to prove that

%B'is bounded independently of 6e]0,1[, in order to obtain estimates of (ue,ve,ce)

independent of 6 580. This will be proved in the next lemma :
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Lemma 1.15 : 96 € JO,1[ cy < 2 \/A' sup. f(xi(l—x) .

x €]0,1[

Proof : ¥6e¢10,1[ , let us associate to (ue,ve,ce) the unique function heé%go
(09,10 G 1(L0,10 - {6}) defined by :

¥se10,10  hg(s) =up (uz'(9),  hy(1)=ng(0)=0,
(1.20)

: -1
¥se[6,1] .hé(s) = f(s)ve(u g (8))

[
0

he(S)

c

Since he(e) = cee and he(1)=0, there exists 615]0,1[ such that Vse[e,el[ h9(5)>7§-s
c

= _9

and he(el) = 3

the equation satisfied by he,that : hé (61) > cq

c
91. We remark that h'(el)s 7? . On the other hand we know, from

A f(el)(l_el) Combining these
.he (81) : 0

two inequalities, we conclude the proof.

Lemma 1.15 implies the existence of a.sequence (Gn) with lim'6n=0 such that

.ol 1
(uen,ven,cen) converges to (uo,vo,co) in ﬂgloc(ﬂi)fﬁgloc (R)x R.

It remains to show that (uo,vo,co) is a solution of (0.1).

¥ n,let us define Xa by u (Xn) = Sn. We claim that lim X = -, Indeed, sheculd

~

0

n

there exist a subsequence (xn ) with 1lim X = X>-%, then we would have necessarily :
k k :

" ]
~-u_ +c¢c u = f(u)v. on R
o o o ( o) 0 ’

u0(0)=zo, u = 0 sur J-o,x]

which is impossible, by the uniqueness in the initial value problem for 0.D.E..

Now, since lim X =-®, we see that :

-u" + ¢ qu
o o o

flu v
°o o on R
-f(uo)vo

]

- o+ ev!
o 0
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On the other hand, from the qualitative properties satisfied by (ue,ve,ce), we deduce :

~-u' +cu-Av' +¢cv=c on R,
o 0o o 00 o
0O<u <1, u' =20, 0<v <1, v'<0 onR,
0 o ) o
u (0)=z
| o o

]
'

This implies, as above, (see Proposition 1.6), that (u ,vo,c ) is a solution of (0.1).

Finally, it is stralghtforward to prove the convergence in (H{) (%gz(ﬂi)xﬂi O

N

Theorem 1.14 asserts that by truncating f by 0 on [0,6] and then by letting
6 - 0 in the model with ignition temperature, one can construct a solution of'(O.l) H
in other words, there exists a solution (uo,vo,cé) of (0.1) having the following

property (denoted by (P))

There ex1sts a sequence (0 ) with 1lim 6 =0 such that the solution

(®) (ue ,ve »Cq ) of (1.19) converges to (u SV sCy ) 1n%2(]R) %Z(R)X]R

Actually, one does not know whether there exists or not a unique solution of (0.1)
with the property (P). We will see in Section 2.2.2 below, that, at least in the

case A < 1, there is one and only one solution of (0.1) satisfying (P).

Anyway, in the remainder of this section, we will show a particular property of
the solutionsof (0. 1) satisfying (P), which will prove to be of crucial interest

in the asymptotic analysis (see Section 1.2.2 below).

Proposition 1.16 : Let condition (0.4) hold. We asswme fwithermone that

£ 48 of class G in a neighbownhood of 1 and that £ is differentiable at 0 with
£'(0) = 0. Let (ug VgaC,) be a solution of (0.1) satisfying the pnope/vtj (P). Then
the function h a/swua,ted to (u v se) by (1.16) is differentiable at 0 and
ho(O) =c-

Remark 1.17 : This proposition generalizes a previously known result for the scalar

case (A=1) (see,for example, Johnson [5],Marion[7],Uchiyamal9]).
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Proof of Proposition 1.16: Let (uo,vo,co) satisfy (P) ; let us denote e =c

6
By considering the equation satisfied by ho, it is easily seen that hé{O) n

exists and is equal either to c, or to 0.

Thus it remains to show that héf0)=co. We first remark that (P) implies that

¥seJ0,10 h (s) = lim hy (s) (vhere hy is defined by (1.20)).
n .

Next, let us associate to ch the unique couple (un,vn) satisfying (1.13) (see Lem-
ma 1.12) and let us introduce also the function hn'associated to (un,vn,cn) by (1.16).

Let X, be such that ug (xn)=6n. Then, according to the Stable Manifold Theorem, we
must have u =u, on [x, +®]. Thus h = h, on [0 ,1].
. n Gn “h n 6n n’ s

These two remarks imply, on one hand, that hn(en) = Cn en’ and, on the other

hand, that ¥se ]O0,1[ ho(s) = lim ﬂn(s). We can now easily show that hé(0)=co. Indeed,

since ﬂ (6 )=c_ 6 and h' < ¢ on ]0,1[, one has h _(0) > 0. As h (1)=0, there exists
n n n n n_ n cp n ~ o ,

Y with the property that hn(yn) =5 Y, and Vse[O,yn[ hn(s)> 7? s. We claim that

there area > 0 and n €N such that, ¥n > n_, one has Yo z o. Indeed, arguing by’

contradiction, there exists a subsequence of (y)_, again denoted (y ) _, with
£(y ) (1-y yn'n n’n
n n

1im yn=0. Since, ¥n, ﬁ;(yn) > ¢, - "= ——— , this yields 1lim hg(yn) 2 Cys which
» b (y )
- c ~ c
is impossible, since, ¥n, h'(y ) < -2, Now, ¥se]O,al, h (s)=1lim h (s) = —9‘5, and
n’n 2 o n 2
thus hé(o):co,The proof of Proposition 1.16 is thereby completei 0

1.2.2 Asymptotic analysis

In this section, .we assume that f depends on a paramcier-€ >0 and we
let £ = fE.The corresponding solution of (0.1) obtained in Theorem 1.14 (for some

fixed A>0) will be denoted by (u0 »V c E) and we shall investigate the asym—

,€ 0,8 0o,
ptotic behaviour of this solution as €+ 0. The following conditions will be assumed

on the family of functions fE :

(1.21) For each €>0, f€ satisfies condition (0.4),

For each £>0, f€ is of class Q%? in a neighbourhood of 1 and fE is differen-

(1.22
o ) tiable at 0 with fé (0)=0,




¢
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16 , 0 < 6 < 1 such that lim 16 =1 and
€
N0

£ (X)(l—X)}

(1.23)

sup

x€ 10,0 ] x =0,

(1.24) 1im Jﬂ f (s)(l s)ds = m > 0, m < +o,

Remark 1.18 : The typlcal function £ e prov1ded by the Arrhenius law, is

1

f (x) = — exp (—- ———0 Recall that ¢ represents the inverse of the activation

2
€
energy.

‘Our main result is the following :

Theornem 1.19 Under conditions (1.21), (1.22), (1.23), (1;24)‘and with the above

notations : _
(i)  lim ¢ > NZEn and Tim ¢ _sqof20m.
E')-O 0,€ _ >0 o,¢€

(ii)  Let (en)n be a sequence with the property that Lim € =0 and . e

b

converges

to some c, Then (uo e Vo e ) convenges to (uo,vo) An QZ7 (R)x (%5 (R) whenre

’"n >“n

(uo,vo) A4 dniqueﬁg determined by :

-u" +¢c u'=¢ § R
o o o o x =x
o
-xw" +ec v=-c § _ .
o X=X
o
uO(_OO) = O: : uo(+°°) = 1,

and X AA dn&quéﬁg determined by the condition uo(O) =

Remark 1.20 : A considerable part of the literature on combustion is devo

formal asymptotic limits for infinite activation energy (see, for example,

and Ludford [2] or Williams [1d)). Theorem 1.19 proves that the solution

ted to

Buckmaster
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(u0 Vo €,co E) has got the expected asymptotic behaviour. This result is analo~
b b b
gous to the one obtained by Berestycki, Nicolaenko and Scheurer [ 1 ] for the model

with ignition temperature.
The asymptotic analysis of the other solutions of (0.1) is an open question. A

partial answer will be given, in Section 2.3 below,in the case A <1.

Remark 1.21 : Based on the formal asymptotic calculations, we conjecture that

-4
SR i

Remark 1.22 : The assumptions of Theorem 1.19 could probably be weakened.

Proof of Theorem 1.19 : First, recall that, from Lemma 1.5, we know that
1
Ve > 0 c > 2A.[ £ _(s)(l-s) ds, which implies
0,€ 0 €
lim ¢ ZVZAm.
g0 O°F :

¥e > 0, let us deno;e by ho,e the‘functlon associated to (uo,e’vo,e’co,s) by (1.16).

In the next lemma, we investigate the asymptotic limit of ho g» @8 €>0, and we

b
prove the second part of (i).

Lemma 1.23 : vse[0,1[ lim (h E(s)—c0 Es) =0,

e*0 O ? v
lim ¢ ES 2A'm .
e ©
£ (1-x)
Proof : ¥e>0, let us set o(e) = sup ——— . h satisfies :
— X 0,€
xe]O,@EJ
Af _(s)(1-s)
ANMao(e)s
¥se]0,6 ' > - —— T s - A 0Lle)s
sel EJ ho,e(s) 2 Co,e . ho E(s) = Co,e ho €(s)

Since, from Proposition 1.16, one has hé e (O)=c0 it is easily seen as above (see
b

8,
b4
the last part of the proof of Theorem 1.1 (ii)) that

1 / 2 '
Vse[O,GEJ ho,e(s) > 7 (Co,a + Jco’g- 4A O'(E))S

A\




23

Therefore, we have :

. . , 1 ‘J 2
Vv - ={_ - ;
se[O?e 1, O > h , (s)-c ) s = 5 < c ’ + c , 4A'O(€)>s

Thus, since we have lim ¢ >0 and 1lim 0(€)=0, we obtain on one hand that 1lin
>0 ’ >0 £+0

(ho’e(ee)- Co,e 68) = 0 and on the other hand that ¥se¢[0,1[ &1;_1:8 (ho’e(s)—co’es)=o.

It remains to show that lim ¢ < V 2A'm. ¥e > 0 let X be defined by u E:(x€)=6€.
. ’ :

e>g O
Since u (x ) (88), we deduce from above that lim <, lim u'! ). Now,
0,€ . 0,t o,¢t
e . 1
writing (1.12) with a = X and b = +%, ye derive : U (x ) J f (s)(l -s)ds

Therefore one has : lim ué,é(xe) < VZ/\'m. The proof of the lemma is thereby

complete. 0 : 0

We are now ready to complete the proof of Theorem 1.19. Let (En)n be a se-

quence with the property that C, ¢ converges to some c, We shall denote by

’“n

u =u , V. = v , £ =f and x = x (we recall that u x_ ) =6 ).
n o,€ n 0,€ n € n € 0,E € €
n n n n n n n

We claim that there exist nOEIN and yeRR such that ¥n2n one has x < y. Indeed

: 1
by setting a =0 and b= x in (1.12), we obtain : Vxe[O,xn] Eur'lz(x) 2

3]
é—u' 2(0) - A'J’ € £ (s) (1-s)ds. According to Lemma 1.23, 1lim u'(0) = ¢ 2z . Since
n , n n o o
o ‘

5]
£
lim j n fn(s)(l—s)ds = 0, we see that there exist n > 0 and n e W such that
z
o

¥n>n , sz[O,Xn], one has u'n(x)z n . This proves our claim, since ¥n 2 n_
o) v

- - 0) > .
1 zo_ 2 un(xn) un( ) 2n X

We can now see that u - 1 1n% (Ly,+=[) . Moreover,from (1.9),we obtain v + 0 in
( (Ly>+D).

Next, for any ke N¥*, let us consider the interval [—k,»y]. Then, from Lemma 1.4,

we know that u_and v_ are bounded in Hl([—k,y]) independent of n 20, . Hence there

exists a subsequence denoted by (HQ)SZ, , such that u, » v, converge Aweakly in
‘ L L
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Hl([-k,y]) and strongly in‘%%o([—k,y]) to u sV, and, moreover, X > X . We remark
that uo=1 and vo=0 on [xo,y] (hence X, > 0 since u0(0)=zo). Besid%s, from (1.23),
we know that u, and vy are bounded in Hz([—k,xo—ﬁj) independent of 2,221. Thus
2 2
we can derive -u”" + ¢ u' =0and - \Zv" + ¢ v' = 0 on [-k,x [. Lastly we know from
) 0o o ) oo )

Lemma 1.23 that ué (0) = 1im u;(O) = .2, and we remark that

—ué(0)+cou0(0) —Avé(O) + covO(O).= lim(—uég (0) + cnzunz(O)-Avél(O)+ cngvng(o))=co

Hence, finally,‘(uo,vo) satisfies :

-u' +cu =0 and -AW'+c v =c¢ on [- kyx [,
o o o o o o 70

u =1landv =0 on [x,y].
) o )

. (‘;‘ 0 ¥ _ _i_ .
Since uoeﬁ; ([-n,y]), we see that X, c. Log z, and so X and (uo;vo) are in
) considered.
. 1)

* 2
Thus, we have shown that VkeIN, v +‘u0 and v v in %5 O([—k,+m[) where U sV,

dependent of the subsequence (n

are uniquely determined by
-u' + cu =0and -\v' + ¢v =c¢ on J—o,x [,
oo 0 00 o o

u =1andv =0 on [x +of
o ) o)

and X, is uniquely determined by the condition uO(O) =z

It is straightforward to show the convergence in(zgo(ﬂi) ; this concludes the proof
of Theorem 1.19. 0

1.3 The problem on a bounded interval.

From ‘tne viewpoint of the numerical approximation, it is desirable to
study the analogous problem to (0.1) on a bounded interval and the way a solution
of the latter converges to a solution of (0.1). For a > 0, we let Ia = [~-a,+a] and

we consider the problem :




-
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' ¥1e[0,11, where Q= { (u,v, c)eXlHuH
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To find u,vecﬁgz(la,ﬂi) and ¢ 2 0 satisfying :

-u'"+cu' = f(u)v and -Av'"+cv' = -f(u)v on I ,
(1.25) ' a
~u'(-a) + cu(-a) = 0, u(0)=zo, u(a)=1,

-Av'(~-a) + cv(-a)=c, v(a)=0,

for some fixed z €10,1L.

The purpose of this section is to show, under condition (0 4), the

follow1ng

Theorem 1.24 : Fon anj a > 0, (1.25) has (at Least) a AoZu,twn (u aVarCy ). Mo&eovm,
Zhere emu a sequence (a_ ) with 1lim a = + @ with the property that

(u, »v, se, ) converges 2o a solution (u,v,e) of 0.1y in G 2(®)x % (R)xR ;
n n n

where u (resp v, ) is extended by u, (x) = ¥x 2 a_ and u, (x) = u, (-a )
n % %n n n

< - = > = - < - .
¥x < a (resp van(x) 0 Vx._an and van(x) van( an) ¥x an))

Proof : Berestycki, Nicolaenko and Scheurer [ 1] considered Problem (1.25)in the

case of an ignition temperature and their work, which relies on a topological degree
argument, can be partly applied here.

Let X =C61(Ia,IR) x% (Ia,IR)x R. For any 1e[0,1], 1let LT : X > X

be defined by L ((u,v c)) = (U v c—u(0)+z ), where (U,V) is the unique solution
of the follow1ng linear system : '

~U'tcy' = Tf(u)v and -AV"+4cy' = ~-Tf(u)v on Ia’

-u'(-a) + cU(-a)=0, U(a)=1,

~AV' (-a)+cV(-a)=c, V(a)=0.

If there ex1stsomec >0 and R > O with the property that (0,0,0) ¢ (I-L ) (BQ)
vl <R, 0<c <cl, then (1.25)

-1
Cay gy

has a solution (see [1D).



26—

In the next two lemmae, we derive the a priori estimates which enable to construct

such an open set  , and next to pass to the limit as a =+ + «,

Lemma 1.25 : lok& (ua,va,ca) be a sclution of (1.25). Then
C

¢ >0, u >0om1I, 0<u' =<c and——asV'<OonI,
a a a a A a a

a
u_ and v, Aaiiéﬁy'the nelations (1.7), (1.8) and (1.9) on Ia.

Proof : See previous lemmae or Berestycki, Nicolaenko and Scheurer [1].

Lemma 1.26 : For any a> 0, Zet‘(ua,va,ca) be a solution of (1.25).

Then :

‘/ 1
(1) c>Yan f £(s) (1-s)ds.
Z

o

(ii) Llet a 2 a_> 0. Then c € sup (2 You', al Log -él— ), where o £s defined by (1.1).
o o

Proof : The proof of (i) is similar to¢ Lemma 1.5 and is omitted. Let us check (ii).

S s ' > 1
Let a 2 a > 0. Then either e, < 2\/0 , orc 2 2‘\/0/\ .

Suppose the latter case occurs. Let hae%l([ua(—a),lj) be defined by

-l | ' Algs
hy(3) = uj(w (9)). Then, ¥oe Lu (-a), 13, Bi(s) = e, - 1y -

. — _1_ 2 ‘ . —
Now, if we set r,. =3 (c, + Vca—l»m\ ), the function va(s) rs
s

a
P _. _ ol : - < - i
satisfies de va(s) e (s)" Thus, since va(ua( a)) ha (ua( a)), we obtain

- i - ' Mh o . :
v, < ha on [qa( a),1], that is ¥x¢[-a,+a] ua(x)>raua(x). Therefore, since u, > 0

u (@) 2 1
on I , one has : Log > Ta>TYTa . This yields ¢ < — Log — .
a ua(O) a ao , a~ a z
Thus, in any case, we have : c < sup (2 VO/\', ai Log —1*). a
z

o} [e)

It is straightforward to deduce from these two lemmae the existence of a
solution (Ua,Va,Ca) of (1.25), for any a > 0. Moreover since we oblain.? & priori
estimates independent of a = ags it is possible to pass ’t4o the limit for
(Ua,Vn,Cn) as a > +® (at least for a sequence) and the ohtain~d Timir i, g solution

of (0.1). The proof of Theorem 1.24 is thereby complete. O
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Remark 1.27 : (1.25) is the analogous problem to (0.1) on a bounded interval bu;

it béhéves quite differently. Indeed if (u,v,c) is a solution of (1.25), thenc

is boqnded. In the scalar case (A=l) there is one and only one solution to the pro-
blem (1.25) (seel[7]). But, on the contrary, the problem (0.1) has a solution of the
form (u,v,c) for anyllarge énough c. This difference of behaviour does not occur

when dealing with the model with ignition temperature (see [1]).



-28-

2. CASE OF THE LEWIS NUMBER LARGER THAN 1.

In this section, we assume that )} (which represents'the inverse of the
Lewis number) satisfies
(2.1) 0<A< 1,
and that f satisfies hypothesis (0.4) and

(2.2) f is of class %zl in a neighbourhood of 1.

Under these assumptions, we complete in Section 2.2, results of Section 1,
namely the study of the solutions of (0.1) and the commrison with the model with
ignition temperature. This is possible thanks to a monotony lemma that we first
prove in Section Z.1. Lastly, in Section 2.3, we investigate the high activation

energy limits.

2.1 Monotony lemma.

This lemma is an additional result to those of Section l1.l1. Let some
206]0,1[be fixed. In Section 1.1, we associated to any ¢ > 0 a triplet (uc,vc,hc) in

the following manner :
. (uc,vc) is the unique couple satisfying (1.13) (see lemma 1.12),
. hc is then defined by (1.16).

In the sequel, a key-role will be played by the following proposition :

Proposition 2.1 (Monotony Zemma) : Undern conditions (0.4), (2.1), (2.2)and

0 < ¢ < €y, One has hcz(s) < hcl(s) ¥se]0,1[.

Remark 2.2 : Propoéition 2.1 extends a result previously known in the scalar case

(see Johnson[5], Marion [7]).

Conollany 2.3 : Under conditions (0.4), (2.1), (2.2)and 0 < ¢, < c. one has

1 2°
u (x) >u_ (x) ¥x-<O0Oandu (x)< u (x)  ¥x > 0.
c, c; <, c A

Proof of Proposition 2.1 : We remark that, since A < 1, one has, from (1L.2),A =1

1
and A'= < . Thus (1.9) yields ¥%c > 0 uc+vc— 1 >0 on R (it is straightforward to

>

verily the strict inequality).

Py

"
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For any ¢ > 0, let us define 1C %Z([o,1])n‘%§1(]o,1[) by :

¥se10,10  1.(s) = (ut v -D) @' (s)) = s +v_(N(e)- 1,

. -1, ...
lc(l)=0, 1c(0) = v, (uC (0))-1.

Hence,(hc,lc) satisfies the differential system :

' f(s)1 (s)
d _ f(s) (1-s) _ c
EE'hc(S) ST T (s) h (s) °

c c
¥se10,1[,
1 (s)

d _ 1l . c "¢
Eg-lc(s) =1- A * A hc(s)

Lemma 2.4 : Forn any c > 0, h, and 1 are dig ferentiable at 1. Moreoven:

2
1 , ¢ c 4f (1)
5%'\/;* Ao

[o

£(1)

(2.3) hé(l)

]

' L '
(2.4) L = -5 a+ he (1))

Proof : Let us denote by usu , VeV, h=hC and l=lc. If we suppose that h and 1 are

differentiable at 1, then we dduce easily from the differential system for (h,1)
that h'(l) and 1'(1) are given by (2.4) and (2.5). '

Thus the main point is to prove the differentiability of h and 1 at 1.

To prove the differentiability of h, we consider the dynamlcal system that we in-
troduced in Lemma 1.12 and we again apply the Stable Manlfold Thecrem. Indeed,
recall that, if we denote by w=-Av'+ cv, then X =(u,v,w) satisfies (1.18), where
the vector field F is defined by (1.17). We saw that the derivative DF((1,0 O)) of
F at (1,0,0) has two > 0 eigenvalues and one < 0 eigenvalue. Moreover, the elgen—
space E associated to the < 0 eigenvalue'is spanned by the vector
2X ) . 2 : Y

B \/c2+4xf<1>‘- 2hctc e+ ‘/c2+4xf(1)' a )

The gtable Manifold Theorem asserté<that the tangent space-at (1,0,0) of the local

i

(al,az,a3) = (
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a
- . ow(x) 3. _
stable manifold is E . Hence, one has lim SOl ;I.’ since u'=c(u-1)+w,
this .leads to lim u'(x) _ 23 + c. Thus h is differentiable at 1 and moreover

x> += u(x)-1 a,

(2.3) is shcwed.

It remains to prove the differentiability of 1.t 1. Let us argue by contradiction

1 : . © e
and let m s]lim %é?% , lim ;é%l[ . Then, from the equation satisfied by 1, one
s>l : s>1 .

deduces m= (1 —-%)31 - 7§37i3%~1’ which is impossible. Hence 1 is differentiable ét

1 and one sees easily that 1'(l) is equal to the above expression for m ; combining

this expression and (2.3), one obtains (2.4). B

End of the proof of Proposition 2.1 : Let 0 < ¢.< c

: . 5 and, ¥i= 1,2, let usbdenofeby
[y .
h.=h znd 1.=1
i e, i e,
i i ~
From Lemma 2.4, we know that hi(l) < hé(l) and li(l) < 15(1)- Thus, since h> 0 and

i
li>“0 on J0,I[, there exists some s, € 30,1[ with the property that

2.5) a
(2.5) hl> h2 nd ll> 12 on ]so,l[.

Let us argue by contradictionand prove that (2.5) yields h, > h2 and 11> l2 on JO,1([.

Indeed,if not, there exists some ¢:]0,10 such that h. > h2 and ll> 12 on Ja,1[, and,

bl(a)= hz(a), or ll(a) = lz(a). In the first case, taking the difference of the

equations for hl and h2, one has :

hé(a)— hi(a) = Cymey - %ﬁ%%j‘ (lz(a) - 1l(a)) >0

which is impossible. In the same way, in the latter case, we obtain a contradiction

since : .
- 1 2 !
()~ L (a)- = % £ -
2 1 A h@@ R @) %
This completes the proof of Proposition 2.1. O

-

Remark 2.5 : The assumption A < 1 is crucial for this last argument. Notice that,

if A > 1, then | < 0.
4

»




b

-31-

Remark 2.6 :'This type of monotony results has been known since the formal works
of Kanel'[6], but it is the first time, as far as we know, that a rigorous proof

is given. v

2.2 Applications

2.2.1 - Determination of the set of soluticdmsof (0.1)

The following result refines that of Theorem 1.1

Thgonem 2.7 : Unden cond&t&bné (0.4), (2.1) and (2.2)
(1) There exists some c >0 such that (0.1) has a solution (w,v,c) if and only
L c 2 c,.

(L) For any c ZCO; there exists an uhique couple (u,v) (up fo a translation of

- Zthe onigin) such that (u,v,c) 48 solution of (0.1).

(LLL) Moreoven,

s v
‘/ \ lsup | £(x)(1-x)
| 2 jg f(s)(l—s)ds < <, < 2 ‘/; %10, 11 - .

Proof : Let us set (fg = {c;(0.1) has a solution (u,v,c)}. From Theorem 1.1,we

know that there exist 0 <o <8 such that [B +<»[cggﬁnd Vxecagone has x 2 a. We
deduce from Corollary 2.3 (see Remark 1.10) that %g is an interval. Hence there

exists some c, > 0 such that Q6?=(co,+4°[and it is easily seen that coe(ﬁg by passing

to the limit as ¢ -~ c,» ¢ >co, for the solutions of (0.1) ; this concludes the

proof of (i). (ii) and (iii) are consequences of Theorem 1:1. . o

Remark 2.8 : Theorem 2.7 generalizes a result previously known in the scalar case

(see Fife [4], Johnson [5], Marion [7], Uchiyama [9]).

2.2.2 Relationship with the model with ignition temperature.

Before investigating this relationship, let us consider the model with igni-
tion temperature. Under condition (0.2)., Berestycki, Nicolaenko and Scheurer proved,
for any A > 0, the existence of a solution of (0.1). Thanks to the monotony lemma,
we shall derive here the uniqueness of such a solution in the case X < 1. More

precisely, the.following theorem holds :
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Theonem 2.9 : We assume that condition (0.2) holds with § Lipschitz continuous on
[6,1] and o4 class %1 in a nedighbouwrthood of 1. Then, 4§ 0 <A< 1, there exists one
and only one solution of (0.1) (up to a transfation of Zthe origin).

Proof : Té prove the uniqueness, we argue by contradiction. Let (ul,vl,cl) and
(u2,v2,c2) be two different solutions of (0.1), with ¥i=1,2 ui(0)= 6. Then ac-
cording to the Stable Manifold Theorem (see the proof of Lemma 1.12), if c.=c

. l 2 3
we would have uy; =y, and vy =V, Thus we have necessarily <y # Cye
Suppose ¢y <. ¢y Yl = 1,2, let us.associate hi to (ui,vi,ci)by (1.20). Then the
arguments of the proof of Proposition 2.1 show that h2< hl on [8,1[. In particu-
lar hz(a) < hl(e), which is impossible since hi(e) = cie. O

Remark 2.10 : Theorem 2.7 and Theorem 2.9 emphasize the great difference in the

behaviour of the solutions of thle two models. Nevertheless the solutions of these two

models can be élosely connected. It is the purpose of the next theorem.

¥6e12,1[, let us denote by (ue,ve,ce) the unique solution of (1.19). The fol-

lowing theorem improves Theorem 1l.l4

Theorem 2.11 : Unden conditions (0.4), (2.1) and (2.2)
(£) The gunction : 0,10 ~ R* * . 48 strictly Ancreasing -
6 > cq . . '
(<L) (ue,ve,ce) converges o (uo,vo,co) LHC%EZ(I{)Q%gz(E()x R, as 6 >~ 0, whexe c,

L5 degined at Thecrem 2.6 (i) add (u v sc,) 48 the unique cornresponding solution of
(0.1) with u (0) = z .

0 o
Proof : The monotony lemma enables us to prove this theorem by arguments similar tc those

of the scalar case ; the proof is omitted (see [5,7] and the a-priori estimates are

‘obtained in Theorem 1.14). g
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2.3 Further remarks on the asymptotic analysis.

We assume that f depends on a parameter € > 0 (f = fe) and that the family
(fg-‘)E satisfies conditions (1.21), (1.22), (1.23) and (1.24). Let some zoe]O,l[ be

fixed. For any € >0, the problem :

-u" + cu' = fe(u)v

(2.6) A" 4+ cv' = -fe(u)v

u(-*) =0, u(0) = z s u(+0) =1,
v(-) =1, v(+) = 0.
has got infinitely many solutions (for ¢ 2 <, €>’0). Moreover, ¥c 2> co e the
R 3 b

corresponding solution of (2.6) is unique. In this section, we are concerned with

the asymptotic behaviour of these solutions, 'as € > 0.

First, let us deal with the sclution corresponding to I that we denote

3
b u 3V c
y ( 0,e’ o,€’ o,e)

Proposition 2.17 : Under conditdions (1.21), (1.22), (1.23) and (1.24) :

N T / . . - f
(i) lim co,E <42A'm, and lim c g 2 2Am.

>0 >0 Y

(ii) let (gn) be a sequence such that lim e =0 and lim c°’€n = ¢, +Then (uo e V%o
>n

' o . v <
convernges Zo (uo,vo) in %O(R) x T,éo(]R), as n>+o - where (uo,vo) 48 uniquely
deterunined by :

-u" +cu'=¢86 ,
o o0
X=X
'+ ecv! =-c¢c d s
o o ©° o
X=X
o
u ("oo) = 0, u (+oo) = 1:
o o
v (..oo) = 1’ v (+00) = 0,
o 0

and X, 45 determined by the condition u (0) =z _.

)
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Proof : It is a straighforward consequence of Theorem 2.11 and Theorem 1.19. [J b

‘Now, since lim c <42A'm, for any ¢ S*VZA'm, we can introduce the solution
: e*0 7’
E,c) of (2.6) (defined fores so) and we can investigate the asymptotic

(u

Y
c,e’ ¢,

behaviour of (uC Ve E) as €> 0. The following theorem deals with a particular case
. b] '

» €

where the limit of (uC ’v~'€)’ as €+ 0, is éntirely determined ; in the general case,
e

€
b
we obtain results only for sequences (see Remark 2.15 below).

Theorem 2.13 : Unden conditions (1.21), (1.22), (1.23)and (1.24), Let some c>N2A'm
be fixed and Let us denovte by (uC e Ve ) the conresponding solution o4 (2.6) .

(defined for e<e ). Then, under the additional condition z e ]O, S:EZEEEL[ ,

[od

(4, oV, o) converges o (u,v) in %8OC(IR)}<<6(1)OC(IR), as € » 0, where u (resp v)

c,€’ ¢
45 the function : x ~» z (resp : x> 1 - zo).

Proof : ¥ e€<eg , one has u' (z ) =h (z.) where h is the function associated to
—_— o c,e€ 0 c,e' 0 c

3 '€

(uC E,vc e,c) by (1.16). Theorem 2.13 is then an easy consequence of the next lemma :
b b

Lemma .14 : Under conditions (1.21), (1.22), (1.23) and (1.24) , one has

(i) ¥s€]0,1[ lim h _(s) = sup (0,cs-c + 4/2Am), 4
e0 o —

(ii) ¥selO,1[ lim h (s) < sup (0,cs-c +42A'm).
€0 C,€E . : "

Proof of Lemma 2.14 : Let any se]0,1[ be fixed. VE(SEA), let us denote by (ue,ve,c)

the solution of (2.6) with uE(O) = s(ué differs from ul ¢ by a translation of the

X-axis). Let us write (1.10), (1.11) and (1.12) (for (ue,ve,c) andAfe) with a = 0

and b = + ©; by an argument similar to the one of lemma 1.5, we obtain :




=
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Lt (o) 2+ ell-s) 6! (0) + S )Z'Aflf (1-vdt > 0
5 ) c(l-s) ug r5 (=97 . E:("f:) l-T)dT 2=

) 1
which yields ué(O) 2 - c(l-s) + VZ!\J fE(T) (1-1)dT .
, _ s

It is now straightforward to complete the proof of (i), since hc E:(s.')= ué(O).

€ associated to (u v )

0, 0,e’%,¢
bl 2 b ]

From Lemma 1.23, we know that the application b,
by (1.16) satisfies

Vse[O?IC lim (h, (s)~ c'v s) = 0.

e+0 é?e ©,€
In particular, lim h (s) < 1lim ¢ s < ‘vzl\.'m s.
: ' ex0  2°F ex0  ©°F
From the monotony lemma, we deduce h < h on ]O,1[.
c,€ 0,€ '

Combining these inequalities, we obtain

(2.7) ¥sel0,1[ 1lim IENOE ‘/2/\'m s.

€0
(ii) can then be deduced from- (2.7) by an argument similar to the one of the scalar

case [7]. . O

End of the proof of Theorem 2.13 : 1In the case z € ]O, g_CZ@:I’ Lemma 2.14

. ields ‘lim u'
y e+0 Cc,E

(0) = 0, and the proof is now easily completed. O

. 4 ' ’ |
Remark 2.15 : 1In the case zo¢ ]O, E—@] » we knowifrom lemma 2.15 that, for

[of

_ . . - { v) = 1im (u v
any sequence (en) with 1lim €. 0 such that there exists (u,v) ( c,e Ve ),

there are two possibilities for (u,v)

o if 1lim ué e (0) = 0, (u,v) is the couple defined at Theorem 2.13,
>“n

. if lim u' (0) = 6§>0, (u,v) is uniquely determined by :
e

-u' +cu=-8+c éo on J—,x[,

- W' + cv =.c(1—zo) + & on J-o %[,

1 and v = 0 on .[x +o[,

mn

(o

and x is uniquely determined by the conditrion u(0} = z-
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Moreover, one has
sup (0,c z- ¢ +v2/\m) <8< sup(0,c z - ¢+ 2A"m)

In any case, one has u(—°) # 0 and v(-®) # 1 the boundary conditions at -

are no more satisfied ; this result generalizes the one obtained in the scalar case

(we proved in [7] that the asymptotic behaviour of the solutions which do not cor-

respond to. the minimal c¢ is not physical : at the limite= 0, one does not find any

"fresh gas" as one goes towards — «).




il

l‘

L1

- [2]

£31]
£4]
[5]
[6]

£71

£8]
L9l

{10]

_37-

REFERENCES

BERESTYCKI, H., NICOLAENKO, B. and SCHEURER, B., "Traveling wave solutions to

combustion models and their singular limits'", to appear.

BUCKMASTER, J., and LUDFORD, G.S.S., "The laminar flame theory", Cambridge Uni-
versity Press, (1982).

'CHILLINGWORTH, D.R.J., "Differential topology with a view to applications",

Pitman, London, (1976).

FIFE, P.C., "Mathematical aspects of reacting and diffusing systems", Lecture

Notes in Biomathematics 28, Springer Verlag, (1979).

JOHNSON, W.E., "On a first order boundary value problem from laminar flame theory",
Arch. Rat. Mech. Anal., 13, 1963, 46-54. '

KANEL', YA. I., "On steady state solutions to systems of equations arising in
combustion theory", Dokl. Akad. Nauk. U.S.S.R., 149 , No. 2, 367-369 (1963).

MARION, M., "Etude mathématique d'un mod&le de flamme laminaire sans température
d'ignition : I - Cas scalaire, "Annales de la Faculté des Sciences de Toulouse,

to appear.

RABINOWITZ, P., "Theorie du degré topologique et applications 3 des problémes

aux limites non linéaires", Lecture Notes 75010, University of Paris, (1975).

UCHIYAMA, K., "The behaviour of some non linear diffusion equatiohs for large

time", J. Math. Kyoto Univ., 18, (1978), 453-508.

WILLIAMS, F., "Combustion theory'", Addison-Wesley (1963).

Imprimé en France

pat
I'Institut National de Recherche en Informatique et en Automatique



y

»

~



