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Résumé

Le modeéle étudié se compose de deux files d'attente et un
seul serveur. Les clients d'une méme file sont servis sans inter-

s

ruption, et dans 1l'ordre de leur arrivée, jusqu'ad ce qu'elle soit
vide. Le serveur traite ensuite suivant le méme mode les clients
de 1'autre file. La commutation de 1'unité de service d'une file
a 1'autre est supposée instantanée. Suivant une approche par pro-
cessus régénératifs, NEUTS et YADIN [8] ont obtenu des résultats

caractérisant le comportement transitoire et stationnaire de ce
systéme. .

L'analyse markovienne développée ici et qui conduit 2 1la
résolution de deux équations fonctionnelles 3 deux variables,
permet de retrouver comme cas particuliers les résultats de r§1,
et ce d'une fagon plus agréable. De nouvelles caractérisations de
processus d'intérét sont aussi données.

Abstract

We consider a queueing model consisting of two queues and
one single server working under the alternating priority rule with
zero changeover times. Based on a regenerative processes approach,
NEUTS and YADIN [8] have obtained results which characterize the
transient and asymptotic behavior of this systém. The markovian
anaiysis we develop in this paper and which leads to the resolu-
tion of two functional equations of two variables, ailows us to
get, as particular cases, the results of 8] in a more tractable
and self-contained way. New interesting queueing processes are
also investigated.
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- INTRODUCTION

We consider a queueing model consisting of two queues and one
single server. Arrivals at queue i(i = 1,2) form an homogeneous Poisson
process with finite intensity A i Service times of customers of qtieue i
(i =1,2) are i.i.d. random variables with an absolutely contimuous but
otherwise arbitrary distribution Bi (t) (t > 0) and finite mean o, . let
B. (o) (i_= 1,2), Re 0 2 0, be the Laplace-Stieltjes transform (L.S.T.)

1

of Bi (t). All these processes are supposed to be mutually independent.

In each queue the service discinline is firstin - first out.
The service priority called in the 1literature the "alternating priority
with zero changeover times" is as follows : the server serves all the
customers of a given queue until it is empty and switches to the other
queue if it is non-empty and repeats the algorithm. If it is empty, the
server will serve the first arriving customer, which will initiate a new

busy period of the system.

The switching from one queue to the other will be suprosed to be
instantaneous (For the alternative model with non-zero changeover times
see EISENBERG [ 5 ], MILIER [ 7 j, SYKES (101, MEVERT [ 6 J). The stationary
behavior of this queueing model has been previously studied by TAKACS [11]
and AVI-ITZHAK, MAXWELL and MILLFR [ 1] for two queues and by COOPER and

MURRAY [ 4] in the case of M queues.

NEUTS and YADIN [8 ] have investigated the transient and asym-

ptotic behavior of this queueing model, in the case of two queues.




Their approach is based on a regenerative analysis of the sys-

tem including imbedded semi-Markov processes and renewal theory.

The goal of our péper is niainly to provide an alterﬁative to
the regenerative analysis ;Sroposed by NEUTS and YADIN [ 8 1. Indeed, it
turns out that a direct approach, inwvolving a Markov process, and leading
to the resolution of functional eqﬁatiqns, makes the analysis more trac-

table.

All the results contained in [ 8 ] are also derrved by this
approach Moreover, some of the results we find are sllght1y more general
than the ones obtained in [ 8] (for instance, including residual service
time) or new (workload process). An illustration of the method we use can

be found in [2], Chapter III.

. -

" Alternating
Priority
Denote by Y, (t), £t = 0, i = 1,2 the nuvber of customers
in queue i -also called the customers of type i- at time t. In order to
investigate the stochastic process {(Y1 (t), Yz(t)) , £t > 0} we have to

introduce two supplementary random variables.

At time t, let Z(t) be the type of the custamer in service
and R(t) the residual service time. It tums out that the stochastic

~ process {(Yl (t), Y, (t), Z(t), R(t)), t=2 O}is a Markov process.



Writting the Chapman-Kolmorogov equations, we find

(Section 1) a set of partial differential equations which are satisfied
by the joint probability distribution P(Y1 (t) = L Yz(t) = kz,

2(8) = i, R(E) < © / (¥,(0), ¥,(0))) for t =0, (k k) eI 1 >0,

1=0,1,2, (¥00), ¥,(0)¢ N,

Introducing Laplace-Stieljes transforms and generating fun-
ctions, this set of partial differential equations is then transformed
(Section 2) into a set of two functional equations whichissolved (Section 3).

Series of functions are involved in the solution of this set of functional

equations.

Other queueing quantities are then deriyed (Section 4) as the
virtual waiting time and the workload of the server at time t, £t > O,
Finally, we give a description of the previous processes for t » +w

(Section 5) and some mean queuveing quantities (Section 6).

1 - Definitiorsand basic equatiohs

let us define for i = 1,2 ; £t = Q,
Y, (t) = the number of customers in queue i at time t ,

Z(t) a stochastic variable with state space {0,1,2} and where

Z(t) = 0 if no customers are present in the system at time t,
= 1 if a customer of type i is served at time t,
R(t) = the residual service time of the customer served at time t.

We further assume that 't = 0 can ke considered as-a service

completion instant.




We denote y = (§,y,) and Y(0) = (¥,(0), ¥, (0)) for

Yyr¥y = 0,1,2 ... For kl’ k2’ Yyir Yo = 0,1,2.,, yi1i=1,2; t20; t= 0,

let

Q§i' (tiky ks 1) = Py, (t) = kp ¥y(t) =k,, 2(t) =i, R(t) < 1/ Y(0) =v) (1.1)
~and

Q(t) =P (£) = 0, Y,(t) =0/ ¥(0) = y), o (1.2)

these probabilities being continuous from the richt in the variable t.

We now introduce Laplace-Stieljes transforms and generating
functions of the state probabilities defined in (1.1) and (1.2) (see T21).

In the following, we will assume that (o,o,pl,pz) € (114 satisfy
Re p > 0, Reo20, [pl| <1, |p2[ < 1. (1.3)

We define for i = 1,2‘; kl’k =0,1,2,... ; £t >0,

2
) _ '_
Q] (tik;ky) = lim “— 0f (tiky,ky,1) . (1.4)
Tv0 3T
assuming that this limit exists (which is the case if B{t) possesses smoothness

properties),

-pt .
Yios = g ® x k_]_- kz © -gT V4
Qi(p,pl,.pz,o) 6 e Z_ >:_ P, Py f_ e d. Qi(t,kl,kz,-r) at, (1.5).

k=0 k,=0 Q
2
s = /7Pt e at, (1.6)
0 .

@ (0ip,py) = [ e Lo 2optpo? ol k kydt | (1.7)

0 kl=0 k2=0



Y - 13 1 gy, ' '
Z3 (p3p,) = linm Q3 0:py/P,) (1.8)
1 2 pl“o ‘p:l 1 1’52

y - 1 1 &Y.

zZ (p;p,) = 1lim QS (PP, P - (1.9)
2'PiPy B, 0 B, 2 PP

From the previous definitions we note that
2Y(050,py0" =0 , 93(psp,0,0) =0, & (0;0,p,) =0 and & (o5py,0) = 0.

These relations imply the existence of 'Z{(o;pz) and Z}lr(o,'pl)

defined in (1.8) and (1.9).

Finally the following function will be needed,

Y, (t) Yz(t) -OoR(t)

-t E{p, P, e /Y(0) =y} a. (1.10)

\ . - ©
93 (p;,nl,pz,c) é e
We immediately notice that,

2
@ (0ipy Py 0) = X (p) + I % (03P, 1p,,0) S ()

We will also assume the existence and the continuity of the follo-

wing partial derivatives ,

-'E'Qil(t H kllkle) ’ ‘_t Qg(t) ’ Py Oy(t H kllkle) ’ (1012)

QoW
@

for i =1,2 ; k;,k, = 0,1,2,... ; T>0;t > 0.

2

From the model assumptions, it is readily seen that the stochastic

process {(Yl (t), Yz(t), Z({t), R(t)), t = 0} is a Markov process with




(minimal) state space {0,0,0,0}u & x N x {1} x R N xN* x {2} xR}

So the Markov process {(Yl (ty, Y, (t), 2(t), R(t), t2 0} is irreducible.

_The following theorem provides a set of partial differential

equations which are satisfied by the state probabilities (1.1) and (1.2). -
These equations fully describe the time-evolution of the system,

-_Theorem 1.1

Under the assumptions made in (1.4) and (1,12), the state pro-

babilities (1.1), (1.2) satisfy for t > 0, t > 0 the following equations,

1,

v

i) for kl z 1, k2
= .Q?l’(t;kl,kz,T) = ?\lQﬁl’(t;kl-—l, KypT) + 2, Qil’(t,kl,kz—l,ﬂ

. . 2 Ve, - ;
= Op#g) Qf(eikydy, ™) + g O (erky Ky ) = O (Erky /Ky )

+

B, (1) al/(t;kl +1, k), (1.13)

fork12 2, k2=0,

" a —3 3 \ g .
3 O (t3ky,0,7) = 2,07 (t1ky = 1,0,7) = (Ap#ay) oF (krky,0,7)

5 ~ ~ | -
+ 3% 07 (€K, 0,1) = OF (£5k,,0) + By (1) Q) (£5k,+1,0) + O, (tik , 1)1, (1.14)



for k, =1, k, =Q,

| ] ) - _3 |
C3EQ®1,0,0 = 2051 B (1) = () of (£51,0,1) + Y (£:0,1,7)
- Q(£:1,00 + B (1) [ (£;2,0) + B (£;:1,1)7 , (1.15)
'ii) an analogous set of equations holds for Qg(t;kl,kz,r) for kl > 0, k2 > 0,
3 . '
144) 4 Qg(t) = -0+, (D) +.5{(t;1,0) + 0y (£50,1). (1.16)

Proof

Let us consider a small time interval (t-h, t1 and the events
(arrivals or departures) which occur in this interval. Because arrival pro-

cesses are Poisson processes, we get for k1 > 1, k2 > 1, t > 0,
Q{(t;kl;kz,r) = xth{(t—h;kl-l,k2,1+h) + Athg(t—h;kl,kz -1,T +h)

+ D=0 9)h] [0Y b=y Ky ky, T+ h) = Y (Eh, Ky k), h)

llk2l

h
+ B (t+h - w4 Q{(t —vh, k;*1, ky, ¥ + o(h).

Substracting QY (t-h; k,,k,,7) from both sides of this equation,
dividing it by h and letting h + 0 we obtain equation (1.13) using (1.4) and

the dssumptions on the existence of the partial derivatives (1.12).

The remaining equations (1.14), (1.15), (1.16) can be obtained

in a similar way. . . U




2 - The functional equations

Using the Laplace-Stieljes transforms and the generating funce
tions previously introduced, we transform the Chapman-Kolmogorov egquations

of Theorem 1.1 into a set of two functional equations.
Theorem 2.1

The transforms S%(p) and OZ (p‘,pl,pz,c) , 1= 1,2, of the
Markov process {(Yl (t), Y2 (t), Z2(t), R(t)), £t > Q} satisfy. for

Rep >0, ReRog 20, lpll < 1, !pzl < 1 the following functional equations,

ﬁlgc)

[ om0+ 2y (1mp) )+, (1-p)) T Y (oD ,Pyr0) = = & (05p,0,) [1 = ]

Py

. Yy
+81(0) [ Ap) 93(0) + Z(o7p)) = 2] (050 - 23 (0;0) + p,* {Ily, > 0, ¥, = Q)

y .
+p22 I(yl > 0, Y, > 0, Z(O+) =1)}1, (2.1)

82(0)

[ p—-o0 + Al(l-pl) + Az(l—pz)] Qg(p;pl,pz,o) =-—5§(o;pl,p2) f1r- 1

Py

. y
+8,(0) [2a,p, 9f(e) + 23 (0sp,) - 23 (oip)) - 23 (0;0) + p22 {I(y; =0, vy, >0

+2l 1y > 0 > 0, z(0Y) = 2)17 o (2.2)
1 W » Yo ’ v .
Yoy _ _ Y. V.

*

where I(A) is the indicator function of the event {4} .
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Proof

The functional equation (2.1) is obtainéd from the partial
differential equations (1.13), (1.14), (1.15) and by using the following

results, (see [ 2 J)

fork, > 1, k, 20, 'Pll <1, |p2|.<_ 1,t> 0, 1> 0, Rep>0, Reg > 0
we have ‘

© - 0T .. _ 1 = -0t ‘ o
I e of (t7ky Ky, T)dr = = et g of (t3ky 1Ky 1)

since Q{(t;kl,kzro) = 0,

Q

) —Dt h . _ . " o . _.pt
6 e TE Q?L,(t'kl’kZ’T)dt _Qg(o,kl,kz,'[) + p (j)' (‘)i’(t’kl’kz',r)e . dt,
8. (o) p.t
. ° ; e Sl W _ 2
kl=l k22=0 é— € d Qi’(O,kllker) - [I(yl > 0, Yy 0)+ p2 I(yl> 0,
Y2 > 0, Z(0+) = 1)] ’
fm | -pt of * kl k2 ay . 5¥(DPDPPZ) V
e i _ v
0 Wikl PPy bk v Lko)dt 5 23 (pip,)
1 2 1
and
e g oY (t;k, ,1)dt = 2¥(p; y
0 k=1 Py Qltik), Nt = 75 (eip)) = 25(p;0)
The functional equations (2.2), (2.3) are obtained in a similar
way. | : -

We then notice from Theorem 2.1 the following important fact :
. y . .
the sought flmctlons,Qi(o;plypZ,c) »1=1,2, and Qg(p) will be completely
- determined by equations (2.1), (2.2) and (2.3) once we will know the in-
te . . Y, . .
rmediate functions Zl(o,pz), Zg(p;pl) and %(p;pl,pz), i=1,2. So, in

the following, we will be only concerned with the determination of the

Gt ioRE 7Y e\ YTy — . :
functions Zy(pip,), Zg(p;pl). Qé\o) and Q{(o;pl,pz) for i=1,2.
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Theorem 2,2

The functions Q{(O;Pl,pz), i=1,2 satisfy for Re p >0,

Ipl] <1, |p2} <1 the following set of functional equations,

~ _ | |
U Py = 8y (o4 (o) 9, (1-p,) ] T (03 0,) = b8 (o3, (1opy) 1, (1-p,)

[Zg(p;pl) - Z{(o;pz) - Zg(p;o) +X

41

+p {I(y1>0, vy = 0) +p,

y
1Py %)

Y
2 0, 2(0") = 1)11,

\'

I(yl > 0! Y2

‘P, - 82(0+Al(l~pl)+k2(l—p2))l' 5§(p;pl,p2) = PyB, (0+A, (1=p,) + 1A, (1-p,))

Yinern ) = 7Y (nerm V - oY (. V4
[Zl(o,pz) Zz(p,pl) Zl(o,O) +A,p, 2 (0)

Yy

+

0

Iy, > 0, y, >0, 200 =231 .

Proof -

The functions Q‘Z (o;Pl,pz,o) are sought analytic for Re p > 0,

Re o> 0, ]pll < 1, |p2| < 1.

Since Re {p+ A (-py) + A,(1-p,)} > 0 if Re p > Q, |p1| <1,

lp,| < 1, then the right sides of equations (2.1) and (2.2) must vanish

for o =p + A, (1-p)) + az(l-pz)-

. Substituting this value of o in equations (2,1) and (2.2), we

_readily get equations (2.4) and (2.5).

Y1
py" {Ity; =0,y, >0)+p;

(2.4)

(2.5)

d
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Let us introduce the following notations,

D}

2)} (2.6)

y ¥y Yy ' Lo
Yy PPy =P {Ilyy > 0y, =0) +p," Iy, >0, v, > 0, 2(0)

Y Y2 = Yy +
Y5(py/py) =py" {Ily; =0, y, > 0) +p; ;(yl >0, v, > 0, 2(0")

Notice that the functions Y{(pl,pz) and Yg(pl,pz) are known functions.

The method we use for the resolution of the functional equations
(2.4) and (2.5) generalizes the one used by TAKACS P11 (for p = 0 the
kernels p; = B, (p+}, (1-p;) + A, (1-p,)) for i = 1,2 of equations (2.4), (2.5)

are those of the cofresponding functional ecuations of TAKACS 117).

First, we transform the set of functional equations of Theorem 2.2

into a new set of functional equations using the following lemma.
Temma 2.1

For p fixed, Re p > 0, the set of functional equations,

P, = 8, (42 (1=0)) + X, (1-p,))

Py = B,(p+h; (1=p)) + A, (1-p,))

has exactly one solution (pi(o), p,(p)) in the region |P1| < 1, |p2| < 1,

Proof

A proof of this lemma can be found in M137. O
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ForRe o > 0, |p| <. 1, Ip,l < 1, let us define the

following functions,

Xf(ofpz) = Zf(p:pz) - Z¥(p;p2(p)) + 2, Qg(p)(p2,~ py(e)) , (2.7)
X3ipy) = Z36p) -~ 2019 () + 1) 9Y(6) (p) - B, (0)) . (2.8)
Note that X{ (07p,(0)) = XL(psp, () = 0. @29

/

Taking into account equations (2.7), (2.8) we can modify

equations (2.4) and (2.5) of Theorem 2.2 as follows,
Theorem 2.3

The functions §¥(p7p1'P2) , 1 =1,2, satisfy for Re p > 0,

|p1| < 1, |p2| < 1, the following set of functional ecuations, -

[Py = 8y (o+ Ay (1-py) + Ay (1-p,)) ] 5¥(o:pl,p2) f P8, (p+ kl(l-nl)+k2(l—pz))
[Xp(pip)) = X  (pipy) + 2, (5D, (0)) 2T (0) + Y3 (By,py) = Y3 (b, (0) 0y (p)) T, (2.20) -
p,y - Bziof Al(l-pl) + Az(l—pz))] ag(p;pl,pz) =,92?2(°’“1(1"p1) - Az(lfpz))

¥ (p725) X5 (030) + 2y (By=py (0)) (o) + Y5 (py,p) = ¥E(py ()0, (0)) 1. (2.11)
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Proof

Introducing notations (2.7) and (2.8) into eguation (2.4),

we readily obtain,

| [p, - Bl(pﬂl(l-pl) + 2, (1-p,)) ] 5517(0;131,92) = p; 8, (o+h, (A-p;)+2,(1-p,))
[Xg(o;pl)-xif(p;pp_\p A, (pyPy(p)) 2 (0) + ¥ (py,pp)+ CY (o)1, (2.12)
where

(o) % 2 p (o) (o) + lorp,6)) - 2 (oip,(0)) = 2700

Since the function af(p;pl,pz) is sought analytic for Re p > 0,

|p1| <1, |p2| < 1, the right side of equati'bn (2.12) must vaniéh for
P, =Py (p) and p, = pz(p) from lemma 2.1. Then using relations (2.9), we
see that Cill(p) must. be equal to —Yil(p1 (p); pé(p)).

' .

1

\ 0
The same treatment applies to equation (2,53).

3 = Analytic resolution |

In this seétion, we solve the set of functional equations which .

has been established in Theorem 2.3.

Before proceeding with the solution of the set of equations (2.10)

and (2.11), let us define,




Yl(o;p?_) [resp. v,(pip;)] as the unique root in the unit circle of the
equation p, = B, (p+}, (1-p) + 4,(1-py)) for [p2| < 1 and Rep> O.

[resp. p, = 8,(p+r; (1-p;) + 2, (1-p,)) for lpl.l < 11.

The existence and unicity of Yl(p;pz) and 'Y2(°7pl) can be found
in [12]. Moreover, we know that [13]
Y1 (pip,) [resp. Yolip,)] is given for Re o> 0, |p2| < 1 [resp. |P1| < 1]

by v,bipy)) =E {e b, (3.1)

(e, ey

[ resp. v5l0ip;) =E {e where P, [resp. T, ] is the busy

period of a M/G/1 queve with input parameter A, Lresp. A,] and L.S.T. of |

the service times distribution 81(5) ' resp. Bz(s)] , for Re's > 0.

Remark 3.1. : from (3.7) it & seen that v, (espy) e 10,10 when p ¢ R

and p, ¢ J0,1[. 0f cowwse a similan nesult holds gon Yz(o;pl).

The function & (p;p,,p,) being defined for Re o > 0, |py| < 1,

|p2| < 1, it follows that the right side of equation (2.10) must vanish

when p, = v, (p;p,) for fixed (p,p,) with Re p > 0, lpzl < 1.
Hence we get the relation,

X (p3p,) = K (0iv1(07p))) + Ay (pympy(p)) A3 (0) + ¥ (v, (05p)Pp)=¥3 (p) (6),pp(p) )k (3.2
In a similar way, we have from equation '(2.11) .

xg(o,pi) = Xf{(o;wrz(o;pl))+>»l(pl—p1 (o)) Qg(p)ﬂg(pl,vz(o;pl))~Y32'(pl(p) 1Py (p)) -(3.3)‘
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Taking p, = ¥, (pjp,) in (3,3) and using (3.2) we obtain for
ReD)OrIPzISJI V

XY (pip,) = Dy (P,mP, () #hy (17 (010~ (60)7 9¥(0) + Wy, (07D, ,p,)
- Y{(pl(p),pz(p)) + Yg(yl(p;pz), Yo lpsvy (03p,) - Yg(pl(o), D, (p))

+ X (011,057, (p3p))) . (3.4)

N

For Re p > 0, lzl <1 we introduce the following notations,

fg(n) (0i2) = flp;g(p; £(p;g(... ; glp;z))...) for n=1,2,... where f and

g each appear n times,

A fg .(0) (9;2) =z . : (3.5)

For Re p > 0, |z| =1 we also define for ne N,

(n) (plz)r .

Bnlerz) = vy,
( =~ (ne n) .
Porr1P12) = ¥ (pivyvy 7 (p52))
and

¥onleiz) = YZY{n)(p;;),
W&&ﬁoﬂ)=YjDWﬂgﬂwrw. (3.6)
This can be rewritten as

Brrlpsz) = v, (o3 ¥ (p;2)),
Ye1(32) = v,{p3@(p32)), n 2 0-

We set ¢ ,(psz) = ¥_,(p;2) = 0.

: 4 .
We shall assume in what follows that (o,0,p;,P,) € R, with

©c 20, p>0,0<p<land0 <p,=< 1.




- 17 -

Theorem 3,1

The functions<X§(o;p2) and Xg(p;pl) (defined in equations

(2.7), (2.8)) are given for p>0,0 < p; < 1, 0 < P, < 1 by,

y . — y m 7 . m (H3 . NS R }
Xl(plpz) = 90(9) {7\1 nio [‘p2n+1 (Drpz)—Pl(D)]"‘ >\2 L ExZn\P:Pz) 92(#)—]}

n=0
@ yl Y2 'Yl - Y2 .
+ I, nio Ly (P7D5) EPCH VRS NN Pyle) 1
= Y1 Y2 P2
+I, = E¢5n+l(p7pz) W2n+2(o7p2) - P () T pye) T, (3.7)

n=0

Xg(o;pl) =.Qg(p) {Al nEO E¢5n(p;p1) - py(p) 1+ Ay nz [W2n+l(p;pl)-p2(p)]}

= :0
+ Il nio [‘yzn_*_l (Q7pl) ‘021.1_’_2(0”91) - '91(0) pz(p) ]
where
; +
vIl—I(yl> 0, y,=0) +Iy; > 0, y, >0,2(07) =1), .9
. +
12 = I(yl =0, y2 > 0) + I(yl > O, yz > O’ Z(0 ) = 2).

Proof

First, let us vefify that X{(p?p ) given by (3.7) vanishes

2

when Py = pz(o).



- 18 -

We have (lemma 2.1) Pl(p) = "(1(07?2(9)) and Pz(p) = yZ(p,Pl(p)) .
(1) _
Hence p,y(p) =v,y, (pip,(p)) - using definition (3.5). Applying repeatedly

this last relation, we get forn ¢ N,
() = yor ™ (oip, ¢ 3.10
Pylp) = vy " (pipy(p)) - (3.10)

Hence for n ¢ N, WZn(p;pz(’p)) = Yzyl(n) (p;Pz(p)) = pz(p) and
Ponsy (iP5 (0)) = Yl(pinvl(n_) (pipy(p))) = v, (pipPy(p)) = p, (p) using defini-
tions (3.6).

Then x}’(p;pz(p)) = 0 since each term of the infinite sums of

(3.7) vanishes when Py = P,y(p).

In what follows p is fixed, p > O-

Applying repeatedly (3.4) and. coming back to the definition of

Y{(pl,pz) and Yg(pl,pz) given in (2.6) we get.,

n-1 .
X}’(ozpz) - X{(pwzyl(n) (pip,)) = S%(p) N iio [Yl(pinYl(l) (oip,y) Py (p)]

-1 (i) n-1
+ 2, LI 2 ) (pipy) =P, ()]} + I(y, > 0,y,=0) x
i=0 120

: Y Y
[Yl(p 7Y2Y{l) (o;pg) 1. pl(p) l]

n-1 ; Y , Y Y Y
+Ily; >0, y, >0, 2(0")=1) '20 [Yl(o;szl(l) (pip,)) leY{l) (pip,) ,2-p1(o) lpz(p) 2,
1= .

+ n-1
+ I(yl>0, Yy > 0,2(0)=2)z
i=0
n-1 . v Y ‘
+ I(yl=0,Y2 >0) I [Yzy{lﬂ) (p;pz) 2 pz(p) 2 ] for n=1,2,... (3.11)
i=0 | , |

: Y, (i+1) Y Y Y
EYl(p;szil) (pip,)) 1Y2Yl CH N 2—pl(o) 1pz(p) 23
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i) 0 < Py < pz(p)

¥y {pipy) and v,y, (p;p,) being non-decreasing functions in P,
for 0 <p, <1 (see lemma 3.1), it follows from (3.10) that each term
of the finite sums involved in (3.11) is non-positive.

| Y (osvy ™ (0 = Y (s :
Then {X{(piv,y; ' (pip,)) = XX (pip.)} is a sequence of
177720 2 1 2 nemw” _
non—décxeas:‘mg and bounded functions for 0 < p, < pz(p) - Hence the left
side of equation (3.11) has a finite limit when n 4+ , which in tumn

implies the convergence of all the infinite sums of the right side.

In particular, we have lim Yzyl(n) (p;pz) = pz(p) for

n »>e

0 < p2 < pz(p) .
-Letting n t+« in equation (3.11) and using the continuity of

X{ (07p,) in the variable p, and (2.9) we obtain the result (3.7) including

notations (3.6).
ii) ' Py{p) = p, <1

The proof is the same except that in this case each term of

the finite sums involved in (3.11) is non-negative.



The same results can be obtained for Xg(p;Pl) . 0

It remains to determine the last unknown function Q'\‘(;(p)
for o > 0. 'I-'his can ‘be done directly using a theorem of TAKZ;.CS
([12] p. 59 eg. 9) which gives the IST of the probability distribution
that a M/G/1 queweing system be empty at time t (£t > 0) given the

initial workload is known.

Let us consider a busy period of the system. Since the lenght
of a busy period is independent of the service discipline, it follows |
that the duraiioh of a busy period has the same probability distribution
as the one of a M/G/1 queueing system with input parameter i 17X and
with IST of the service times distributiqn given by

A8, (s) + A,B,(s)
11 22 for Re s > 0.

+)\2

At time t = 0, the LST of the workload distribution is

' Y,
Bl(s) 82(5) for Re s 2 0.
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From TAKACS' theorem we get for Re p > 0,

Y

: - Y
1 2
By (+(A 4,) (1=v(p))) = 8, (p+(A,+1,) (1~v (p))

936(0) = 1 172 2 172 , , (3.12)
p + (R, (A=v(p))

where v(p) is the unique root in the unit circle of the equation

A8 e+ (A 425) (1-2)) + A B, (p+(A,+r,) (1-2))

= 1 1 172 , 2°2 172! ) (3.13)

A+ ' '

1 2

-op : . '
vip) = E{e } where P is the duration of a busy period of a M/G/1
queueing system with input parameter 2

1+>\2 and w1th LST of sexrvice tj.mes
distribution given by

'xlsl(s) + 2,85 (s)

for Re s =2 0
)\l+)\2

Hence if p ¢ ]R+*then vip) € IR+with 0 < wip) <: 1.

Theorem 3.2

The transforms S?}l,(p;Plipz,c) and Q%(p;plrpz,o) of the

Markév process {(Yl(tf, _Y2(t), Z(t) ,R(t)), t > 0} are given for

<p, <1, o20by,
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P I8, (a) = 8, (p+; (1-p}) + A,(1-p,)) 1]

Sz{(p;pl,pZIO) = }
[p- ot Al(l—pl) + )\z(lfpz)][pl—Bl(p+)\1(l-p1)+)\2(l-p2)]

) £ Oy [0 (02" By (0781 + 3 [ gy (078D 7¥50 (670,10 D

Yy Y
1 12 =
+ I1 (p1 p2 + i

‘A Y, ¥y Y,
A Lo, (eipy) = ¥y 1 (eipy) "= & (eip,) © ¥y (0ip,) T

n=0

%[ By (o) - B, (p+>\1 (l-pl) 2, (l—pz) ) ]

QY(DIPIP IO)

{s%(p) T (Ay [<p2n+l(p:p2)- ¢2n_;2(p;pl)3+>\2£‘¥2n <0;Pz)’“’zﬁ+1‘p’1°1>3 )
Nn= .

0
eo ¥y ¥y ¥y o 61
+1, nio Lo, e Pipy) = ¥y (oipy) "= @, S(oipy) © ¥, (0ipy) 7 ]
Y, ¥, - ' Y, ' y2]) .
TIp eyttt L8 leipy) ¥y (eipy) T G leipy) Th L, (eipy) TINGE.1S)

n=0

where
Qg(p) is given by equation (3.12),

' I, and I, are given by (3.9).

Proof

These relations follow from Theorem 2.1, Theorem 2.3 and

Theorem 31 ‘ ’ | 0
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4 - Workload and virtual waiting time

Once determined the transform of the Markov process
{Y, (), ¥, (), Z(t), R(£)), t > 0 }(Section 3), we easily can derived
other interesting queueing quantities, as for example , the Laplace-
Stieltjes transform of the joint distribution of the workload [resp.

virtual waiting time] .

Iet us define for 1 =1,2 ;

qi(t) the number of type i customers waiting for service at time t,
ni(t) the workload of the server w.r.t. type i customers at time t,
vi(t) the virtual waiting time in queue i at time t,

For p > 0, o, = 0, o, 2 0, w introduce the following

transforms of the processes {8, ny(t), £ 2 0} and { (v, (&), v,(t),

t =z 01},
o Pt =0 n (t) - o n, ()
Wy(p;cl,oz) = [e E{ 1 272 [¥(0) =y} at
o) . .
and
: - Pt ~0, v, (t)-o,v,(t)
Vy(pwl,cz) = [ e ‘E {e 1 2‘ 2 lY(0) =y} dt.
o
First of all, let us notice that,
ql(t) = Yl(t)-l ' qz(t) = Y2(t) if Z(t) =1,
q, (£) =¥, (t) r q(E) =Y, (t) -1 L if Z(t) = 2,

qp(t) =g,(t) =0 if Z(t) =0,for t2 0.

(4.1)

(4.2)

(4.3)
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Theorem 4.1

The Laplaoé—Stieljes transform of the joint distribution of the

workload nl(t) and “z(t) is given for p > O, o, 2 0, o, 2 0 by,

-1

Wy(p;ol,oz) = Qg(p) + Bl(ol) Q{(p;Bl(ol),Bz(oz),ol)

-1

+ By(05) " 20018, (0)) ,8,(0,) ,0,).

nd:9{ and Y are respectively given by (3.12), (3.14), (3.15).

Proof
For t 2 0, we hawe,

! 1
nl(t) =Tt e qu(t) + R(t),

R | 2 : =
nz(t) =1 + .+ qu(t) if 2(t) = 1
and

1 1
nl(t) - Tl + * e s e + qu(t),

n(k) =t 4 ...+ 12 + R(t)  if Z(t) =2
2 1 qz(t)

and

n-l’(t) =1,(t) =0 if 2(t) =0 ,

where r§ denotes the service time required by the customer in position.

j in qIEIE i, i = 1,2, j= l'-la, qi(t)‘

(4.4)
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- Then
Wy(p;ol,cz) = [T e E {(z(t) =0) /Y(0) =y} dt
(o] .
. et q, (t) dy(t)  =o,R(t) 4

+ [ e E {g,(0;) B, (0,) e (Z(t) = 1)/ Y(0) =y} dt

o] A
P d,(t) =o,R(t) |
+ [ e E {8,(0,) B (0,) e (Z(t) = 2)/ ¥(0) =y} dt
- (o)

from the independence of the service times.
" Using relations (2.3) we cet,

Wioio,,0,) = a¥o) +8,(0) ™ & (018, (0) ,8,(0,) ,0,)

+ 82(02)_l Qg(p;'Bl(ol),Bz(oz),cz) from definitions (1.5)

and (1.6). | il

We are now concerned with the joint distribution of the virtual

waiting time vy (), v2(t) .

We define for i =1, 2,

gi(u) the duration of a busy period of queuve i given that at time t =0

the workload is u, u > 0.

We know (see [12], p. 63, rg 4) that for o2 0, 1 =1,2,

—of, (1) ~(o+x, (1=v, (o)) )u
E{e * l=e 3 : (4.5)

where vi(o) is the smallest root of the equation

x =8y (0H (1=0) (0 <iv(0) < 1) | (4.6)
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Theorem 4.2

The Laplace-Stieljes transform of the joint distribution of
the virtual waiting time Vl(t) ' 'vz(t) is given for , > 0, op 2 0,

oy 2 0 by,
. = o e . - .

" 0185(0010)) T [ 038, (0=, 63500 ,0))]

o "‘231(°1'°2)n20_“’2n+2“”32("2»)'“’2n+1(°;f1(°1'°2))]

—

_‘¥2n+l (p;Bl (cl))-‘l’Zn(p:fz(ol,cz))] ;

+AS(0,0)§
2721 2n=0

+ Ilgsl(ol,oz) [f1(°1'°2) 82(02) nio [‘P2n+l(o;82(02)) ‘P?_n(o;Bz(_oz))

T e (010000 L ny (038, (0001 2]
. m Y, ¥y Yy
+ Sz(cllcz)nio [‘»"Zn+2(o;81(ol)) W2n+1(0781 (Ul) ,_‘p2n+l(p;f2(ol'o2))
Y2
‘i’zn(p;fz(cl,oz)) ]F

| ' Yy w
+ 12 .82(01,02). [Bl(ol) f2(°1’°2) + i

' Y,
i [2n0058) 01 M, (8 ()]

Yy, Y2
-%n_l(p;fz(cl,cz)) ‘PZnap;fz(cl,oz)) ]]

. © Yy Y2
$1092009) 2 [030,1638500) 4, (018, (o))

% ¥2 4.7
" Fanleifyloysoy)) T o (05E (0y00,)) ]}' @7
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whare

511(01,62). = oyto, =p - Az(l-Bz(cz))ﬂl [Bl(ol+02+xl(l-vl(02)))—vl'(cz)] '

-1, _ ' .

SZ (01,02) =o0,%0, =p - )\1(1-61(01))+A2 [82(01+02+)\2(1-v2(01)))—vz(ol)] , (4.8)

1

£1(01,0,) = 8, (040,44, (1=v (0,)))

Virvy are given by (4.6).

Proof

For t 2 0 we have,

_1, 1 |
-?Vl-(t) =1 + eee. + rql(t).+ R(t),

2 2 ' . B
vz(t) =1 +ooeo + qu(t) + gl(vl(t)) if Z(t) =1
and

1 1
Vl(t) =15 + c... + qu(t) + gz(vz(t)),
vy (t) =2 LTI Tflz(t) + R(t) if Z(t) = 2
and

= 0,

vl(t) =v, (t) =0 | if'Z(t)
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Then, :
1, - 1 1 1 .
Fioso. 0.) = f""é—pt E (e o, (Tt .. hql(t)+R(t)) ozil(rlf...ﬂql(t)m(t)) 6),42“)
j0y50) =/ 5%
(Z(t)" =1) /¥Y(0) =y }dt
2 2 2. 2
-0t q, (t) =085 (T1+ .e .rqz ® +R(t)) —02.(11 +. ..ﬂqz(t)fR(t))

+ e E{B,l(o,)
o 11

(2(t) =2) /Y(0) =y}t +all).

Hence, from the independence of the service times and fornmla (4.5)

we easily see that,

0y (038, (0,40, (1=v) (0))),B,(0,), 0+ 0,% A (1=, (5,)))

Vy(p;ol,oz) = Qg(o) +
B,(o, 4o, (1=, (0,)))

]l
82(01 t0, +A2(1-v2(ol)))

Qizl (9781(01) 182(0 "02'*'}\2(1-\)2(01))) 101"'02"'12 (l-\’z(ol) )

+ 4.9)

Using equations (3.14) and (3.15) we finally obtain (4.7).

5- Descriptionbof the process for t >+«

If the Markov process (Y, (8), ¥,(1), 2(t), R(E)), t 2 0} is
ergodic, that .is if for (pl,p;,) e [0,1] , 062 0,4i=0,1, 2,
_ Yy (t) Yz(t) -oR(t)
lim E{p, P, e (Z(t)=1) /¥(0)=y } exists and is independent
trte o
of every initial state y= (yl,yz), Yy, 2 0, Y, 2 0, then

lim E{p~ p," e (2(£)=1) X (0)=y} = Lim o0y (p;p;,Pys0)

applying an Abelian theorem.
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~ Theorem 5.1

The limiting probability (t ++) of an empty system is zero
S if a4+ azhz ‘land if a; +a, < 1 it is given by Qode;'fliinoofz g(p) = l-a,-a,
) p

~ for all initial state y = (y,,y.), where a, def ) . fori= 1, 2.
) 1742 i i1
Proof
From (3.12) we have for Re p > 0,
be) = e P =%, =0/Y0 =y a

Yy Y,
Bl(pﬂ(l—v(o))) Bz(oﬂ(l—v(p)))

p +A(1-v(p))

vhere v(p) is the unique root in the unit circle of the equation

Al‘ Ay
2= =8 (oA (1-2)) + =, (0 (1=2)) = (L = 2] + 1))
A _ A

The result is obtained applying a TAKACS ' theorem

{{12] Theorem 8, p. 66). 7 ‘ 0

By theorem 5.1 the Markov process { (Yl(t_) ’ Yz(t) , Z(t), R(Y)), t =

is ergodic iff. a; + a, < 1.

From now on, it is assumed that this condition holds.

We define for (p,,p,) e [0,1], 6> 0,1i=1,2,

Qi(pllpzro) = g-lfno pgg(pfplrpzlo): . ‘ . (5.1) .
- (Pllpzrc’) = %ﬁmo pR (p',pl,pz.o.). (5.2)

These limits exist under the condition a, +a,< 1.
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Theorem 5.2.

- For (pl,pz) e (0,11, o2 0, a, + ay, < 1 the transform
Q(pl,pz.o) of the stationary distribution of the Markov process
{ (yy(®), Y, (), R(t)), £ » 0} is given by,
2

i=

where

Qo=l—al—a (5.4)

27

P19 (By () =6, () (1-p ) +1, (1-p.))))

Ql(pllp".)‘ld) =
[pl~81(Al(l—pl)ﬂz(l-pz))][ Al(l—pl)ﬂz(l-pz)- o]

LD T 0= (0py)) # Apl g (05D =, 5 (03p)) 1), (5.5)

pZQO(BZ(c)—BZ(Al(l—pl)+>\2(1—p2)))

Qz(pllpzfﬁ) =
- - - YAr - {7 - -
(py=8, (3 (1=p )42, (1-p) ) 30 A, (1 Py)+ 5 (1-py)~ o]

nf:O {xl [‘P2n+1(0;p2)~%n+2(0;p1)] +X2[‘”2n(0792)""*'211+1(0_’91)]} . (5.6)

Proof

i) The functions @¥(p;x) and Vv, (p;x) which have been defined
by (3.6) for p > 0, x ¢ [0,1], are also continuous for o = 0,

¥ x ¢ [0,1] under the éondition a, + a, < 1.

This follows form the fect that vy (pix) and Yo (pix) (see eq.(3.1))

are continuwus for p = 0, ¥ x e [0,1] when a; + a, < 1 (if a, < 1 then

__W
FS

LA~

SEUE pes and ¥y (X070 = 1, VI E=,2 D300

i
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ii) For.a) +a, <'l, each seriesof functions involved in
expressions (3.14) and (3.15) of @] (pip;,p,,0) and @ (0;p;,Py,0)

converges uniformly inR x {o,11. This is shown in Appendix. .

Hence, multiplying (3.14) and (3.15) by p, letting p+0,

we cbtain (5.5) and (5.6) using i), ii) and Theorem 5.1.

Thisresult is slightly more general than the one found by
NEUTS and YADIN [ 8] since it also provides the transform of the residual
service time -(see also Corollary 5.3)- If o = 0 this is exactly the

result obtained in [ 81 (egs. (74), (75)).

Similarly, let us define the following limits, for o, = O,

L2

Ty z 0,

W(Gl,ﬁz) = limp Wy(o;dl,oz), _ (5.7)
p+0 o

V(Ol’UZ) = limop Vy(o;cl,cz). (5.8)

p+0

These limits exist under the condition ay + dy < Y. men‘

TTxéore.ms 4.1 and 5.2 and equation (5.7), we deduce the following corollary,

which is a new result.



Corollary 5.1

The Laplace-Stieljes transform of the joint stationary distri-
z 0,0 5 2 0 by,

bution of the workload is given for o 1

)f"Hhc?:‘oo{’f' o (038, (o) =8y (G (@)D, 0¥, L (058 )=, 1208y () 1}
L o4, (18, (o)) + A,y (1-85 (0,)

W (.c.fl 1oy Y= 1-—a1--a2

(038 (o NHALLY, (038, (00)) =¥y ) (078, 6]

+ n=0
o, + 3 (1=8, (), (1

-82(02))
o (5.9

2 0, then from (5.9) we have,
MCHACHE

FB](U)-n;gg;(fozn(O;fﬁl(o)}J+) "8,y(0)~ 1im ¥, ]
B, (0)) + AZ(I-BZ(O))

Wi{o,q) = (}wa} =a,0 0 1+
. -5 ..‘../ \}(;..

Both limits appearing in this i‘dentity are equal to
one, as shown in the proof of Theorem 3.1 (since 2 (Q)=p,(0) = 1).

Hence for ¢ = 0 we obhtain,

(1 -a, -a)o
W(o,0) = L < - .10
0 = 3 (176, (0)) = A,(1-8,(0))

(virtual waiting time} distribution of

T. of the workload
and with L.5.T. of

which is the L.S

a M/G/1 queueing system with input parameter A R

service times distribution (X 8 (c} + A BZ\G)) / (A +.) for Fe o 2 0O,

This is not a surprising result from the derivation of

Qg(p) —(Sec:t_ion 3).
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~ Similarly from Theorems 4.2 and 5.2 and equation (5.8) we get,’

Corollary 5.2

The Iaplaoe-Stieljes transform of the ‘joint stationary distri- '
bution of the virtual waitiﬁg time is given for_c1 > 0, 0,2 0 by,

V(ol,02)=(1—a1—a2) {1415, (cl,oz)nio[soér'lﬂ (0;8, (05))- Soén(°7f1 (0y105))]

+ A Sz(ol,oz) io [902n+2(0;81(ol))- ¢2n+1(0;f2(01;,02))]

Ay S; (c ,02) T [\P2n+2(0;62(02))- y

o (O:fl(ol,cz))]'

2n+1

Ay 2(01,0 )nZO [¥s4q (0 Bl(o )) - .Zn(o;fzfcl,cz))]} -.b
Let us notice that since the arrival processes are Poisson
processes, the limiting distribution of the virtual waiting time of type
i customers is equal to the limiting distribution of the actual waiting
time of type i customers—(l—l 2)— [9J ThentheLST .0of .ne joint
stationary distribution of the waltmg time is also given by V(o ,02)
for o '

0, o, = 0.

1% 2

Corallary 5.3

The Laplace-Stieljes transform R{cx») of the ~stationary distribution

 of the residual service time, is given for o = 0 by,

CRO) = D (1581 (@) + 2,(1-8,(6))] / o
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Proof

2 .’Q
We have R(o) =& ,Qi(l,l,o) for o 2 0. ‘ (5.11)
' i=]
On the other hand, the following relations can be deduced from eqllafions
(3.6) , ¥.(0;1) [resp. ¥!(0,1)] denoting the derivative of

©(0,z) [resp. ¥, (0;z)] at point z = 1),

, . a.a
€0 (0,1) = ¥y (031) = (12 "
. (l-al) (1~a,)
' Ao a,a
1-a, (l—al) (l—az)
v i Ao ) a a
¥, (0;1) = 12 { 12 ! for n> 0. (5.12)
bl T T (1-a) (1-a) A
2 1 2 '
Applying 1'HOpital's rule to equations (5.5) and (5.8) and
~ using relations (5.12), we obtain,
9, (1,1,0) =, (1-8;(0)) /0 fori=1,2and o = O, (5.33)
Hénoe, from (5.11) we hawve,
Z , .
R(o) = 1. }‘i(l_B* {5)) /o for o2 0. i

i=1



Corollary 5.4

The 1:>robazb;i‘lity’H:.L that at steady state a type i customer

is being serwved is given by Hi =ay, for i = 1,2.

Proof

We have mo= Qi(l,l,O) for i = 1,2, Applying 1'Hépital's

rule in egquation (5.13) we obtain

6 - Mean queueing guantities

The mean waiting time in each quaue can be comouted using

Corollary 5.2,
We do not recall the result which can be fownd in [11 ] and .
L 1 1 (the result given in [7] is incorrect due to minor err.rs in its

derivation) .

let E(Wi) be the mean workload or backlog in queuve i, i = 1,2.
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Differentiating equation (5.9) w.r.t. 9y with Oy = 0, then using first

or second order expansions, we find

1 |
. " 2 2 (1]
E(W,)= [rus{(1-a,) (1-a,) "+ajal} + A, (1-a,)a,]
2 i Z e 2ty et e P a3 yd-ayla,
1 2! 783,
where g def = 2 dB, (x) is supposed finite for i = 1,2.
0

E(Wl) has an analogous expression with the indices 1 and 2 inter-

changed. This result is obtain using relation (5.12) and the followinc for-

mila,

2 2 2 2 "
@ o aa 1 (I=a ) w @0, A,u
n=0 " 2n+l (1-a )2(l-a )2_a2a4 (1-a )2(1_a -a.) 1 (1-a )-3

1 2 172 1l 1 72 2
and
aZaZ WA >\2 o u" a.a u"

T, v (0;1)= [1- 172 ]-l 172 { 271 + 171%2 )
n=0 "Zn (1-a.) % (1-a.) *-a2a® (1-a.) (1-a.-a.) 1- (1-a,)°

1 2 T3 S R L &1 )

d ) . . 00 " «© "

and corresponding expressions for nEo ‘Pzn(O;l) and I, ‘PZHH(O;I) , where

¥ (0;2) [resp. ¥ (0;2)] denotes the second order derivative of

¥ (0;z) [resp. ¥ (0;z)1.

These formula are obtained from relations (3.6} following the

same procedure as the one given in 7] (Nevertheless the e:prassion of
@© "

nzo Yo, (0i1) given in [7] is not correct as well as the exvressions of
L

"
Cry 1031 and ‘P)m(lfo)}"

(6.1)




It is easily .checkedthat E(wl) + E(wz) is the mean waiting

Lt iz and with L.S.T. of

the service times distribution ()«1 81(0) + X, Bz(cr))/()\1 + >\2) for Re 0= O.

tire of a M/G/1 queve with input parameter A
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APPENDIX

We show that under the condition a, + a,

contained in the expressions of X{(Q;Z) and X}Z’(p;z) (cf. Theorem 3.1)

< "1 the series
wniformly converge in p and z in the domain {p/Re p > 0} X {z/|z] <

Lemma A.1
For fixed p (Re p > 0). and under the ergodicity condition

al‘-'r a, < 1, the functions of z, yl(p:z)' and Yéyil) (p;2)

{resp. yz(p;z) and ylyél) (p;z)] satisfy the Lipchitz condition, res-

pectively with coefficients.kl and k21 .(k,)1 < 1) [resp. k, and
k12 (k12 <1)1.

_Proof

let us define for e p > 0, |z| < 1, T
flpiz) =p + Al(l-Yl(o;zv)) + Az(l-Z)
and '

alpiz) = p + A (lmyy (052)) + A (1my, v Y (o32)) -

From Section 3, we know that
Yl(p;Z) = BI(f(p;Z)) ' (a.l1)
and

iV Gizy = 6, (g6es2)) . o @)
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Differentiating (a.l) and (a.2) with respect to z, we obtain

3 A?_si(f(p;Z))

— v, (piz) = . (a.3)
9z 1+xlsl(f(p;z))

and .

3 A8 (E(p52) B, (a(pi2)) |

C— YZY{l) (p;2) = 12 l. 2 ; ’ (a.4)
3z (l+A181(f(p;Z)) (1+1282(g(072))) -

] .
where Bi(c) denotes the derivative of Bi(o) for Reoc=> 0, i=1,2.

]
We have lBi(o)|< a; for Re o >0, i=1,2. Hence for

t
a, +a,< 1, [1\B; ()] > l-a; > 0 for Reo > 0

Applying these inequalities to (a.3) and (a.4), we readily

get for e p >0, |z| < 1,

P Ao d
2 vyleiz) | < = ! et Ky
3z (1-a))
and
g a,a
2. YzYl(l) (p32)| < 12 dgfk?_l <1,
3z : (1-a,) (1-a,)

which concludes the proof. : U
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Let ‘us denote for Re p > 0, |z| < 1

14

4 Yy y2

A Yy Y :
$Toiz) = 1o Te, i) Ty, (052) 2 = prie) ! NORI (@)

which is one of the four series contained in X{(p;z)_ (see eg. (3.7)). Note
that one of the three remaining series is obtained making v = (1,0) in
(@.5) . |

From the identity ab-cd=(a—c) (b+d)+bc-ad and the inequality
y y . ‘
!‘YZn(o;z) 24 p,(p) ?l < 2 for Rep >0, |z] < 1, we obtain,

02| < 2 IS{(o;z)! + IS?,_'(o;zF! , _ (a.6)
® Yy y
v, . def . 1 _ 1
where Sy (p;z) "= 1, [@, . (pi2) p, (p) 7]
and
Yineoy = . 2 1 _ , Lot l 2
Spleiz) = I, [‘i‘zn(o,Z). P, (p) ‘P2n+1.(p,z) Py (e) "I

First let us oonsider Si’(p;z) .

- We have for Re p > 0, |z| < 1,

¥; o -
o | 7 5. ¥yd
| 120 [one1 (072)P ()] S5 @, (032) Tp) (o)

]

|57 (p52) |

!

N

(4D Ly 1€, ,1(052) = by ()]
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Now from the rejation pl(o) = Yl(p;pz(p)) (see Section 3),

definition (3.6) and Lemma A.l, we deduce that

|S¥(032)| < (y;thk, nzo IY?_Yl(n) (p32) = py(p)]

Using equétion (3.10) and Lemma A.1l, we finally obtain,

2k, (y,+1)
IS{(p;z)l < =21 " forre, > 0, [z] < 1. (a.7)
1 -k
21

iet us now consider Sg(o;z) .

We hawe

y Y, = Y Yy y
IS5 | < Ipy @) [7F 24 1¥,,0002) % = p,y(0) 2] + [py(0) |2 [sY (012 ]. (a.8)

As above, one easily show that

Y,
nLo !‘i’zn(mz) = P, (p) |< —=— forRep > 0, |z] =<1, (a.9)

l—kzl

Y5 2 (y2+1)

Finally form (a.6), (a.7), (a.8) ané (a.9) we find

+1)

.
Sk, (y,+1) +2(y,

1sY(0;2)] <

for Re p > 0, jz| £ 1, (a.10)
1 - k21
The proof of the uniform convergence of the last two seric:
contained in Xlll(p;z) is analogous to the one above. Similar methods

apply to the series involved in XZ(Q PZ) .
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