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ASYMPTOTIC ADMISSIBILITY OF THE UNITY STEPSIZE
IN EXACT PENALTY -METHODS I : EQUALITY-CONSTRAINED PROBLEMS

Joseph Frédéric BONNANS
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Domaine de Voluceau
BP 105 - Rocquencourt
78153 LE CHESNAY Cédec (France)

RESUME

Deux points dé€licats, dans la mise en oeuvre des algorithmes d'optimisation uti-
lisant une fonctionnelle pénalisée exacte associe A des sous-problémes linéaires
quadratiques, sont la prise en compte des problémes linéaires-quadratiques incon-
sistants et 1'admissibilité du pas unité. Nous montrons que, dans le cas ol le
probléme ne comporte que des contraintes d'é€galité, une méthode récente qui ré-
soud de fagon satisfaisante le premier probléme peut &tre modifiée d'une maniére

simple pour que le pas unité soit asymptotiquement admissible.

ABSTRACT

Two difficulties arising when using optimization algorithms based on an exact
penalty function assoéiated to quadratic subproblems are the possible incon-
sistency of the quadratic programs and the admissibility of the unity stepsize
after a finite number of iterations. We show that, if no inequality'gonstraints
are involved,a recent method, in which the first problem is solved in a satisfac-
tory way, can be modified in a simple way to make the unity.stepsize‘asymtotif
cally admissible. '

N D PAPIER RECUPERE ET RECYCLL



I - INTRODUCTION

We consider a nonlinear programming problem having only equality constraints :

Min f(x),

(1.1)
gi(x) =0, 1i=1 tom,

f and 8> i =1 to m being smooth (C3) applications fromR" onto R. We suppose
that m < n. Let x be'a local solution of (l.1). We suppose that x is a regular

point, i.e.
(1.2) Vgi(g), i =1 to my are linearly independant.
Then there exists a unique A ¢ R™ such that

VE(R) + I X.l Ve, (%) =0,
(1.3) |
gi(;{) = 0.

Equations (1.3) may be solved by a Newton-type method with unknowns (x,A) : this

. +
is equivalent to the computation of a sequence (xk, Ak) with xk L. xk + dk,

where dk is a solution of the quadratic program

Min VE(E)Cd + %- dtH¥q,
(1.4)
s.t. g.l(xk) + Vgi(xk)td =0, 1=1tom,

Hk being an approximation of the Hessian of the lagrangian, and Ak being the mul-
tiplier associated to dk. We restrict our analysis to the case when Hk is a de-
finite positive approximation of the hessian of the lagrangian. When this appro-
- ximation is made using the BFGS method associated to some correction, a super-
linear convergence rate is obtained (M.J.D. Powell [13 ]). In order to globalize
this algorithm ~i.e. to design some globally convergent algorithm that reduce to

a Newton-type method in the neighbourhood of a solution- a key idea is to use the



non differentiable penalty function

6 (x) =) *r g

where r > 0 is called the'pgnalization coefficient and ||.|| is some norm offmm s
we denote by [{.|t45 the dual norm, i.e. |
6 b
A = max { Z As Mgs ul| = 1},
|| l&@ﬁ a ||

A key fact is that if (1.4) has a solution,dk associated to a multiplier Ak, and
if r > ||A]] , then d is a descent direction of Gr(x). This result is due to
B. Pschenichnfl(see [14 1) in the case of the L~ norm and was rediscovered by

S.P. Han [9] in the case of the L1 norm. The general result can be found in J?F.
Bonnans, D. Gabay [ 3 J. A difficulty arises if the m vectorS'ng(x)} are not
everywhere linearly independant ; then (1.4) may have no solutions. Some empirical

means to take this into account are given in M.J.D. Powell [ 12 ], K. Tone [ 15 1.

_However, the algorithm of J.F. Bonnans, D. Gabay [ 3 ] seems, at least from a theo

rical point of view, give a satisfactory solution to this problem. It is based on

the function, defined for each iteration k :
o5 (x) = £ + VEGE) P an) + () H x4
: k kit k
+rl]g(x) + V() (xx) ],

which is a simple model of er(x), having the same behaviour around xk. A direction

d” is computed as the solution of

(1.5) Min{ei(xk +d) ; d eﬁmp}i

.

. The convex. problem (1.5) always has a unique solution Hk. Then the iteration is

k . . . . '
where p 1is a step size computed according to some line-search rule.



Define

5§(x) = f(xk) + Vf(xg)t(x—xk) + r]\g(xk) + Vg(Xk)t(Xr k

A convenient line-search rule due to R.M. Chamberlain et al. [ 4 ] is the following

extension of the L. Armijo rule [ 1 1 :

Choose B ¢ 10,1, o ¢ J0,1/2[ (independant of k).
(1.6) pk = (B)Q, where % is the smallest integer such that
o+ (') -0 (M < 0@ + @' -6 ).

This means that we reduce the step until the ratio of the achieved decrease on
. . . . ' . ' ~k .
the criterium divided by the decrease predicted by the local model er 1s supe-

rior to .

The complexity of problem (1.5) is roughly the same as the one of a quadratic pro-
'gram In addition, if (l.4) has a solution dk, the solution of (1.5) will be equal
to d i1ff rk is greater than [[A ltéb . Consequently, when the parameter rk is
iteratively modified in a convenient way, the method leads to a zlobally conver-
gent algorithm, where computed displacements reduce to the solution of (1.4) near

a regular solution of (1.1).

One -point should be clarified. To compute a descent directions, the algorithm
described above relaxes the linearized constraints by penalizing them. This is
"useful when these linearized constraints are not necessarily compatible at any
point. However, if it is a priori known that the linearization of some subset of
the constraints are compatible there is no reason to relax the constraints of this
subset. A key fact is that this subset must contain the linear constraints (other-
wise, the problem has no solution). This means that in practice, the linear cons-
‘traints should not be relaxed. In this paper, we don't take this remark in account,
in order to keep the proofs short. However, this modification of the algorithm

should not change essentially the results.

o ) k
We now turn to the local convergence analysis. We suppose that a sequence {x}



c&mputed by the preceding algorithm converges to a local solution x of (1.1), which
is a regular point. Let dk be the solution of (1.4) (dk is well-defined if k is

great'enough). Lét ||;||U be a norm of R". We suppose that

/ The vector dk, solution of (l.4), checks

This hypothesis allows the algorithm to have a superliﬁear rate of convergence, if
{pk} converges towards 1. However, this seems not to be the case in general : a
counter-example due to N. Maratos [ 10 ] shows that even if (1.10) holds, and if r
has the same order of magnitude that EXILE% , Gr(xk + pk dk) may be superior to
er(xk) if pk -+ 1. This may destroy the pfopé}ty of superlinear convergence. Two
kind of methods have been proposed to deal with this problem. The first (D. Gabay
[ 8 ], D.Q. Mayne, E. Polak [11]) needs the computation of the constraints

k . k . .
at xk.+ d” ; then a correction term v 1is computed as the solution of

s.t. g(xk + dk) + Vg(x:k)tvk = 0.
If a line-search 1s used, it can be performed along the arc
&K+ o dk o+ (0)2 K,

Then it is shown that, under some convenient assumptions, the stepize pk =1 is
admissible if k is great enough. The second method, dﬁe to R. Chamberlain et al.
[ 4] is based on the observation that a sufficient decrease of the exact penalty
function is obtained (for k great enough) between the iterations k+1 and k-1. Con-

sequently, the line search criterium at step k should use the information of the

- . . . k k .
iteration k-1. However, i1f the point x + d 1is not accepted, one has to come back



. k-1 . k-1 .. .
then, to the point X and to reduce the stepsize at x ; this is to insure .

the global convergence. The main drawback of these methods is that, in some si-
tuations, the can lead to a substantial increase of the amount of computations.
This is not the case with the algorithm proposed here. In paragraph 2 we give

a technical result on exact penalty functions which is the basis of the subse-
quent algorithm. Then in paragraph 3 we use this result to formulate a globally
convergent method, based on a line-search strategy, for which the unity stepsize

is, under some convenient hypothesis, asymptotically admissible.

II - SOME LOCAL PROPERTIES OF A CLASS OF EXACT PENALTY FUNCTIONS

Let x be a local solution of (1;1) such that (1.2) holds and X be an element of

R™ such that (1.3) holds. Define the augmented lagrangian (for c 2 0)

t c 2 2
L (x,A) = f(x) + A glx) + vl Log. (x)°.
c” o) 1
Denote
. 32L (2, 0)
= .
c 2
ax
3 . 3 3 - A
We suppose that the standard second-order sufficiency conditions hold at x (see
for instance R. Fletcher [ 6 1) :
\I

atmad>o,
o
(2.1) for any d e'Rn such that

Vgi(x)td =0, 1i=1 tom
It is well known that (1.2), (1.3), (2.1) imply
(2-2) Jc>0; HE is positivg definite.
We now consider the following class of penalty function :

8, (0 = £(0 +p" g + r|le@ ], ‘



>

where p, r ¢ R" x R are given parameters with r > 0. We remind that |[.|| is

| is its dual norm. We give a sufficient condition for

a norm of R" and ||.

these penalty functions to be exact, i.e. to have a (strict) local minimum at X.

Proposition 2.1

Let x be a local minimum of (1.1) such that, for some X, (1.2), (1.3), (2;1)
hold. Then if | |

@5 e |5 -l

X is. a strict local minimum of Gp r(x). 0
I

Proof 

We have

(D" gx) + r|g@]]| -

Nlot
N~
oo
P
™
p g
-

ep’;cx) - LE(X,X)

Y

(= | p-Al ] gy M@ - 5

» . . m .
As all norms are equivalent in R , some B > 0 exists such that

Mg

g (0 < 8l |
i=1 _
This implies

8 (0 - LD = (r- IIP-Xli@-% Blle D) [leG]].

b

If (2.3) holds, the right-hand side is positive in a neighbourhood of x. As HE is

positive definite, x is -a strict local minimum of I,E (x,A) ; this proves the -
proposition. O

k . - k k
Let {x } be a sequence converging towards x and {p }, {r } two sequences such that,

for k great enough, form some y > O,



(2.4) (3 +7) Ilpk-Xl|@< * '

and v
rk
“0EE
U
We define

- k k : k
65(x) = £(x) + VEGE) By + ) E(e() + V() Ex-2¥))
k k.t k
+ r||g(x) + Vg(x) (xx ).
We remind that the solution dk of (1.4) is well defined in a neighbourhood of x.

Theorem 2.1

~We suppose that. (1.7), (2.4), (2.5) hold. Then there exists © >0 such that, for
any € > 0, there exists ko such that k > ko and rk < ¢° imply

k., k ’ k
(2.6) 6 . rk(x +d) - 0 rk(x ). 0

LK) = (o) (0 (Ed) -~ 8
P> r ’ P

k
P » ’

Y
The proof of the theorem uses two lemmas.

Lemma 2.1

We suppose that (1.7) holds. Then, for any €, > 0, there exists kl such that
k > k1 implies

B kedy - o NS (1+€1)(xk-—;<)tH<-:(xk—;<) -
P »r .

- N - Rl g [ee 1

Proof

We have for k great enough



o>
]

- ) -0 68 = T T E s T vt & - ey
. |

b

k5ot k. k< ket &k ki ok |
=V, L(x,05d (-0 g0 d - 2 gx) ]

From (1.4) we deduce that

>
1

=0 DT - 0 e - K,
VX L o('xk,X)t dk - (r + Hp_)\| l@ ). ] ’g(xk) | |‘

v o

We have with (1.3), (1.7)
k = t k - k - :
VX Lo(x LA = Ho(x -x) + o(|]|x —x||U),
k

&= %= s - R,

where the notation o( | lxk—;c) | ]U) indicates a term whose ratio to I‘ka-;(l IU tends

to zero as k > * . We deduce that
k - k - k k k k -2
bz= (0 By = (0 + =M g 0 GO ]+ sl =11,
The result is then a consequence of the inequality
d" H-d 2 dH_ d, ¥d ¢R",
c e

and of the positive definiteness of Hy . (]

Lemma 2.2

If (1.7) holds, 3B > 0. such that for any €, > 0, there exists k2 such that
k >k, implies ‘ ‘

k. .k k 1 ~ k - t k -
(x +d7) - ka rk(x ) € - 5 (l—c,z)(x -x) HE(X -x)

E)kk
P ,r

s

o+

(2.8) CHR A g #) [latedy |

(= 11Xl - 811G [ 116 |1 ¢



- 10 -

Proof

We have

k .k k
A —e.k k(x +d7) ~ 6 X k(x )
s T ’ P,r

g (4 - L+ N0 S - gGE)

m
- c( & gi(xk+dk)2 -
i=1 i

g, (¥ %)

1

I Mg

1

+

k k k k
(e d ] - 11865 1)
As all norms of R™ are equivalent, there exists B > 0 such that

A

A

LG = G+ 1Ty ¢ B lseed ||
(2.9) - '
-uLIbJng—sHaﬁﬂbHyﬁﬂL

We focus on the first terms, using (1.3), (1.7) :

LE(Xk+dk) .

Lg(xk) = Lz(ik+dk) - LE(R) + LE(E) -

- G0 G+ o(| |7 D).

IA

This with (2.9) proves the lemma. []

Proof of theorem 2.1

As by (1.4)

g(x) + Ug(H T & -0,

we deduce from (1.7) the existence of some a, > 0 such that

1

L(-:(xk)
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-2
e +d) || < [ 1= |2,

From lemma 2.2 we deduce that for some a, > 0 and 'k great enough :

k k Lk 1 : k =
By =0, (x+d) -0 k(x)s-fn—ez—a,_(llp-m@ +
P T P LY
- k - -
+ ENIEED B - @ R A 811 D6 1.
Using (2.4), (2.5) we deduce that for k great enough and o, ‘small enough

1 k - - 2 k '
by s - 5(1 - 262)(xk—x)t HE(_xk-x) -3r (2]

From lemma 2.1 and (2.4), (2.5) we deduce that

< k. k. k k = .t k- 4 k Kk
67 (X +d) -8 rk(x) 2 - (Ire)(x-x) Ho(x-x) = 3 ¢ ||g(x)]].

‘k
P T P,

As € and €, are arbitrarily small, this proves the theorem. [J

This result suggests to build algorithms, using a penalty function of type

8 K k(x), where pk and rk are modified at each iteration in order to
P »T

- insure a global convergence,

- check the hypothesis of theorem 2.1 after a finite number of iterations.
This is the subject of the following section.

ITTI - A.GLOBALLY AND SUPERLINEARLY CONVERGENT ALGORITHM

We define

3.1y 5 = 656G + -;-(x—xk)t B (x-55) .

We consider an algorithm of the following type :
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Algorithm 1

0) Choose xl,pl,rl,H1 such that r1 > 0 and Hl is positive definite. Set k = 1, -~

Choose B ¢ 10,1[, 0 ¢ 10,1/2[,
1) Solve the problem
(3.2)  Min 65(:F+d), d ¢ R
Let ;k be the unique solution of (3.2).

2) Let % be the smallest integer such that

k- Lk k
(3.3) 0 K rk(x + (B)"d) -8 K rk(x ) <

P P
xk + (B)g dk.

]
[}

3) k =k + 1.

Set pk, rk, Hk.

Go to 1), 0

-

o6 G+ @ & -0, ).
r

14

o

We now proceed to give an explicit adaptation rule for pk and rk. This needs some

preliminary considerations. Consider

Q) = 3 2% 7g() " @Y7 TeIn ¥ ATTe(y )

k.t, k. -1 Vf(xk) _ g(xk)).

It is well-known that the quadratic program (1.4) is equivalent to

k

(1) A arg min Qk(k), Ae R

(3. 4)
(ii) d

il

m

- @) TN Ee) + Ta( k).
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On the other hand, from J.F. Bonnans, D. Gabay [ 3 ] we deduce that (3.2) is

equivalent to -

1l

b = arg min (Q°) + WE@GH ! va(d) o, ullgs < =%
(3.53) Xk = pk + ]Jk
| & = - @Y ek - vp) 2K,

. Suppose that uk checks || k < rk. Then by (3.5), uk is solution of
7)) ,

) @) T Irg (i = v () T e () -5 () g () ) v (K,

Vg(x ) (H)

or equivalently

~

where Ak is the sblution of (3.41i) ; then Ak is equal to Xk. Consequently :

(3.6) ,{||uk|&§ﬁ <} => {(3.4) has a solution (dk,Ak) equal to (dk,Ak)}.
&4

We define the sequences

Dk

198G + 7GEy 25|+ |12 ],

wn
L}

max {I/DR s R =1 to K,

The monotonically increasing sequence {Sk} has the following property :
Lemma 3.1

_If X} is bounded, a subsequence of {(xk,lk)} converges towards (x,A) such that
(1.3) holds iff Sk + 400, []



Let Oy, i=

(3.

We need some tools to define the adaptation law on rk. Let the function s : R

7)

- 14 -

1 to 4, be some positive constants. The adaptation rule for pk is

Let ¢ be the index of the last iteration at which pk has been changed.
Then
k . k k 2
K+l { A if e > o, or STz (1 + az) s,
p = -
P

[y

elsewhere.

+%

be defined by

s (a) = min {10% ; q ¢ 2 ; a < 109} -

If {an} is a sequence of positive numbers, the transformed sequence {s(an)} has

the following properties :

(3.

(3.

(3.

We

0

2)

We

(3.

(3.

8)
9)

10)

{{a"} » 0} <=> {s(a™) » 0} ,

{lim sup a® = 4=} <==> {lim sup s(a") = 4},

{a" A a, 0 < a< +o}=> {s(a") = s(a) if n is great enough}.

define the sequence ¢k by

k

If s -S2 > 1 and pk z 1, ¢ = Sk—SR and £ = k.
Else ¢k = 0.

k = k+l, go to 1.

have

11)

12)

X Sk = 40 <=> J q)k = 4o
k k
Z Sk < 40 oo k

> ¢ = 0 for k superior to some ko‘

<+ R
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We suppose that

(3.13) a, < I.

The adaptation rule for rk is given by

. k+1 . Xk k . k., %
(GO o (3+a3) max( | |A -p |[@ , min(1, (D7) 7))
max(r%+1, rg) if pk =1,
(3.14) ( (i) =3 =
' k+l k k 1 k..
max(rl s Ty = 0, 5 r2) if not ;
(iii) .rk+1 = s(rk+l).

We how'ﬁ;bvévthétfghe resulting algorithm is globally and superlinearly convergent.

Theorem 3.1

Let {xk} be a sequence computed by algorithm 1, pk and rk being given by (3.7),
(3.14), We suppose that the sequences {H } and {(H )~ } are bounded and that
o < 1/2 ‘Then - ‘

a) One of the four following events occurs :

(1) lim inf ([[Vf(x) + 7g() AK || + ||g(x P =
ko
. L koky .
(ii) for k great enough., (p ,r ) is equal to some (p,r) and

Tk
> 1,

k
? %, (x) 7 =

(iii) The sequence {x } is bounded and some limit point x of {x } is such that

ng (x), i=1 to m} are not linearly independant.
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(iv) The following relations hold

1im sup Ika||U = o,

koo
lim sup rk = lim sup I|Aklkéé = 4,
k>4 k->+oo R4

b) If the sequence converges towards some x at which (1.2) and the standard se-
cond-order sufficiency conditions hold, and if (l.7) holds, then pk is equal to

] for k great enmough and xk > X superlinearly. ]

Proof

a) We suppose that (i) does not occur : then Sk is bounded, hence pk is equal to

some p for great enough. Supposé now that

lim sup | |A¥|[| < 4.
koo Y

2%,

We then prove that rk is equal to some r for k great enough. By (3.12), ¢k is

null for k great enough ; (3.14ii) shows that rg is an increasing

sequence (for k great enough) ; as r% is bounded, we get rk 2

5 with, by (3.14i)

t2
o ISl kg,
Using (3.14iii) and (3.10) we see that

(3.15) rk'= r> | ¥ - pk|B§Q , k> k

hence

(3.16)  g(d) + vg(:¥) e = 0, k > k.

We now prove that

k, k+1 k, k.t k k
(3.17) ep’r{x ) =8 L) 20 pt (@) HT @Y, k> k.

In fact, we have, using (3.4ii) (k > kS)
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a6, L - 0N GEHEY = - Vf(xk)t & - " gyt & 4 r] g ||
.4 .

= (@t k+<x )t Vgt & +r||g(x>ll

and with (3.15),” (3. 156')

R <r—|ix-p|lj )11,

(d)tkk E ' - : ’

The convexity of Gk implies

0 () - 0NGE o) = (a“)t .

R P T

Then (3.17) is a consequence of the line~search rule (3.3). Because o£‘(3.l7).

if (ii) does not hold, we have

Kokt ok ko

(3.18) T o5 (@9" Hat < e,
k
hence g
(3193 2 1S 198G+ v E] < e,

First suppose that for some subsequence

e

|[VEEE) + Vg(x) AkHU—> 0.

Then by (3 411) dk + 0 for that subsequence ; we deduce from (3. 16) that Sk +> 4 3

this contradlcts our hypothesxs. On the contrary, if
lim inf H'Vf(xk,) * Vg(x) Akl|U> 0,
koo

then (3.19) implies the conﬁergénce of {xk} towards some X s as pk and r:'k _are

" constant for k great enough, we deduce from the proof of theorem 2.2 of



- 18 -

J.F. Bonnans, D, Gabay [ 3 ] that.dk + 0 for some subsequence. This is in contra-
diction with the fact that Sk is bounded.

We have proved that if (i) does not hold and {Ak} is bounded, then ' (ii) holds. To
prove point a), it is sufficient to prove that if {x5} is bounded and (¥} is un-
bounded, then (iii) holds. As pk is independant of k for k great enough this is

a simple consequence of (3.5).

b) Let A be the multiplier associated to x. We have

pk->>\,

r1;+0.

As Dk_is of the same order than |[xk—§||U (sée [ 21 for instancé) we have by
(3.13), (3.141) -

k
r

1

=R

and as r* 2 rT, (2.5) hold. As pkq = Akq for some subsequence k! and as IlAk-Xlk?1
is majorized by a1|ka—§|hjfor some a; > 0, hypothesis (2.4) holds (for q great ?
enough) along the subsequence k. If pk is not equal to one for k > k6’ the
sequence ¢k is constructed in such a way that rg converges towards zero ; by
(3.8), so does also rk. Consequently, by theorem 2.1, and as 0 < 1/2, we have

q q q
xk *l = xk + dk » 4 great enough.

. _ q Copd : ‘

We note that Sk "is equal to (Dk ) l. By (1.7), for any € > 0 we have
’ kq+l -
|x

q _
—x|kj< € ||xk —x[IU for q great enough.

k . : - PR .
As D 1s70fnthe same order than'||xk—x|hjthls implies that



=19 -

q ) q
k*+1 1 .k :
< 1_+0L2’D » q '>"q.l9
hence
Tk o ad
st < o, s, q>q;

14 q,. |
hence by (3. 7) P +¥ will again be equal to Ak +1. This means that kq+l = kqfl

for q > q2 Thls proves the theorem. [J
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