N

N

Improved upper bounds on shellsort
Janet Incerpi, Robert Sedgewick

» To cite this version:

Janet Incerpi, Robert Sedgewick. Improved upper bounds on shellsort. RR-0267, INRIA. 1984. inria-
00076291

HAL 1d: inria-00076291
https://inria.hal.science/inria-00076291
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076291
https://hal.archives-ouvertes.fr

Rapports de Recherche

N° 267

IMPROVED UPPER BOUNDS

ON SHELLSORT

Janet INCERPI
Robert SEDGEWICK

anvier 1984

VR TN EAT Y ERTEL S S

»

\al

Résumé: Des résultats de Prait auaient conduit & la conjecture que le temps
d'ezécution du tri Shell (“Shellsort”) etait O(N¥?) lorsque le nombre de passes
est en O(logN). Un résultat récent de Sedgewick a conduif & une borne en
O(N*3) mais ce dernier résultat ne peut 8tre améblioré sans une awancée

- significative sur un probléme classique de théorie des nombres, Nous utilisons

ici une méthode nouvelle permettant d'atteindre une borne en O(N+4Velogny

H! ! D PAPIER RECUPERE ET RECYCLE

/')

7

»

Improved Upper Bounds on Shellsort

Janet Incerpi ;

Dept. of Computer Science
Brown University
Providence, RI

Abstract: The running time of Shellsort, with the
number of passes restricted to O(log N'), was thought
for some time to be 8(N 3/ 2), due to general results
of Pratt. Sedgewick recently gave an O(N*/3) bound,
but extensions of his method to provide better bounds
seem to require new results on a classical problem

_in number theory. In this paper, we use a different

approach to achieve O(N1+4/V2igN)

Introduetion

Shellsort is a fundamental but little-understood sort-
ing algorithm. A brief description of the algorithm
is given below. It is based on a table Ay, hz, ...

of integers called an tncrement sequence. In practice,

_increment sequences are chosen heuristically based on

partial analytic results which have been derived for

by

Robert Sedgewick
INRIA

78150 Rocquencourt
France

. down to 1. An array all], ..., a[N] is defined to be

some specific increment sequences. This algorithm is

an attractive candidate for detailed study because it is
c]osély related to classical problems in number theory
and because theoretical results translate ‘directly to
practice. (A practioner can make immediate use of a
good increment sequence, no matter how intricate the
analysis.). It is difficult to deny the existence of incre-
ment sequences that would make Shellsort the sort-
ing method of choice, for most situations. Moreover,
relatively few types of increment sequences have been
tried. Some references for Shellsort and some of the
analysis that has been done are [6], {8], [9], and [10];

- some of this information is summarized below.

The Shellsort algorithm works as follows: given
an increment sequence hy, ha, ..., a file is sorted by

successively hj-sorting it, for j from some integer ¢

h;-sorted if a[i — h;] < alt] for ¢ from h; + 1 to N.
The method used for hj-sorting is tnsertion sort: for ¢
from h;-+1to N, we sort the sequence ..., a[i —2h;],
a[s— h;}, a[t] by taking advantage of the fact that the
séquence ..., a[t — 2hj], a[¢ — hj] is already sorted,
so a[t] can be inserted by moving larger elements one
position to the right in the sequence, then putting afi}
in the place vacated.

A fundamental property of this proceés is that,
if we h-sort a file which is k-sorted, then the file
remains k-sorted. Thus, when we come to h;-sort the
file during Shellsort, we know that it is Aj41-, Bj42-
, ..., he-sorted. This ordering makes the h;-sort

less expensive than if we were to h,--éort a randomly
ordered file.

Shellsort sorts properly whenever the increment
sequence ends with A; = 1, but the running time
of the algorithm clearly is quite dependent on the
specific increment sequence used. Unfortunately, we
have little guidance on how to pick the “best” incre-
ment sequences. All the results that we have relate
to specific sequences (from a quite large universe) and
leave open the possibility of an undiscovered incre-
ment sequence with far better performance charac-
teristics than those that have been tried to date.

From a practical standpoint, Shellsort leads to a
simple and compact sorting program which works well
for small files and for files which are already partially
ordered. It is the practical method of choice for files
with less t]ian several hundred elements, and each

new increment sequence that we discover raises this
bound. Empirical tests by several researchers indicate
that there might exist increment sequences for which
the average running time is O(N log N) (for example,
see [4]).

From atheoretical standpoint, the study of incre-
ment sequences for Shellsort is important because of
the potential for a simple constructive proof of the
existence of an O(N log N) sorting network. (An
increment sequence of length O(log N) for which each
insertion requires a constant number of steps would
imply this.) This was an open problem in the theory
of sorting for some time; the existence of such a net-
work was recently presented by Ajtai, Komlos, and
Szemerdi [1] but their construction is hardly practical.
This result makes the search for a short proof based
on Shellsort even more appealing. Weaker results (for
example, an O(N log N) average case) are also worth
pursuing because of the practical implications.

In this paper, we are interested in worst-case
bounds for the total running time of Shellsort for par-
ticular increment sequences. Specifically, we’re most
interested in increment sequences of length O(log N):
this would be required for an optimal sorting network,
and such sequences are the most viable from a prac-
tical standpoint. Even with thié restriction, the space
of possible increment sequences is quite large. For
simplicity, in this paper we assume that the sequence
increases (although there is no particular requirement

for this). Further, we make the following distinction:

Definition: A Shellsort implementation is said to be
unsform if the increments used to sort N items are all
the numbers less than N (taken in decreasing order)

from a fixed infinite increasing sequence Ay, A,

A non-uniform Shellsort might use a different
increment sequence for each'ﬁle size. Both types
are used in practice, though uniform implementa-
tions have been studied more heavily. For example,

Knuth [6] recommends using a uniform implementa-

tion based on the sequence 1, 4, 13, 40, ..., (3% —1),
. On the other hand, in order to use a uniform
sequence one must calculate an appropriate star.-
ing place and/or save the sequence, so some prac-
titioners find it more convenjent to use non-uniform
sequences such as |[N/2], ||N/2]/2], etc. Unless
designed with care, non-uniform sequences are sus-
ceptible to bad worst-case performance for some file
sizes. Consequently, uniform implementations are
more widely used and studied. We use the terminol-
ogy “uniform f(N)-sequence” to refer to an infinite
sequence for which the number of integers less than
N is f(N).
Shellsort and the Frobenius Problem
To prove upper bounds on the number of steps re-
quired for Shellsort, we're interested specifically in the

following function:
Deflnition: n4(a,,az,...,ax) = the number of mul-
tiples of d which cannot be represented as linear com-

binations (with non-negative integer coefficients) of

2y, G2, ..., Gk.
We assume that a;, ay, ..., a; are > 1 (otherwise all
integers could be represented) and that a;, a3, ..., ax

are independent: that none can represented as a linear
combination with non-negative integer coefficients of
the others (otherwise it could be deleted from the list
without affecting the result). More important, for
n4(ay,a2,...,a;) to be defined, it must be the case
that a3, a2, ..., ax do not have a common factor
which is not shared by d (otherwise, only those mul-
tiples of d which share that common factor could be
represented as linear combinations of a4, a2, ..., ax,
and there are an infinite number of multiples of d
which do not).

This function is related to Shellsort by the fol-
lowing lemma:
Lemma 1. The number of steps required to A;-sort

a file which is hj41-, hjya-, ..., he-sorted is
O(Nnn,(hjt1,Bj42,. .., he)).

-

4

L]

Proof: The number of steps required to imsert ‘ele-
ment afs] is the number of elements among a[— h;l,
a[t — 2h,}, ... which are greater than a[t]. Any ele-
ment a[¢ — z] with z a linear combination of Aj41,
..+, ks must be less than afs] since the file is hj4q-,
Rjp2-, ..., he-sorted. Thus, an upper bound on the
number of steps to insert af¢], for 1 < § < N, is
the number of multiples of A; which are not expres-
sible as linear combinations of hjty, Bjqa, ..., Byor
(B4, hi42,...,he). g

When d =1, we have ni(as, az, ..., ax) (or just n(a,,
az,...,a8;)) which is the number of positive integers
which cannot be represented as linear combinations
, Bk A
ax), the largest

with nonnegative coefficients of a,, ag, ...

closely related function is ¢g(ay, a2, ...,

'integer which cannot be so represented. These func-

tions are well-studied in number theory [5,10,11}: to
find g(ay,..., a;) is the so-called Frobenius problem.

The function which arises in Shellsort is related
to the standard Frobenius function by the following
lemma:

Lemma 2. For a3, g, ..., ax relatively prime,

) a1,02,...,8x
ng(a1,a2,...,ax) < 9(—1_2(1__)

Proof: (Note that g(a;, az, ..., 8x) is undefined unless
ag, 62, ...
greater thanag(al_, az,..., ;) can be represented as a
linear combination of a3, a3, ..., ax; in the worst case

all multi.ples of d less than g(a,,ay, ..., a;) cannot. g

Previous upper bound proofs for Shellsort have

used a combined version of these lemmas:

Lemma 3. The number of steps required to hj-sort

a file which is Aj41-, Bj42-, ..., hs-sorted is

O(Ng(hj41,hj42,...,ht)/h).

Proof: Immediate from Lemmas 1 and 2. g

, 8k are relatively prime.) Every number

'Speciﬁc bounds are obtained by solving the Frobenius
problem for specific increment sequences. For k = 2,
we have the original Frobenius problem whose solu-
tion dates at least to 1884:

If ¢y and a; are relatively prime, then
7

Lemma 4.
g(a1,82) = (a1 — 1)(a2 — 1).
Proof: See Knuth[6], Ex. 5.2.1-21, or [2]. 3

For example, this leads directly to an upper bound
for hj-sorting of O(N h;) when A; = 27 + 1, since

Ng(hj+1, ooy hy) S.Ny(hj'H’ hj42)
h;j h;
Bity, b
— o it hita,
h;

This is the bound of Papernov and Stasevich [7],
which was generalized by Pratt [8] to cover a large
family of “almost geometric” increment sequences.
Upper bounds on hj-sorting for sequences with
geometric growth translate to upper bounds on the
total number of steps required by Shellsort as follows:

Lemma 5. Suppose that an increment sequence h;,
hz, ... is used to Shellsort a file of size N, with h; =
8(a’) for some constant a. If the number of steps for
h;-sorting is O(Nth-/C), then the total running time
for Shellsort is O(N1+1/(e+1)),

Proof: The increments used are hy, ..., hs, where ¢
is the largest integer such that h; is less than N. We
use the bound O(N?2/h;) for large h; (this comes from
considering h; independent subfiles of size N /h,-, each
of which could require O((N/ h;)?) steps) and the
bound O(Nh;-/c) for small hj, switching at h; =
©(N¢/(¢+1)), when both bounds are O(N1+1/(c+1)),
The total number of steps for Shellsort is

Y oY+ S o(%ﬁ).

T 1<5<to to<i<t J

where o is such that hy, = Q(N¢/(¢+1)). Both sums
are geometric and are bounded by their largest term
O(N*+1/(c+1)y in both cases. g

For example, Lemma 5, with ¢ = 1, gives the
O(N?/2) upper bound for Shellsort of Papernov and
Stasevich [7] and Pratt |8]. ia facy, i ratt showed this
bound to be tight for a large family of increment se-
quences (encompéssing most of those that have been
proposed), where the increments are within an addi-
iive constant of a geometric progression.

Sedgewick [10] used general results of Selmer [11]
and Johnson [5) for the Frobenius problem for k =3
to develop increment sequences that grow geometri-
cally and the upper bound for h;-sorting is O(N h;-/ 3.
‘This leads to an O(N%/%) upper bound for Shellsort
{Lerama 5 with ¢ = 2). {These sequences are of the
form a4’ 4+ B27 4 v, not within an additive constant
of a geometric progression.) Unfortunately, there are
few available results on the Frobenius problem for
& >. 3, and such results would seem to be required to
get better upper bounds using this approach.

Furthermore, we can show that a bound of the
type O(N1+1/(c+1)) is the best that can be achieved
with this approach because we have a lower bound on

the Frobenius function:

Lemma 6. For a;,az,...,ax increasing,
141/(k—1
n(ay, as, ..., a) = (e /¢,

Sketch of Proof: Define L{(m) = {z | z = cya1 +
~-o 4 exay with ¢4, €2, ..., ¢g > 0and ey + -+
¢ = m}. Then if z € L(M) we know that z >
ma,. Furthermore, |L(M)| < (™}*71). Now, for
any constant mg, we have the inequality

n(ay,82,...,0) 2 (mo + oy — Y |L(m)]

1<m<mo

= o+ 1y (™ 1),

But this function is maximized at mqo == a!/*—! when.

both terms are about ai“H/"_l‘ 1

If we only consider the effects of ¢ increments
hjt1,...,hj4. when hj-sorting and we use the ap-
proach of Lemma 3 (the standard approach), then

Lemma 6 'says't.hat the best bound that we can
hope for for hj-sorting is O(h;/ (¢—1)) which trans-
lates to an O(N!+1/¢) Shellsort bound by Lemma
5. Thus, the bounds of Papernov-Stasevich (¢ =
2) and Sedgewick (¢ = 3) are best possible in this
sense. Below, we show how to achieve O(N*t1/¢)
with {clog n)-uniform sequences for any ¢, though
we do so by circumventing the standard approach
of Lemma 3 and using Lemma 2 directly, not by
developing new results on the Frobenius prob'lem.
Furthermore, we show how this method extends to
provide even better bounds. We do so by turning
attention to increments which have large common
divisors, then by exploiting specific properties of the
generalized Frobenius function with two arguments,

na(r,s).

Generalized Frobenius Problem
It is possible to completely characterize the general-
ized Frobenius function with two arguments. We

have:

Theorem 1. For any positive integers r, s, and d
with ged(d, r, 8) = ged(r, s):

r 8
i) =n_sesar (s ooty)

If d, r, and s are pairwise relatively prime, then

r—{—bls (d"‘ 1)1‘ +bd_18)
4 yer oy d

ng(r,s) = n(r, s,

where b; is the unique integer between 0 and d — 1
such that ir 4 b;s = 0 (mod d). Note that n4(r,s) is
undefined if ged(d, r,) #£ ged(r, 5).

Proof: Omitted.

For the constructions of the next section, we actually
use a special case of thistheorem which can be proved

directly from the definition.

Corollary: For integer z > 1, ng.(rz, sz) = nq(r, s).
This property holds for more than two arguments: we

have ng,(612, 0822, ..., ax2) = ng(a1,a62,...,a;), but

)

©

"

b

a full characterization such as Theorem 1 for more
than two arguments seems complicated.

Applying Lemmas_? and 4 with the corollary to
Theorem 1, we have ng.(rz, 8z) = n4(r, s) < rs/d (if
r and s are relatively prime), which is less by a factor
of z than the bound rzsz/dz which derives from direct

application of Lemmas 2 and 4.

Inerement Sequeneces

Our increment sequences represent a compromise be-
tween two classical increment sequences that have
been proposed fér Shelisort. The first, proposed by
Shell, is the geometric sequence 1, 2, 4, 8,16,... . The
problem with this sequence is that the generalized
Frobenius function is always undefined, since even
after the application of Theorem 1 hjy;,hji2,...
have a common factor (2) which is not shared by A;.
The practical effect of this is that the worst case is

8(N?), for example for a shuffied file with the N/2

smallest elements in the odd positions and the N/2
largest elements in the even positions. Because of this
effect, Shellsort increment sequences are normally de-
signed to have successive increments relatively prime.

A notable exception is the sequence 1, 2, 3, 4,
6,9, ... given by Pratt, which is defined by append-
ing 2z and 3z to the sequence for every element z
in the sequence. Thus, by the corollary to Theorem
1, the runniﬁg time for each increment is n;(2,3) =

1. Unfortunately, there are ©(logZ N) increments

‘less than N , and even after applying tradeoffs as in

Lemma 5, the running time is always 6(N log? N).

Increment sequences with O(log N) increments are -

of more interest because in principle, the running
time for such sequences could be O(N log N) on the
average (or even in the worst case), and in practice,
the large number of passes required for Pratt’s se-
quence makes it slower than typical O(log N)-pass
Shellsorts.

' Thus, our goal is to design a geometrically in-

creasing sequence in which successive increments have

* h in this sequence.

both large common factors and small relatively prime
factors. Our method for doing so is to build up incre-
ments by multiplying together selected terms of a
“base” sequence ay, a3, _

Given a constant ¢, we associate ¢ increments
with each term of the base sequence, each increment
formed by multiplying together ¢ terms of the base se-
quence. To simplify the discussion, we’ll first consider
explicitly the increment sequence formed for ¢ = 3;
the extension to larger ¢ follows directly.

Specifically, for ¢ = 3, we form an increment

sequence by interleaviﬁg the three sequences

3;8203, 628304, ..., 3G} 1012, ...
310204, 628385, ..., GG 1043, ...
213304, 628405, ..., 0iGi4 2043, ...

(and, of course, prepending 1). Now, each increment
has exactly two “a” factors in common with two incre-
ments that appear later in the sequence, which leads
directly to an application of the corollary to Theorem
1. We have

na‘a;.,,;aH.a(ai+1dc+adc+s,aa+1a‘+aa¢f;-¢)

= ﬂa‘(m+s,dc+4) ’
na;a¢+1a4+3(d(+1G(+=at+s,4¢+1a‘+sa&+4)

= ng,(acra,0044)
na.‘aH.aa‘_H(a¢+1¢¢+aa«+s,ac+=¢H+sa‘+4)

= na‘(°4+x.ax+4)

If the elements a4 4, a,-;+_2, 8i43, and a4 are all
relatively prime, and if each term is within a constant
factor of the previous, then these are all O(a;), by
Lemmas 2 and 4. Therefore, by Lemma 3, the num-
ber of steps to h-sort is O(h!/3) for each increment
(For 1-sorting, we must argue
separately that the runmning time is O(1) if g, a3,
..., og are all O(1): the running time for 1-sorting
is O(n(a,6263,a4a5a¢)) since those two increments
are relatively prime.) Now, by Lemma 5, we get an
O(N®/4) bound for this sequence.

The extension of this argument to general ¢ is

straightforward:

Theorem 2. Given a constant ¢, there exists a
uniform (log N)-sequence of increments for which the
running time of Shellsort is O(N1+1/(c+1)),

Sketch of Proof: As before, the increment sequence is

1 foliowed by an interieaving of the ¢ sequences

« I Git k)/Bitco}in1

0<k<e

where ¢g ranges from ¢ down to 1. For example, for

¢ = 5 we have

61G203%4G5, ..., 0;0i4-10{4+20{1-3Ci44, ...
0182030406, ..., a;a;+1a;+za.-+3a.-+5,
318203065838, ..., 040{4 10420148545, ...
6102348506, ..., 0404 13{438(44Ci-}-5, ...
3103646586, ..., 0;0it20i+30it48it5, - -

Wow, we note that each increment has exactly ¢ —1
factors in common with two increments that appear
later in the sequence, which allows application of the
corollary to Theorem 1. When

1
d= H aitk,
Giteo g<h<e

r= JI si+1sr
0<k<e

1
s=—-— JI airits,
B(i+1)+(co—1) p<r<e
then

na(r, 3) = "m(ai+co, at‘-{-c—f—l)-

(For example, wWhen ¢ = 5, %,,,4.050.0 (6203848505,
6203840687) = ng (a5, a7).) This works except for
co = 1, when we take s = (Hogk<cai+2+k) ‘which
still gives na(r,s) = ng,(Gis1,8i4c41). Again, if
all 6,41, ..., Giycqq are relatively prime and re-
lated by a constant factor then these are all 0O(s;)
which leads to a bound of O(NA/¢) for each incre-
ment in this sequence. This gives a Shellsort bound
of O(N1+1/(c+1)) by Lemma 5, using the same ar-
gument as before for 1-sorting.

The proof is completed by exhibiting a sequence

@31, G2, ... Which satisfies the conditions above which

is easy because of the density of primes. For example,
we can take a; to be the smallest prime greater than
or equal to 2°, to get a geometrically increasing se-
quence of primes 1,2,511,17,... which satisfies the

conditions. §

Notethat the constant implied by the O-notation
in Theorem 2 is exponential in ¢. This makes the
increment sequences hardly of practical use. Next,
we’ll examine sequences built according to the same
principle as those above but which have good practi-

cal performance and even better asymptotic bounds:

Theorem 3. There exists a uniform (log N)-sequence

for which the runrning time of Shellsort is

O(NI+4/\/21g N)'

Proof: As above, we start with a base sequence aj,
G2, Ga, ... of relatively prime integers. In this case,

we construct the sequence as follows:

@3 61862 G16203 01020304
G163 G318264 G102G305
316304 G1320405

31030405

The cth column in the table is formed.by starting

with J], <<, 6, then multiplying each element in
the previ;us column by @.41. This ensures that each
increment exactly divides two increments which ap-
pear later in the sequence. The following table gives
the upper bound for the increment appearing in the

corresponding position in the above sequence:

n(qZ y 03) "(037 04) n(a4l 05) n(a_r,, GB)
n{az,a4) n(as, 65) n(aq,ae)
n(az,as) n(as,as)

n(GZJ as)

L)

RJ

-

If we use ¢ columns in the table, then we use 3(c? —
¢) increments, all less than H!Sisc a; with a total
cosi of less than N(3J, <« @:)?. (This bound follows
quicl_-cly from the fact tiaz n(r, 8) < rs.) Once again,
we achieve good asymptotics by proper choice of the
base sequence. Specifically, we take @; to be the
smallest prime greater than or equal to 2¢, so that

8 = 0(25)
I a=o0@i=9)
1<i<e
Z a; = 0(29)
1<i<e

Using all the increments less than N corresponds to
taking ¢ = +/2Ig N, for a total cost of

O(N22V2IEN) = o(N1+4/ V2N

. as desired.

There is a quite simple proof of the same asymptotic
result for non-uniform sequences, due to B. Chazelle
[3]. This result actually motivated the search for the
sequence of Theorem 3.

Proof of Theorem 3. non-uniform case (Chazelle) -
Simply use Pratt’s méthod, starting with (@ —1) and
a for an appropriateiy chosen a (instead of 2 and 3).
The running time is bounded by Na? for each of the
O((log, N)?) increments, for a total of
: 2

N(gN)? @‘%—)5.
Now, take a such that (lga)? = IgN,ora = oVEN
for a total of Nlg N22\/11‘_N = O(N1+@+a/VieN)
for any € > 0. |.)
Chazelle’s proof tends to favor larger increments (close
to N), while the given proof pf Theorem 3 tends to

favor smaller increments (closer to 1).

The table below shows the number of exchanges
fequired by Knuth’s sequence, the uniform ;equence
suggested after Theorem 3, and the non-uniform se-
quence, averaged over a few random files for various

file sizes.

10000 40000 ’
Knuth 242110 1317825
Thm § (uniform) 219536 1054873
Thm 8 (non-uniform) 242248 1153723

Conclusions

Despite the substantial improvements that we have
been able to make in upper bounds for Shellsort, the
results still pertain to particular incremént sequences
of somewh:;t artificial construction and there seems
to be room for improvement. Furthermore, even the
bounds derived for the given sequences are not tight.
For example, they only derive from the effects of
a few of the prévious passes and they don’t take
into account obvious correlations in insertion costs of
successive elements.

It seems likely that better bounds can be ob-
tained by taking such effects into account, and these
are worth exploring because of the direct practical
benefits that éccrue. The question of whether there
exists an increment sequence of O(log N) numbers
which produces an O(N log® N) or O(N log N) Shell-

sort still remains open.

References

[1] M. Ajtai, J. Komlos, and E. Szemerdi,“An O(nlog n)
Sorting Network” Proceedings 15th Annual ACM ‘
Symposium of Théory of Computing, April 1983,
Boston, MA. '

{2] W.J. Curran-Sharp, Solution to Problem 7382
(Mathematics), Educatsonal Times, London 1
(1884).

{3] B. M. Chazelle, private communication, 1983.

4] W. Dobosiewic.z, “Sorting by distributive par- .
titioning”; Information Processing Letters T (1)
(1978), 1-T.

[5] S.M. Johnson, “A linear diophantine problem”,
Canadian J. Math. 12 (1960), 390-398.

6] D. E. Knuth, The Art of Computer Program-
< ming. Valume 8: Sorting and Searching, Addison-
Wesley, Reading, Mass. (1973).

(7] A. A.Papernov and G. V. Stasevich, “A method
of information sorﬁng in computer memories”, -
Problems of Information Transmission 1, (3)
(1965), 63-75.

(8] V. Pratt, Shellsort and Sorting Networks, Gar-
land Publishing, New York (1979). (Originally
presented as the author’s Ph.D. thesis, Stanford
University, 1971.)

9] R.Sedgewick, Algorithms, Addison-Wesley, 1983.

[10] R.Sedgewick, “A New Upper Bound for Shell-
sort”, J. of Algorithms (to appear).

(11] E. S. Selmer, “On the linear diophantine prob-
lem of Frobenius”, J. reine angew. Math. 294
(1977), 1-17.

(12] D. L. Shell, “A high-speed sorting procedure”,
Communications of the ACM 2, 7(1959), 30-32.

Imprimé en France ’

par
vy .
IInstitut National de Recherche en Informatique et en Automatique

3

