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SUMMARY :
'~ Several explicit schemes are presented for triangular

Po (constant by triangle), P, (linear by triangle) and P2 (quadra-

tical) Finite Volume or Finile Element methods, to solve the
Euler first order hyperbolic systém.

A first order accurate upwind Po scheme is compared to a FLIC

type method. A characteristic upwind method is presented. A

second order accurate Richtmyer scheme is constructed. A Runge-
Kutta method is implemented with P, and P2 elements. Applications
are given for the Euler system of conservation laws in 2-dimensio-

nal case.

RESUME :
On présente plusieurs schémas explicites en volumes ou

éléments finis Po (constants par triangle) P. (continus, linéaires

1
- par triangles, et P, (quadratiques) pour résoudre des systimes

hyperboliques du premier ordre. On compare un schéma Po a un pas

-~

& une méthode de type FLIC. On présente aussi une méthode de
décentrage reposant sur les directions caractéristiques. On
construit un schéma du second ordre (de type Richtmyer). Un

schéma de Runge-Kutta est aussi expérimenté avec des €léments PI

et P2. Tous ces schémas sont testés sur la simulation d'é@coule-

ments bidimensionnels ré&gis par les équations d'Euler,.




0. INTRODUCTION

In the past few years, several methods have been
developed for solviﬁg systems of nonlinear hyperbolic laﬁs
which admit discontinuities of shock type with finite dif-
ferences. Our purpose is to study nuﬁerical simulation by

Finite Element Methods of Euler steady transonic flows.

In this paper we deal mainly with several explicit and low-order
accurate unsteady methods ; such a choice is convenient if the
geometry is complex so that many points of discretization are
‘needed. However experiments with quadratic elements will be

also presented.

Po convective upwinding :

AP approximation (constant by triangle) with upwinding
of the convective terms have been experimented ; the comparison
of the number of degrees of freedom with the cost of computation
is particularly favourable to this choice. Unfortunately a general

stability analysis seems non trivial.

Caracteristic upwinding :

A second way to introduce upwinding is to consider
the eigenvalues of matrixes obtained‘by linearization of the
fluxes ; the characteristic upwinding presented uses a fully
two-dimensional flux splitting and is coherent - although very

simplified - with the corresponding Rieman problems.

Richtmyer scheme :

To obtain second order accuracy, a P1 (continuous,
linear by triangles) approximation is used to construct a two-

dimensional Richtmyer scheme.

Runge—Kutta experiments :

'Finally, P. and P, Finite Elemehts/éxplicit Runge-Kutta

1
schemes are presented and compared with the preceeding schemes.




The plan is the following
1. UPWIND METHODS FOR P F.E.M.
1.}. The Flic method
1.2. A one~step method
1.3. Numerical results

2. A CHARACTERISTIC UPWIND METHOD FOR A P, F.E.M.

1
2.1. Scalar case
2.2, Extension to the two—dimensional case

2.3. Numerical results.

3. A RICHTMYER SCHEME
3.1. The linear scalar case
3.2. Extension to nonlinear systems

3.3. Transonic experiments

4. A RUNGE~KUTTA SCHEME

4.1. Spatial Variational discretization
4.2..Boundary conditions

4.3. Time steﬁping

4.4. Linear Elements

4.5, Quadratic Elements.

5. CONCLUSION



1. UPWIND METHODS FOR P, F.E.M.

0

The basic equations for two-dimensional inviscid

compressible flows are described as follows

oW 2 0 _
(1.1) . 3¢ + = F(W) + 5; G(W) =0
where
| 0 Dg pv
_ pu N pu +p . - puv
e o . (e+p)u (e+p)v
and with i

(1.2)2 p = 0.4 [e - %-O(Uz + Vz)] ;

o is the denmsity, p is the 'pressure, & is the total energy,

. o>
u and v are the components of the velocity V.

We may write (1.1) and (1.2)l as

oW . > _ 9 _ 9
(1.3) TS + div[H(W)V] = ™ Fl(W) Sy GI(W)




where
. ) P . o o
. = pu = p = o
' e ' pu pv

1.1.2. Definition of the scheme

As usual we consider a triangulation 06; of a polygon
Qh which approximates the domain § of integration of (1.1) (see
for example ZIENKIEWICZ [24]). From %gh we derive a space Vh‘éf

functions which are constant on each triangle ; the set

{ﬂT}Teﬁf£ is a basis of Vh :

1 1f x ¢ T
0 elsewhere.

(1.5) nT(x); {

Multiplying (!.3) by T and integrating by parts we

A

get, for each triangle T

JJ g%-dxdy + f H(W) V.n do =
T 3T
(1.6)

- ] d
IaT'[F'(W) n_ + G, (W) ny] o

where 3T and n = (nx,ny) denote respectively the boundary of

element T and the (outward pointing) normal vector.

We can now define the scheme as a two-steps advancing

one for time differencing (we follow [18)



Step | : Intermediate values W(T) are compu ted

from equation (1.6) by neglecting the divergence terms

Py = WNT)

n n
F][W (Tij)] + Fl[W.(T)]

’ At ' ij,T '
(1.7) | area(l) y | 5 n_ length(cij)
Cij
cltwn(rij):l + G][w“(T)] .
+ S | th(c..)}
5 ny eng (clJ)

where the superscript n indicateé the time 1e§e1 t = nAt (At is
the time increment);

the sumZ' is taken over the three sides cij’of T,

Tij denotes the neighbdur triangle of T along side cij

glj,T - (nlJ,T

X b

ij . .
nyJ’T) is the normal vector to side cij

outward from T.

Step 2 : New values Wn+](T) are computed by applying the

divergence part to the intermediate values of (1.7)

wleny = ¥

T

(1.8)

‘ At ' con ™o _ oy an  >ij,

el CZ [xgy W (1550 + (1 -x3;) ¥ (D] F;-a*
ij
length(cij)

where

2n _ 1 -om 2N
(1.9), V.. = Z'EV (rij) + V (T)]

13




+>1j,T <0

-]
e

-
s

(1.9)2

= 0 otherwise.

The upwinding coefficient x?j indicates the ome which,

between T and Tij,is upstream

Wall (or profile) boundary conditions are simply
implemented by computing boundary fluxes with only the pressure
terms (using the vanishing of normal velocity) ; consistent Po

interpolation is used for the pressure boundary values.

Inflow and outflow boundary conditions are taken into
account by imposing all the values at infinity to variables along
the boundaries ; because of the>upwinding, this means that the
complete four conditions are imposed at inflow, and.oniy the

pressure at outflow.

One of our aims is to Eoﬁpute steady étates solutions ;
now, when we look at the corresponding steady equation, e + p
appears as the variable in the energy equation. So, considering
an upwind integration for the variables p, pu, pv, e + p, we

note that only pressure terms appearing in Pu and pv equations

)

should have a centered integrationm.



More precisely we write (1.1) as follows

M .o D 3
(1.10), == + div KWV = - = F, (W) 3y G, (W)
with
p o] o
- pu _ P _ o
(1.]0)2 K(W) ov FZ(W) o GZ(W) p .
e + p o o

Using the same Po discretization as in Section 1.1,

we get (similarly to (1.6))

JJ %H dxdy + J K(W)Ven do =
T oF oT
(1.11)

- F_ (W G, (W d
JaT[ ,(Mn + 6, (] do

and we define Wn+l(T) as follows

n+l _ 0 At ! n n _.n q
WD) = WD - ey ) {IxRW(T; ) + X 3 K (T)]
ij
.. F_(WM(T..)) + F (W (T)) ..
X V?j'nlj length(cij) + 2 1 5 2 n;J’T 1ength(cij) 

n n
G, (W (T..)) + G, (W (T)) .
2 1] 2 13j,T 3
+ 5 ny .length(cij),

with the same notations as in (1.7) ; the upwinding is similar
to the FLIC methods, only the variables upon which it is applied

are different.




Boundary conditions are dealt with as in Sectiom 1.1}.

1.3. Numerical results

First we compare the two above methods with the shock

tube problem described by SOD [19] with initial conditions

pp=1. ,p,=1., uy =0, v =0.

Py = -125, p,
The triangulation is regular, comparable to a 101 x 3

finite difference mesh (the size of sides parallel to x axis

is 0.01).

The results at time t = 0.16 are presented in Figures 1.1
and !.2, Compared with the so-called "upwind scheme" presented
by SOD [19], the two above schemes are much more efficient, without

any spurious shock.

Our second test is the calculation of the steady-state

of a channel transonic flow past a circular bump : we chose a

test problem proposed at the GAMM workshop held in 1979 at

Stockholm 17 ] this problem has also be tested by BORREL and

MORICE [4 ] ; the bump is a 4,2 % thick circular arc with length 1.

and the canal 1is of1height 2.073. Free stream values correspond

to a Mach number of .85.



"For consistency with the GAMM test, we use a triangulation
with 72 X 21 vertices, which gives 2840 triangles (= degrees of
freedom). For the NACAOO!2 we have a triaﬁgulation with the same
caractéristics. The Mach at infinity is .8,

Consistent (not local) time stepping is used, wi thout
any artificial damping, to obtain the steady state ; convergence

. ' 9
is measured from root mean square value of 3% .

For the FLIC simulation, 5600 iterations corresponding

to time T = 11.5 sec (u = 1 at infinity)correspond to RMS %% = 0.6 12f2.

For the one-step method, 5600 iterationms corresponding
: 9P -4
to time T = 11.6 sec correspond to RMS 3t - 0.38 10 .

We observed that the one-step method is slightly cheéper

for each iteration and needs less iterations to converge.

Conservely, at the sight of the results (Figures 1.3 to

1.22) the FLIC scheme seems less diffusive.

Some P] variant (VIJAYASUNDARAM ; not published) of the

two schemes have been proved to be as expensive with the same number

of triangles and much more diffusive.
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0.39

0.5 ~
Figure 1.3 : GAMM channel with circular bump ; Mach distribution
on the bottom (Flic method)

’Kp

A

—
- 1.
-7 T

Figure 1.4 : GAMM channel with circular bump Kp distribution

on the bottom (Flic method)
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0.013

- 13-

e

Figure 1.5 : GAMM chanhnel with circular bump ; distribution on the

bottom of deviation entropy . S = .(?71;;)/ (-p%)Y - 1 (Flic
method)
s
0.001

Figure 1.6 : GAMM channel with circular bump ; isentropic lines

(increment AS = 0.001) (Flic method)
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0.65
005

' Figure 1.8 : GAMM channel with circular bump ; Mach distribution on

the bottoﬁ (one step upwind method)

&

Figure 1.9 : GAMM channel with circular bump ; Kp distribution on the

bottom - (one step upwind method)
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0.02—
0.016

Figure 1.10 : GAMM channel with circular bump ; entropy distribution

on the bottom (one step upwind method)

Figure 1.11

: GAMM channel with circular bump ; isentropic lines

(increment AS = 0.001) (one step upwind method)
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1.2

)

J445

rtTrrrroajri

ri¥1vria

Figure 1,13 : 1/2 NACAOOl2 in a channel ; Mach distribution around
the profile (FLIC Method)

Kﬁ

TYrr7mi

=.91

FTTTITTTrTTo Ty

] Vv

+8.

rTrrT

Figure 1.14 : 1/2 NACAOOI2 in a channel ; Kp distribution around the
profile (FLIC method).

.04 oo

-

Figure 1,15 : 1/2 NACAQ012 in a channel ; distribution on the profile
of deviation entropy (FLIC method)
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Figure 1.16. : 1/2 NACAOOI2 in a channel
isomach lines (FLIC method)

0.001

Figure 1.17. : 1/2 NACAOOI2 in a channel ; isentropic lines
(increment AS = 0.001) (FLIC Method).
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1.17
l.

LI

1TT1TTTTTd

rrriei

Figure 1,18 : 1/2 NACAOO12 in a channel ; Mach distribution

cu tue profile (one step upwind method)

v
g+
rrrTi

TrTIrTrTrrTTrIyd

rtvetd

Fiwwre 1,19 : 1/2 NACAOOI2 in a channel ; Kp distribution

on the profile (one step upwinding methed)

—

" 'Figure 1.20 : 1/2 NACAOO!2 in a channel 3 distriﬁution of

entropy deviation on the profile (one step upwind meinodj.
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Figure 1.21 : 1/2 NACAOO12 in a channel ; isomach lines

(one step upwind method).

Figure 1.22 : 1/2 NACAOO12 in a channel ; isentropic lines

'(increment AS = 0.001) (one step upwind method).
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2. A CARACTERISTIC GODUNOV TYPE UPWIND SCHEME FOR P, F.E.M.

1

2.1. The scalar case

The conservation law
(2.1) Wt + F(W)x
is assumed to be homogenous, i.e.
(2.2) FQW) = AFM) ¥re R, WeRS ;
from Eﬁler's theorem we derive
(2.3) F(W) = F'(MW ,
and the conservative‘

(2.4) ' Wt + (F'(W)W)x =0

and non conservative

(2.5) Wt + F'(W)Wx = 0

variants. Noﬁ we assume also that F'(W) is (uniformly) diagonalisable
£

F'W) = TW) AMW) T (W)
(2.6)

A(W) = diag {Al(w),..., Ad(W)}

and (2.5) gives the caracteristic variant

2.1 Teow, + A TN aow_ = o,

it can be written also as
T Tl v W) 9% =0 1<is<4d
oy dEEE T 3%’ "k =33

(2.8)

-1 -]
T = (Tjk)
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In the jth equation of (2.8) each wk, 1 £ksd is differentiated

‘along the jth caracteristic direction by the operator é%-+ Aj(W)gi-.
W

This suggests the construction of an upwind approximation for 455

. together with centered approximations'fof Xj(W) and T;;(W). Retur-

ning to the (2.4)-formulation, we derive a conservative caracteristic

upwind scheme :

Wf.:+l - WI; n n
7 Ax + ¢, 1 - &, 1 = 0
t 1+—2— 17
(2.9) % 1 = [T AJ(WY 1) ¢( g bWy W n )d
it = L ML S
i if A B 1) >0 ]
(uj)i_,_l_ = ’ 2
2 i+l else
n _ l,.n n
Wil T 7 (W + W)

Scheme (2.9) is roughly the homogeneous case of GODUNOV-VAN  LEER's

scheme (see VAN LEER [221)

‘ w?:-’.l - Wn n n
X3 Ax + ¢i+l - @i_l = 0
2 2
n _ ,ahn -n n
95,0 = (DL W @A) L W,
) ) 7
2.10) |, ' s
+ -l . n
@HT1 =T, HMWHT L T W, D
iy 2 ity i+
+.n +
(A )i+% = diag {[Xk(W?+%)] }

2.2.1. The continuous system

The two-dimensional extension of (2.1) is ’

(2.11) W, + F(W)x + G(W%Z = 0.
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System (2.14) is assumed to be hyperbolic, i.e. the matrix
] = = v: '
H=H(M;,nyW) = np F'W) +n, 6" (W)

has all its eigenvalues real for any (n,,n.) inimz and W in.ng.
: 1°772

Moreover, matrix H is assumed to be uniformly diagonalizable, i.e.

there exists a matrix Tn n (W) satisfying
1''2

W h W) W)

(2.12) H =
1M NNy

.
NNy

‘where An n (W) is a diagonal matrix with eigenvalues of H.
17°2

We assume at last that F and G are homogeneous functions with order
one

(2.13)  FQW) = AF(W) ; GOW) = A6(W), ¥\ ¢ R, W ¢ RS

so that

(2.14)  F(W) = F' (MW, GW@) = G'GDW , ¥ e RO

System (2.11) can be written as follows
1 ' =
(2.15) Wt + F'(W) Wx + G (W)Wy 0

' ' = 0
(2.16) Wy + BTIDW, + (CT WD)
Systems (2.11) and (2.16) are in conservative form but (2.15) is not.
For the present two~dimensional case, we cannot write system (2.11)

in a caracteristic form analogous to (2.8) without discretizing the

space derivative and considering control "volumes" and fluxes along

segments,

2.2,2. Space discrgtization

Let "(fh be a triangulation of ]Rz. Let ai a node of TC’h and
ij’ I <3 < q; the triangles having a, as a vertex with a numerota-

tion corresponding to the direct rotation around a. ; 1.. for | < j <
1 1]

|
~

is the common side of K.. and K,. ., with the convention K =
ij ij+1 iqi+] il
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Gij denotes the centroid of triangle Kij’ I.lj the middle point of
1.., and a.. the extremity of side 1., which is not a,.
ij ij ij i

We define the integration zone ai of a, as the bounded region

limited by segments Gil Iil’ Iil GiZ""’ quiliqi, quiGil

(Figure 2.1)

'Figure 2.1. Integration zone ﬁi

of vertex a;.
We introduce the following approximate space

(2.17) v, = {v

2,2 @ 2 ~ ~
h h € LR nL @®), vhlai = const. = v

h.
1

¥ a; vertex of T?h} ’

a basis of which is

1 if (x,y) € éi
Xi(x:Y) =

0 elsewhere.

Formally, an approximate solution in Vh of system (2.11) should be

a function Wh :

. of = d
W, ol [0, [ (Vh)
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such that, for Vi belonging (Vhfi.

(e ot
(2.18) JJ 2(wh)t v, dxdy * IJ 2{F(wh)x + G(Wh)y vh_dxdy = 0.
R

Integration by parts gives

z : (Whi)t v,; area (éi) +
aiGth
(2.19) _
. Ecc j [F(Wh)\)x +.G(wh)vy] vy do = 0.
i~ %h aai

h

cannot be defined exactly ; to every approximation of this integral

Since W, and vy, are discontinuous along the 851, the second integral

corresponds a scheme for the semi-discrete problem. Before choosing
such an approximation we need to discretize the time derivative : an
explicit Euler forward approximation is constructed with first order

accuracy :

h+] n
whi - W,
(2.20) W .) = —X 40w ;
h1 t| n At
t=t
taking vy = Xi in (2.19), it becomes
n+l n
Whi - Y.
area (8.) +
, At .1
(2.21)
' 93 . ' . )
jil L J + f ][F(wh)\)X + G(wh)vy] do = 0. [

i35 T33%:541
Let us now precise the approximation of the boundary integral along

aai ; we need the notations (see figure.2.2)
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<

]
—

<
~—

. ..»V_..) unitary vector, normal to G.. I.., pointing
1] X1]° ¥yi] 1] 1]
outward from ai ,

2,2 . .
Vij = (vxij’vyij) unitary vector, normal to Iij Gij+1’ pointing
outward from éi,
n .. ; vl.. length(G..I..) + vz.. length(I,.G., ,) "~
x1] X1} 1] 1] x1] iy 13+l
n..= vl.. 1ength(G..i..) + vz.. length(I..G... ) ;
yu .yl , 1] 1] y1] 1) ij+1

henceforward index h is omitted.

ay

i+

Figure 2.2,

System (2.21) takes the simplified form

Wl w? 93 .
(2.22), = area(d,) + L H,, = 0
. At j=1 1]
where
' n _ ' n
(2.22), Hi; = [n . F +n 6] (w?,wij)

remains to be precised.

Thanks to the flux splitting (2.22), we are able to transpose

the above one dimensional upwind scheme ; introducing
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= ' 1
1J( ) [”xijF + nyijG 1),
~1 s + -1
(2.23 P..=T A.. T , P.. = .. T ,
J 1] 1] 1] 1] 1] 13 1]
a wr.l1 + Wr.llj
2
we take in (2.22) :
n _ , +.n n -\n - .m
(2.24) Hij = (P )_i_j- wi + (P )_ii wij .
2 2
Summing up, we may write the scheme proposed as follows
q; | '
n
W@ o A ph)t
L area(d.) j=1 2 1
q i 2
(2.25) i
P— £ P, W
1] 1]

area(ai) j=1

@5,

23 defined by (2.23).
2

For a linear stability analysis, we refer to G. VIJAYASUNDARAM [23]

The above scheme is applied to the two dimensional Euler

system. Wall (or profile) boundary conditions are implemented via

a boundary integral of pressure terms ; because the nodes are on
the boundary, no extrapolation is needed.

Outflow and inflow infinity conditions are constructed as in the

first section by imposing the infinity values at the boundary nodes
adequate inflow and outflow characteristic datas are selectioned

by the upwind scheme.
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The shock tube problem :
The problem and the triangulation are described in

Section 1.3. ; results at time t = 0.16 are presented in Figure 2.3.

Channel with a circular bump :

See also Section 1.3 for formulation and triangulation :
the number of uﬁknowns in now only 1512 per component (number of:
vertices).

With 8900 iterations RMS g% is less than 10_6. Witﬁ this quite
fine triangulation, the diffusion introduced by the first order
upwinding 1s not neatly apparent ; the shoék is not at all smeared

and we observe a slight overshoot. Globally the result is compara-

ble to second ordeg simulations.
&

&
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1.36 p~

1.0

0.67

Figure 2.4, : GAMM channel with circular bump ; Mach

distribution on the bottom.

- 1.0.
- 0.98

0.1
0.0

0.45

Figure 2.5. : GAMM channel with circular bump ; Kp distribution

on the bottom.
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S
0.0141
g gooonae.y
& - -
0.0 ‘
0.01 t—
= 0.031p~
1
Figure 2.6. :

: GAMM channel with circular bump ; distribution

on the bottom of deviation entropy.

;‘ 0.001

0.002

Figure 2.7. : GAMM channel with circular bump ; isentropic

lines (increment AS = 0.001).
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&
oy
i

0.

- 1.0
= 0.98

0.0

45

Figure 2.9. : Half NACA 0012 in a channel ; Mach distribution
0.0

on the profile M, = 0.8 ; a

I

r

:

Figure 2.10. : 1/2 NACA 0012 in a channel Kp distribution on

the profile,.




0.03

0.01 (—
0.0
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~ 0.001]

Figure 2.11. :

Figure 2.12.

1/2 NACA 0012 in a channel, distribution

of deviation entropy on the profile.

0.001

1/2 NACA 0012 in a channel isentropic lines
(increment AS = 0.001)




*S?UTT YOBWOST ! [3UUBRYD ® UT ZIOOVOVN Z/1 ¢ °‘€1°C @and1j

- 36 -




- 37 -~

igure 2.14. : Triangulation around NACA 0012 profil
ile.
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Figure 2.15. : NACA 0012 in incidence. Mach distribution on
the profile M_ = .8, a = 1.25°

Kp
L
—
- 1.0
-0.72
.
0.1 [~
|
0.0 !
1.16

Figure 2.16. : NACA 0012 in incidence. Kp distribution on the profile.
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Figure 2.19.: Triangulation around a 1/2 cylinder.
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Figure 2.20. : 1/2 cylinder, Mach distribution
M_ = 0.45 a= 0.0

T i1V 1T T1T1

0.0

rvrJ71id

Figure 2.21. : 1/2 cylinder, Kp distribution.

0.055 |

0.01k

0.0L_

Figure 2,22,

1/2 cylinder ; distribution of deviationof entropy.
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3. A RICHTMYER SCHEME

3.1. The scalar linear case

"We want to solve the following system

oW oW oW . 2
~§E+V]§;+V2‘a‘§—0 in R

(3.1

W(x,0) = Wo(x)
where V = (V]’VZ) is a constant given velocity.

A classical explicit second—~order two-level time

discretization is the following

Wi = wix) - e WD+ VN
X 2y

(3.2)

At2

2

n n n n
+ (v (vw, + vsz)X + U, (VW vzwy)yJ
Let‘ﬁgbe a set of strictly positive parameters with
zero in its closure and let Cé;)heﬁe be a family of triangulationms
such that h is the length of the largest segment of 7§h' We:

consider the following spaces

Hh = {v e LZ(RZ) ; v is continuous ; v is’linear

‘on every triangle T of ﬁfk} ;
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v, = vem o ' (r%) .

Then a Galerkin-type variational Pl space discretization

of (3.2) is
n+l
Wh Vh , and ¥v € Vh
n+1 n
JJ(Wh - Wh)v dxdy
(3.3
CL oWy
- At JJV(V] T + V2 a—y' ) dxdy
2 oW ow?
At h h ov ov
Yo “W] T P 0w gy Y

where the sums JJ are taken on R?.

Since the comsistent mass matrix of this discretization
is not dfagonal, system (3.3) is expensive to solve in a bounded
domain (and impossible to solve in this R? case). Following, among
others, USHIJIMA [21], BABA and TABATA [3], we construct the mass-
lumped va;iant of (3.3) by introducing fhe following notations

(h is fixed) =

- For any vertex A of Wﬁh, the integration zone A 1is
defined by dividing the neighbour triangles into six sub-triangles
with median lines ; then the integration zone A is the union of those

sub—~triangles which have A as a vertex (Figure3.1).
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- So is the approximation space of functions which are

constant on each A :
e 2D, vie %
S, = {v e L°(RY), v|A— const., VYA vertex of h}

- is ri ia jection from to.S
%i the trivial projec Hh o

¥v € H s %9 v e S and
o o

h
(3.4)
:S;VIZ = v(A) , WA vertex of cé;.
Then the mass-lumped variant is
n+ 1
Wh € Vh , and ¥v € Vh .
&
Loon+l n, ¢
JJ \So(wh - Wh) igov dxdy =
3.5)
. awﬁ aw;
- At fJV(V1 -a—x + VZ '3}—- ) dxdy
n n
2 oW oW
At h h ov ov
+ = H(V1 =tV 7%7)(V1 = 7 v, 5;) dxdy

Ffom the classical results of Finite Elements Methods,
the right-hand side is second order occurate ; because of the
mass-lumping, the left-hand side is only first-order accufate,
except for very special regular meshes ; see USHIJIMA [21] for

a discussion of this point with a parabolic context.
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However, for nearly or strictly steady simulations
(like transonic ones), the weaker accuracy of the time derivative

approximation has less importance.

3.1.2. Stability

Fourier analysis for the scalar case gives, for a regular

triangulation

(3.6) )25 <1

where Al is the smallest altitude from a given vertex in a

neighbour triangle ("locél" Courant condition).

For a non regular triangulation, (3.6) is only a

necessary condition ; in [ 2 ] we use an energy argument to get

a sufficient stability condition.

3.2. Extension to nonlinear systems

* The extension to systems is done by a two-step process
of RICHTMYER type ; a choice is made between nonlinearly dif-
ferent variants ; boundary conditions will be treated either

with boundary integrals, or via a different scheme.
The system to be solved is written as

Wt + F(W)x +-G(W)y = 0
(3.7

+ boundary conditions

-where W(x,y,t) is a vector ofimd.
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A natural adaptation of RICHTMYER's method is to consider
a Po (constant by triangle) predictor ; similarly to Section 1, we
use a control volume formulation for this LAX-FRIEDRICHS's type first

step.
According to LERAT and PEYRET's study [12], it is

interesting to introduce the length of the first step as a
parameter.
Then the scheme is the following

Step 1 ; Predictor :

¥T ¢ ﬁf

b and for k =1, 2, ... d,

~ ] n
(3.8, wk(T) = area(l) {JJT W, dxdy

- alt Jar [Fk(wn)nx + Gk(Wn)ny] do}

Step 2 ; Corrector :

Wit (vh)d , and ¥¢ € (vh)d ¥k =1, 2, ...d,

wn+] - WP

k k
8 o

: * n, 3ok n, 3¢k
(3.8 )2 [JQ {B][Fk(w ) % + Gk(w ) ay]
3¢k adk

+ Bz[Fk(a) v + Gk(ﬁ) -3-y]} dxdy

*
n n
- JaQ ¢k[Fk(W )nX + Gk(w )ny] do



- 49 -

where

) _ 20-1
B2 T 2a ’ B1 - T2a

Q is the domain of integration of (3.7 ).

According to LERAT and PEYRET's one dimensional study,

we chose the optimal length of the first step :

a=1+

we

/5
z

some experiments with Burger's equation showed that this choice

is advantageous, even for the computation of stationary shocks.

Numerical integration is necessary to compute the

nonlinear terms :

- A rough quadrature is possible for the boundary
integral in (3,8)1 , because it will be multiplied by Atz in
the resulting scheme.

- A finer quadrature, exact for P2 integrands, is

used for integrals with stars in(3,8)2,

The last integral of (3,8)2‘ (boundary flu#es) is not
time centered for simplicity ; this is only first-order accurate
in time ; actually second-order spatial accuracy is conserved
for steady state simulations. A slightly more expensive variant
with a boundary predictor and time centered boundary fluxes havé

been experimented, which brought no noticeable improvements.
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At last simplified LAPIDUS type artificial viscosity

terms are added for shock resolution, which is a discretization

. of

N SR ki Y SO VG I Y 3
2 3x ox 2 dy 3y ' 9y

with the classical choice X = 0.8.

For transonic simulations, we had to construct inflow

and outflow boundary conditions ; several extrapolation procedures
A )

have been experimented with failure in the obtention of a steady

solution for non regular meshes.

Convergence has been obtained with the use of the

following upwind scheme for boundary triangles :

For any triangle'T such that one vertex at least is
inflow or outflow, fluxes between two vertices i and j are computed
as integral along segment CIij of functions an + Gny (Figure 3,2)
where C is the centroid of triangle T and Iij the middle point of

segment Cij'
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Then two cases are considered for the integration of
Fn_ + Gn
X y
- First case : neither 1 nor j is on the inflow or

outflow bouﬁdary‘: the flux through Clij is computed without

using the values of dependant variables at the third vertex.

- Second case : vertex i is inflow (resp. outflow) and
j is interior (or vise-versa) : if i is inflow, then it is
upstream and j is downstream ; if 1 is outflow, it is downstream

and j is upstream ; following LERAT and SIDES [131, fluxes are

computed by using upstream values of the entropy deviation S
= ¢ Y _
S = (p/p) (p/P) I,

the enthalpy

H Yp 2

_ 2
C(I-7)o )

1
+ —2—(u
and the direction of the flow, and using the downstream value of

the pressure p.

Summing up, all the four infinity conditions are imposed
on inflow and outflow vertices, but only the convenient quantities
(three inflow and one outflow) are taken in account by the upwind

boundary scheme.

As in Section 1, the steady state simulations which
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we present here have been computed with the consistent time

integration.

The shock tube problem :

The problem and the triangulation are described in Section 1.3 ;

results at time t=0.16 are presénted in Figure 3.3.

GAMM channel with circular bump

Physical conditions are defined in Section 1.3 and the

triangulation is the same with 72 X 21 vertices (= degrees of

freedom).

The convergence to the stationary solution is slower than
the above upwind methods ; typically 7000 time steps (T ~ 40 seconds)

were needed to get a root mean sqﬁare value %% less than 2.10_5.

Now in the results presented some improvements in cpu time
have been obtained by using local courant numbers and by forcing

+ (u2+v2) at its value at infinity.

N —

the eﬁthalpy H = V%T

koY ge)

We present in Figure 3,4 to 3.8 the Mach, Kp, and entropy

deviation distributions on the bottom, and isomach and isentropic

lines.

With an artificial viscosity coefficient equal to 1.,
some oscillations remain before are after the shock. Results are
generally comparable with simulations presented by LERAT and SIDES
[131,013'], and especially with simulations presented by LERAT and SIDES
optimal Sg scheme (see LERAT [11], p. 97 Fig. 9b) as could bé

expected since the scheme presented in this section is quite

similar to this latter finite difference scheme.
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Flow past a cylinder :

A polar-type mesh is used, the radius of which is 25 chords
with 64 intervals in the chordwise direction and 14 intervals in
the normal direction. Distribution is presented in Figure 3,9 for

the case Mach .45

Flow past a NACAOQ]2

Experiments with a quite coarse mesh are important for an

a priori evaluation of the 3-D version of the scheme ; the mesh
presented in Figure 3.10 contains 600 points (300 for the half
domain) and have been extensively used for full potential runms.
Two non lifting for the Richtmyer Galerkin scheme are compared
(Figures 3.10-3.15) with the GAMM workshop contributions. Although
the Cp curve is not high enough, the shock is well positionned and
the leading edge pressure peak is well captured with a maximum Cp
of 1.20 for the first result, 1.23 for the second.

: For the two cases, we preéent also the Mach and.entropy
distribution gust as the isomach and isentropic lines (figures 3.10-

3.15 and 3.16-3.19).
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/

The integration zone A

of a vertex A

Figure 3.1,

Figure 3.2.: Control volume type flux computation

for boundary triangles
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T=

0.589
0.5

0.481

Figure 3.4 : GAMM channel with circular bump ; Mach distribution on
the bottom (Richtmyer scheme)
K
LP

Figure 3.5 : GAMM channel with circular bump ; Kb distribution on

the bottom (Richtmyer scheme)
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0.031
0.02 |

Figure 3,6 : GAMM channel with circular bump ; entropy distribution on

the bottom (Richtmyer scheme)

0.001

Figure 3.7 : GAMM channel with circular bump ; isentropic limes

(increment AS = 0.00!) (Richtmyer scheme)
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X/C
1.0

Jameson et Al. o

Veuillot-Viviand
| Rizzi ’
! Zanetti R
|

Richtmyer-Galerkin __|
(presented method)

Figure 3.10. : Kp distribution for a flow past a NACA 0012

airfoil, M = 0.80, o = 0° ; 600 points mesh ;

comparison with GAMM workshop Euler contributions [171.
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Figure 3.13 : NACAO0OI2 Airfoil, M=0.80, a=0°
sLgure S.15 .

isomach lines.

Figure 3.14 : NACAGO12 Airfoil, M=0.80 o =0°

isentropic linmes.
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X/C

o

‘ Sells
|

e
-

. Sides-Lerat
Veuillot=Viviand

Rizzl
Richitmyer Galerkin.

g! (presented method)
il . 3
|

|

|

L _

Figure 3.15. : Kp distribution for a flow past a NACA 0012
airfoil, M = 0.85, a = 0° ; 600 points mesh ;

comparison with GAMM workshop Euler contributions[171].
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Figure 3.18 : NACAOOl2 Airfoil, M=0.85 0o=0°

isomach linés.

Figure 3.19 : NACA0OL2 Airfoil M=0.85 0=0°
: isentropic lines.
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4. RUNGE~-KUTTA SCHEMES

The system of conservation laws is defined as in (l1.1) and
(1.2), and we want to derive a spatial approximation of the system ;
if we refer to Friedrichs theory for stationary linear systems
(see[ 8] ), it may seem reasonable to look for a W variable in
HI(Q) where  stands for the gebmetrical domain ; this 1is the
same optipn as for the above Richtmyer scheme and, as for this
latter scheme, we hope to solve via an artificial viscosity the
contradiction between using a nearly continuous space and capturing
shocks.

Then the conservative variational form of (1.1) is the

following

(we) e il @1% , and w e 8 @1

oW ov ov .
(4.1)1) JQ {ﬁ' v - F(W) 5—: - G(W) -8—}7} dxd'y

+ f v[F'-(.W)n +G(Wn_ldo =0
on X y
\

Given a triangulation ﬂjh of  and Lagrangian finite
element, we can construct finite dimensional space vy included
in [HI(Q)ja, and approximating (in the usual way) that space ; then

the spatial semi-discretization of (4.1) is

Wh(t) € VH’ and W ¢ Vh

A (v awh
( -2) { JQ {"-3—

- Qv _ v
TV F(Wh)a = G(Wh) 3y }dxdy

* i =
+ Jgg v[F(wh)nX + G(Wh)ny] do 0 .

where the * denotes numerical integration and some boundary procedure.
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4.2. Boundary conditibng

Boundary conditions are plugged via the boundary integral

[* of (4.2) for the wall and profile conditions as _well as for the
3R

conditions at infinity (instead of the upwinded control volume
scheme used in_the Richtmyer scheme).

For the'intégrals at infinity, Qalués of wﬂ arebreplaced
at each integration point by a value obtained from a choice.of
infinity and interior quantities in accordance to table 1, which
gives a discretization of the conditions in Section 3.3 ; this
discretization introduces no diffuéion : no upwinding is used;

neither extrapolation since with Lagrangean finite elements, the

dependant variables are defined along the boundaries.

‘quantities °
.q : Entropy

LX I ¥Y

Enthalpy :Velocity direction : pressure

. boundar

.
.
.
.

inflow infinity : infinity : - infinity : interior

outflow : interior : interior : interior : infinity

. . . . .
. . . . . . . .

TABLE | : Conditions at infinity

4.3. Time stepping

Let us denote by

(Ni) the candnicai (local) basis of Vh

M a (consistent or not) mass matrix

[
M.. = | N.,N, dxdy
1] jQ i3

standing for the (exact or reduced) time derivative
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Q the other (nonlinear) terms in (4.2)

- aNj BNj
Qj W) = - J {F(wh) ==t G(W) 5y } dxdy

*- 0

N a
. faQNJ [F(H)n, + G n 1 do

Then the system of ordinary differential equations is rewritten

as follows

0 -

T3 M Wh + Q _wh =0
or

awh -1
(4.3) -B_t_,— + P Wh = (0, with P=M Q

We follow SCHMIDT, JAMESON [18] and use the classical fourth order

Runge-Kutta scheme

W@ W (e 5 At = gl m
(Step 1.
I RUEEORIHO
Step 2.
W@ - g ey )
Step 3.
W(S) = W(O) - At P W(z)
(y _ 1., 2@y 1 (3 _1.(0)
w_ =3 W+ 3 W 5 W 3 W
‘Step 4,
w(2) = w(3)— At P w(3)
W@ L@, )
v -y
\\  For the stability of such.schemes, see for example [20] ;

a typical Courant maximum number for this kind of problem is 2/2 for

centered second order discretization.
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‘For simplicity a separate time step is used to introduce

the same Lapidus—type numerical viscosity than for the Lax Wendroff

scheme (see section 3.2).

4.4. Linear Elements

' The Vh space 1s defined as in Section.3.l.1l.

4.4.1. Specific_implementation choices

Because we are mainly looking for stationary solutions,
the same mass-lumping than Section 3 is used.

The quadrature formulas for the nonlinear flux are also

identical to those of Section 3 (exact integration for quadratic

integrands).

4.4.2. Shock tube simulation

With the same conditions as for the above schemes (except
CFL = 0.9 X 2/2) we see (Fig. 4.1) that the present Runge-Kutta +
FEM scheme‘is not as accurate (oscillations) as soﬁe of the above
schemes (see the Richtmyer result, Fig. 3.3),.for unsteady Euler

simulations with shocks.

The convergence towards the stationary solution have been
clearly obtained only with a coarse mesh. Such a difficulty have
been noted by SCHMIDT and JAMESON [18] for a finite volume approxi=-
mation ; the sélution proposed by these authors is the use of a
fourth order dissipation ; we have not yet tested this viscosity

which is quite expensive with finite elements.
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The coarser mesh used is a 23X 7 vertices one (264 triangles) ;
see Fig. 4.2. The resulfs obtained are presented in Fig. 4.3 to 4.6.
In figure 4.7 the Kp distribution is compared with the Richtmyer
result (same, coarser mesh) and with LERAT and SIDES' curve (obtained

with the finer GAMM mesh).

We considered only straight elements.

Space Vh is defined by

vy = {v e HI(Q), v is continuous and ¥T ¢ if; vlT € PZ)

where Pz'is the polynomial space generated by [l,x,y,xz,yz,xy] .

Degrees of freedom are values on vertices and at middle of sides.

The interior (2 dimensional) quadrature formula for the

§

nonlinear term is the classical one, defined with the six degrees
of freedom (vertices and mid-side), exact for products of polynomial
of degree less or equal to two.

The boundary quadrature formula 'is the usual one dimensional three

po;nts Gauss formula,’exact for polynomial of degree less or equal

to five.

Let us discuss now the choice of the mass matrix : two
pqssibilities have been explored
~ The consistent mass matrix, which is factored once for all times.
-~ The above P, diagonal mass matrix : time consistency is lost ; the
unsteady solution if‘highly oscillating and time steps hgve to be

reduced (empirically 0.4. CFL).



Let us describe the numerical viscosity that we used :

we chose exactly the same Pl discretized artificial viscosity than
for the Pl versions (Sections 3.2 and 4.45 ; our motivations in
that choice are the following :

- we consider this viscosity as a Schuman-type filter,
and consistency with a continuous model is moderately important as
far as some fundamental properties (conservation, accuracy...) are
available ; this artificial device does nof need to be discretized
with accuracy (viz. using quadratic approximation) since the main
error comes from using this device and not from the rdughness of

its approximation.

- our main interest is to compare the Pl and'P2 (linear

and quadratic) approximations of the hyperbolic part so it is con-
venient to use the same filter.

One disadvantage is that this filter introduces a limitation

Spme*cbmménpsfaboup thé'triangulations : significant compa-

risqp§’één’bédeUGJBEEWQQﬁ’1inear and quadratic elements only if the

same number -of points at the same places are used for the comparison.

4.5.2. Shock tube simulation

We use a 2-D code like in the above experiments, but now,
the 101 x 3 mesh contains only one range of SQ triangles (instead of
two ranges of 100 = 200 tfi@ngles for the P, countefpart) and all thé
diagonals between the triangles are parailel, (see Fig. 4.14) so that
. the discrétization is strongly dependant of the y-direction (while
symﬁetry between {y=0} and {y=1} was available for the P, discretiza-

tions). To show the consequences for the results, we present on the
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same Figure 4.9 the {y=0} and {y=1} distributions (l)

'We must emphasize that the adjustment of the filter seemed
more difficult than with linear approximations and the parameter
used was X = 2., 1,e. more than twice the usual one in the above
sections. In despite of this, we think that we got in a manner the
best result of the present paper for this test, with only four
points (2) in the contact discontinuity. One conclusion is that,
with a fine enough mesh and for the nonstationary case, shock and

especially contact discontinuities may be better resolved with

higher order finite elements.

4.5.3. GAMM Channel with bump

The coarser mesh (23 X 7 points) is used, which gives now
only 66 triangles. Because straight (not curved) elements are used,
the bump is not well approximated, and singularities are introduced
by ghe angles of the boundary, and interact with the approximation,
generating oscillations. With this coa;se'mesh, the influence 6f the
artificial viscosity is importan£ and we chose the usual coefficient :
X = 0.8.

The consistant mass matrix version has been used for
those cases ; same'results, with about the same cost are obtained
with the diagonal mass matrix version, the convergence of which is

more delicate (so that this version is only memory saving).

1 . . . . . .
(") The consistent mass matrix version is used since the diagonal mass
matrix one is not time-~consistent.

(2) For each {y=0} and {y=1} distribution.



- 73_

For efficiency, the derivatives of the basis functionsl
were computed once for all and ‘in this condition, the ratio of
C.P.U. cost between I i#gration of the linear code and 1 iteration
of the quadratic one was for those expe;iments of about .3 (conver-
gence speeds were similar). |

For the above transonic test case (Figure 4.9), no noticea-
ble improvement has been observed. A subsonic case (presented in
Figures 4.10, 4.11, to be compared with the Pl runs in Figures 4.12,
4,13) shows that the bad fitting of the pfofile induce a spurious
. separation after the leading edge ; however the entropy distribution
shows some‘advantagelfor'the P2 approximation.

We can also explain these quite disapointing results as
follows : Theé linear approximations are already quite accurate,
except ﬁear éingularities (viz. shock and stagnation points), which
are not well captured. These loss of accuracy are due to the fact
that the artificial viscosity produces the main part of the error
and so is too large. Now the viscosit; is also clearly not enough,
especially f;r the quadratic approximation.

Qur first conclusion is that an efficient filter remains
. to be found. But this very short study is of course p&t enough to
dissuade from the use of these higher order elements ; in particular
if would be interesting to have an further evaluation with curved

elements on a nonsingular test case.
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P, approximatien with Runge<Kutta time’stepping

Figure 4,10. Cp distribution

L 0.0 |

Figure 4.11. Entropy deviation
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‘ P, approximation with Runge-Kutta time stepping

M =0.5

—00

Figure 4.12. Cp distribution

" 'Figure 4,13, Entropy deviation
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Figure 4.14. : PI/PZ comparison for the shock tube test
(a) P1 (101 x 3) triangulation (200 triangles)

(b) P2 (101 x 3) triangulation (50 triangles).
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Figure 4.3. : GAMM channel with circular bump ; Mach

distribution on the bottom (Runge Kutta P] ; coarser mesh)

-.82

/

o

_\\3\ / -

Y

: GAMM channel with circular bump ; K_ distribution on

9]

Y N W S
— oL —i : -

Figure 4.4.

the bottom (Runge Kutta Pl ; coarser mesh)
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Figure 4.5. : GAMM channel with circular Bump s entropy

bl
distribution on the bottom (Runge Kutta P,
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Figure 4.6. : GAMM chanmnel with circular. bump ; isomach lines

(Runge Kutta Pl’ coarser mesh).
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Figure 4.7, : Kp distribution for a flow past a circular bump ;

comparisons with LERAT-SIDES [13] scheme and with

Richtmyer scheme (section 3).
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5. CONCLUSION

Several explicit schemes for F.E.M. arbitrary triangula-
tions have been presented.

The two first order schemes with convective-type upwinding

are very easy to use ; the one-step scheme is fastly convergent but
quite diffusive,

Stationary simulations with both schemes show shocks
capturéd without oscillations.

The characteristic or Godunov-type scheme is much less

diffusive than the convective upwind schemes ; shocks are captured
almost without oscillations and are not smeared.

The Richtmyer scheme seems as precise as Finite Differences

or Finite Volumes second order schemes. LERAT-type implicit extension
(see [11] [14]) seems possible and interesting since the scheme is
only a seven point one.

The Runge—Kufta schemes are mainly interesting for stationa-
ry simulations. The“P2 experiment shows that higher order elements are
efficient for the evolutive case as soon as a good enough Schuman-type
Filter (or artificial viscosity) is employed. But, for complex geome-
tries where a minimal number of points has to Be used, the advantage
of.the P2 approximation is not clearly stated.

A lot of things remains to be done, some of them are already
in progress :

- further experiments : profile with incidence

- faster solvers

. pseudo steady explicit methods
. implicit methods

- 3-D extension [5].
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