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THE ANALYSIS OF SIMPLE LIST STRUCTURES

Philippe FLAJOLET, Claude PUECH, Jean VUILLEMIN

or unsorted, used as dictionm-ies or priority queues) under sequences of
operations. and characterize the u:uera.ge and variance of th.e distribu-
tions o f costs. -

i

context dynamique, sous leffet de suites dopéra.t'wns Nous obtenons

91:1

~ Abstract: We present an analysis of s'z'.rhpl_é list structures (either sorted - |

Résumé: Nous présentons une analyse des structures de liste (trides ou
" non, utilisées comme dictionnaires ou comme files de priorité ) dans un

‘notarmment des est'wna.t’wns de moyennes et 'ua'n.a.nces des co'u.ts de ces
structures. ' : ' o
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ABSTRACT

We present an analysis ’of. 'simple lists, either sorted e

- unsorted, under the set of all their possible histories (ie. evolu- »
tions considered up to order isomorphism) of . length n. Using the

theory of continued fractions and orthogonal polynomials, Ra- - |

jolet, Francon, and Vuillemin have determined such average costs. |

of sequences of operations for many data structures of the dic-" .

tionary or priority qu.eue type. We show here that, for the simplest

of all structures variance estimates can also be obtained. The
‘method uses continued fractions and properties of non-classical
* g-generalizations of Hermite and Laguerre polynomials.



1.INTRODUCTION.

It was shown by Francon [Fr79] and Flajolet, Frangon, Vuillemin
[FFVBO] that several list and tree organizations can be analyzed in a dynamic
‘context. /ntegrated costs for these dynamic structures were defined as aver-
ages of costs taken over the set of all possible evolutlons of the structure. con-
sidered up to order isomorphism.

"I'his.'paper is concerned with methods for deriving estimates of the -

mm’mwa' of costs in a similar setting. Since this appears to be a harder prob-
lem, we only solve it here for the simplest dictionary and priority queue struc-
tures, namely the sorted and unsorted list structures. As in [FFVB0], our

approach relies on the use of continued fractions and orthogonal polynomials. It -
introduces some of the so-called g-generalizations of Laguerre and Hermite

polynomials [Ha49] which appear to be non-classical.

Roughly speaking, a g —se'n:e.é is a series of the form: . .

2 nrg'2" = Ton(q)e" o (1)
' where a,(g).is a polynomial in g, with a degree quadratic in n, in practice n?,
Z‘_(% ... Such series regularly occur when analyzing the distribution of-

costs of algont.hms with a worst case behavmur. on inputs of size n, which is

O(n?). Examples include path-length in trees ([K68] p.399), bubble-sort and the -

distribution of inversions in permutations,for which:

an(g) = 1(14g) (14q+g®) - - (1+g+g+..+g™"")

([K73] p.15) as well as quicksort or tree-sort ([K73] p.142). We are here in a
similar situation since the total cost of a simple list structure (sub]ected to a
sequence of n operations) ranges between O(n) and O(n?). The difficulty with
g-series is that they are not expressible as combinations of elementary func-
tions (exp, log, ...). Some (but few) of them are related to theta functions in the
theory of elliptic functions. Since it does not appear to be the case here, we

> shall have to resort to indirect methods. Essentially this involves setting up a
functional equation of some sort satisfled by the g-series. Differentiations, fol-
lowed by resolution of correspondmgly derived equations, give access to the
moments of the probability distributions associated with the {a, ; Jra0.

. We now briefly review some of the definitions of [Fr79,FFVB0] to be used
later. We are interested mainly in the analyms of dxctlonary (DICT) and priority
queue (PQ) orgamzatmns
Deﬁmtmn 1: A schema is a word .

Q=o0,0p" -0, € {I,0,Q*,@7}°
such that for all j, 1<j<n: ‘

/

, lojoz: - o5lr 2> |oj02- - 05, ' ()
T_——_'— o
Preliminary results along these lines have appeared in [CFFPV80).
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A schema is to be interpreted as a sequence of requests (the keys operated on
not being represented), where /,D,@*@" represent respectively an insertion, a
deletion, a positive query and a negative query. Condition (2) is to be interpreted -
as follows: after the 0,05 - - 04 operatlons have been performed on the struc-
ture, the resultmg size 1s , -
Q; (Q) = loy0z - - 05]f = !0102 °;|D . (3)

which should always be non negative Furthermore in the case of prlonty queues

‘where only insertions and deletion of minimum are performed, we conSLder

schemas over the restricted alphabet {7,D] .

| Deﬁnition 2: (i) A dictionary history is a sequence of the form:

h = 0,(r1)op(re) <+ 0q(Ts) |

where Q=0 192 " Op is @ schema, and the 7; are integer satisfying:
- 0<‘r,<a, I(Q) if Oj = Q+ or D
O<r; <a,_1(0) ifo; = Q' or I.

(ii) A pnonty queue hzstory is a sequence of the form:

0,(r1)og(re) - - - op(ry)
where 0=0,0; - ' - 0, is a schema over the alphabet {/,D} only, and the r; satisfy: .
| 7=0 ifo;=D. .

O=r; <oy ,(Q) if oj = Q' or 1

Intmtlvely speakm,g. 'r, represents the rank of the key operat.ed on by o, In t.he

.. case of priority queues , since deletions only operate on minimal elements in the ‘

. structure, this rank should be 0 for a deletion and can be any intéger between0 "
and the size of the structure (i.e. a;(h) at step j) for an insertion. Dictionary :, "
" structures on the other hand allow.the full range of msert delete and query

operations. For instance, a DICT-history is:
1(0)7(0)/(2)@" (1)0*(1)D(1)Q*(1)D(1)D(0)

and, with keys that are real numbers. it could represent (see [FF'VBO] for :
details):

1(3.1)1(2.7)1(9.3)Q'(z.g)qf(z.v)p(s.1)Q+(9.3)D(9.3)D(2.7) )

as well as : St

1(6.2)1(0. 5)!(7 1)@ (1. 1)Q+(6 5)D(6.2)@*(7.1)D(7. 1)D(0 5)
It proves convenient in the sequel, for a hlstory '

h =0, (r1)oz(rz) - - 0n(7s)

to mtroduce the following notations:
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(i) aj(R) = a4 (0,02 - - 0p,) &s defined in (3) represents the size of t.he struc-
ture after the first j operahons have been performed.
(ii) ps(R) =75 is the rank of the element operated upon at the j—th stage.

: (idi) o,(h) = oy is the j—th operation performed (i.e. an / or D for PQ, a
@*.@".1 or D for a DICT structure).

To any DICT or PQ data structure which operates by comparison between keys,

and to any corresponding history h, is associated a cost cost(h) called the

integrated cost which is the sum of the costs of individual operations
represented by the history. In the case of the time (7) or.storage (o) costs for

simple list structures, the mtegrated costs are easy to determine from the his-.

tories.

It éhouid be made clear, in the definitions that follow, that there is

some arbitrariness in the choices of our cost measures which have been dic-
tated only by the aim of simplifying the calculations. Nevertheless, all cost
measures of interest (number of keys scanned, of pointers used ...) bear trivial
relations to the ones we introduce.

_ For both the sorted and unsorted list implementation, the (mtegrated)
storage cost for a history h is:

olh) = ;a, (h). | (4)

This cost is measured in the number of keys used in the course of the history,
and holds for either of a P@ or DICT history.

" The (integrated) time cost for a sorted list used as a priority queue is
deﬁnedasg':_' R S

where we use the notation:

Leih) = 3 ps(k)

w o,(h)=u

for any we{/,D,@*,Q ). The above definition is motivated by the fact that, in a
sorted list, deletion of the minimum involves no compamson and insertion in
position 7 involves (7 +1) comparisons. :

The (integrated) ﬁme cost for an'unéarted list PQ;structure is simi- -

. Lgrl‘y: : ' ,
' TUL-PQ(h) = Ea,(h) (6.a)

since an lnseruon is now done at no cost (in terms of comparisons) and deletion

of the minimum requires scanning the whole structure. Notlce that from this

definition follows that ‘
o-PQ(h) = 27UL-PQ(h) - |h| ~ (8.b)

7SL-PQ(R) = Toy(h) | (5)

"1
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- For a dwtwnary usage, we have the analogous quantxties TSL—DICT .

~and TUL-DICT; 'rSL -—DICT satisfies:

3

SL-DICT(h) = z:pj(h)+>:p,<h>+zp,<h>+2p,<h) o

,but ‘rUL ~DICT does not appear to have such a symmet;rical expressmn

: ‘Our problem can now be stated precisely: considering all hist._ories of
length n and final altitude 0O (i.e. such that a,(h)=0), determine, for each of the .
cost measures above, their average value and their variance. The results will

therefore represent the analysis of time and starage costs of simple lists struc- ' -

tures in a dynamic confext. They cover all the complexity measures deﬁned so
far with the sole exception of 7 UL-DICT?. : L

The plan of the paper is as follows in Section 2, we recall the continued
fraction theorem of [F180,F181,FFVB0] and we use it to express as continued frac-

- tions generating functions associated to some of the cost measures above. In

Section 3, we.show how to combine these expressions with properties of g-
Laguerre and g-Hermite polynomials in order to attain variance estimates for
various cost measures. Finally, we briefly indicate in Section 4 some connections
with related combinatorial works.

”‘ N .' v
2. CONTINUED FRACTION AND ORTHOGONAL POLYNOMIAL FORMS FOR GE'N-

- ERATING FUNCTI ONS

2.1.Continued fractions. -

It has been shown [F180,81] that the characteristic series for histories can
be expressed under the form of a continued fraction. Let oY) denote operation o
performed on a structure of size i with rank j. In the case of dictionaries, his-
tories are then described by words over the alphabet'

nery = u . | osj=i ieN | U [ D). | 0<j<i jieN |
and in the case of pnomty queues the alphabet reduces to:
| PoY = {IU) | 0<j<i ;ieN } U (DY) | ieN].
One has [FI80, Bl]: | -

v

'l'heorem 1 The characteristic series for the set of histories with initial and
Jinal altitude Ois given by the contmued Jraction:

TWe thus have two measures for integrated st.orage and three for integrated time. Because of
remark (6.b), the number of our enalyses is ultimnately reduced to four.
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- char(H )ﬁ =

N
. -2 Q;;U) _2 Qi—(z’) - EM_

T -gar0-

where tha sums 20¢U ) are taken Jor all values of § such tha.t o}” is in the alpha- '
bet X of the type of instonas considered. 4 '

In part.icular; repla_cin‘g each o,U) by a single variable leads, on the left, to
the series ) Haz™ (with H, the number of histories of length n), since z®
appears as many times as there are histories of length n; the right hand side is
transformed into a continued fraction of the so-called Jacobi type. In the case of
_dictionaries and priority queues, we have [F180,81,FFVBO]: '

Corollary 1: The generating series relative to dictionary histories and priority
queue his@oﬁes are expressible as: :

DITE () = ¥ DIETR o = 1 i
nap . 1-1.2~- .2
1-8.z2- zaz 2
1-52-S2—
PRHe(z)= Y PH,2" = i —
na0 1— 2
1- 22 2 i
. z 4
1-22

From this corollary, using identities of Euler and Gauss, it can beA proved
that: '

_ oIy, = . a . (8)

Ry, =1.35. - -.(2n-1). (9

Theorem 1 can also be applied to derive information on the distribution of -
storage cost in simple list structures. With the storage cost defined in (7), we
introduce: : .

DICTs, = card{ k ||k |=n.0(h)=k, h€DICT—history} (10)
Pes, » = card{ h ||k |=n,0(h)=k, hePQ-history)} -(11) -

Wé have:

Corollary 2: The genemtmg functwm assocw.ted to the distribution o j memory
costs sa.tvsfy



‘DIwS(z'q)___kzo.mchn#qkzn - 1 : - (12)
B .

 PSeag) = T PSugten s ———. (1)
' ne o '
: 1- — .
1--2 zs 2
3 | 1_39 2*

Proof: The same proof applies for both cases. We start from Theorem l..and sub- ‘.-

stitute for each letter o{/) the value zg'. Substitution on the right hand-side BN

leads to the two continued fractions above. Substitution on a term h in char (H)
obviously leads to z!#!g9(), Thus char (H) is changed into

LM = st o
€, ) .

. We now introduce, for each il’lteger m, the notation:
n
[m]= [m]q"1+q+q+ 4qm" 1—1—__%1—
The quantity [m ]q is called the q-generallzatlon of integer m (to which it
reduces when g = 1) For the time cost of sorted hsts in analogy mth (10) (11)' P
we define: - _ . .

Ty, = card{ k ||k |=n,7(h)=k, hGDIC;T-;history}{'- e (14) _
- PT,4 = card{h ||k |=n,7(h)=k, hePQ-history} = (i5)  *
and, with above notations we can state: - ‘ ‘

Corollary 3: The generating series for the d'z.stnbutwn of compa‘n.son cost in
so'rted lists are given by: :

DICTT(z,q) _bzggowch LI
= ~ , . (16)
e
1-([1}+{2])2z — -
| 1~([2]+[3]) =z - BLZZ.

PI(z.q) = 3 MToagte” = T - an
kn20 1__L]22_2_ . .
. I lz
-1
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Proof: 1t follows similarly from Theorem 1, using t_he substitution

oU)szg,.

2.2.0rthagonal polynomials.

All the continued fractions considered above are of the form:

| 1
J(z) = Alzg .
1—Kxg2 — ) hoz?
l—x2 - Py
l-ICEZ—

The h-th convergent J(*)(z) is defined as the finite fraction:

JM(z) = —n 1

. )\122
1 Koz Azzz

l'lclz"

l-ipz .

and is assoclated mth histories of bounded hexght The h-th convergent can be

: put under the form of a quotient of two polynomials m z (withq as a para.meter
in the case of the fractions of corollaries 2,3):

Pr(z)

) J["](z): 2.(z)

' Fmally as is well known the P and @ polynomials satxsfy linear recurrences; in
the case of @, for instance, we have: :

Q@-(2)=1; @(z) =1~ KoZ ! Gh(z) = (1~ 'an)% - M22Q . (18)

Let J, be the n —th coefficient of 2™ in J Define a scalar product <>y —
relatwe to J _ on the set of polynomials in z and a correspondmg linear form
<.>y, by: 4

<z™|2z®>; = <zmin >/ = Jmn -

- The following classxcal result. is crucial to our treatment [W77 Pe54]

Theorem 2: The polynomwls G defined by a=2Fg_( -z——) are- orthogonal
with 'resper't to < | >y : ' '
<G |B_>=0 if 0k #1;
<G| By =AMAgc N forOsk. _ (19)
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Corresponding to the four continued fractions contained in Corollary 2 and
Corollary 3, there will thus be associated four families of polynomials and four
-scalar products. When g =1, the fractions associated to the distribution of costs
in Corollaries 2,3 reduce to those of Corollary 1, whose convergents have been
expressed [FFVBO] in terms of Laguerre and Hermite polynomials respectively.

‘We thus have, corresponding to fractions (12),(13) and (16).(17) g-
generahzatlons of these polynomlals which do not appear to be classmal

3 THE DISTRIBUTION OF INTEGRATED COSTS IN SORTED AND UNSORTED
LISTS. '

Refurning, for instance, to the storage cost for PQ-structures. we see that: N

sikd Sn X

g, (0)

is the probability, for a history of length n, to have (integrated) storage equal to
'\lc Thus the expected storage utilization of a simple list subjected to n opera—
tions (droppmg PQ-supersctipts) is: :
Sn k. ' ' '
k—— ' C 21

}; H, N Y
and the variancé is: | ‘
' Sn.k

2 k2EnE Z'ksﬂ_-k)z
¢VH, T\,

In general, for 4 = S (storage) or T (time), and ¥ = DICT or PQ, we define |
the unnorrnalizedvmoments of distributions of the type (20) by:

P =T s, (22)

mth particular attention to the cases ]"‘0 1,2 related to averages and variances
as in (21), (B2).

3.1. Outline of the method.
In order to evaluate the moments (22), we introduce the generating pol)"no: -
mials: ; . ,

”u«(q)=2“uﬂ.kq". o (23)
- (the superscript £ will be omitted in the sequel for simplicity). -

The moments of the distribution can be calculated simply once we know the
quantities 4 n (1), n(1). fn(1).... The method for determining the 1¥*)(1) in each
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case obeys the following general pattern:

(a) We start with the continued fraction expansions prevﬁ)usly derived. With the
reciprocals of the convergent polynoxmals given by equation (18) we form a gen-
- erating function of the form:

Ktzg)= N Galzdu(@tt . (2)

with an adequate choice of the coefficients ey (g).

(b) We next let ‘
K(t,z,g)= ) Rn(t.g)e™ (25).
na0

be the de'\./elopment‘of K with respect to z. Applying the linear form <.> associ-
ated to the continued fraction by (19) to both sides, we derive the
orthogona.hty rela.tv.a'n

Eoﬁn(t-q)ﬂ'n(q) =1, | -+ (26)

whence, by letting ¢ =1, and differentiating wiﬁh respect to q for all k=1
' . o
LRt =1 : (27)

- TR 1)_ = - 2 ["] i ARrC) (28)

These relations provide' a sort of generating function of the w{/X(1) once the
derivatives of R, (£,q) with respect to g at g =1 have been determined. Although
we do not possess closed form expressions for the R, (¢, q) themselves, it turns
out that the derivatives at g =1 can be determined exp11c1tly as the continuation
of our treatment shows, : ) :

(c) The recurrence relation (18) satisfied by the polynomials § yields a func-
tional relation verified by K(t,z,9); the choice of w,(g) in (a) is made so as to
simplify this relation. This is normally in the form of a dv,ﬁerence-dzﬁerenhal
equation.

(d) From this functional relation, we derive a set of differential equations
satisfled by K and its derivatives w.r.t g at g =1.

L(K(t2.D]=0. (29
L[-%;T{((t,z,l)] = AJK(t2 . Qﬁa 2,1)... ——_—l(t 2.1) (50)

There L is some first order 11near partial differential operator characteristic of
the data type considered, and the A, are linear partial differential operators.
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“we have for h>1:
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Using the 1mt1a1 condxtions at t=0,  we successwely determme K (t,z,1),
M{t, A —(t 2,1) from which the expressions of the denvat.wes of the
R (t g) at g= 1 follow (in the form of generatmg functions wtuch are act.ually

‘sufficient for our purposes)

e) Once in possessioh of the R,(t,1) - - -, we use the orthogonality relations of
part (b) to determine generating functions for the u{/)(1) from which explicit

“forms for the moments are derived by performing standard Taylor ezpansions

3R .Prwntzes Queues: the integrated time of sorted list implementations. -

' We shall present the method with some detail in the case when L is the ‘

- Priority Queue data type, and p is the Time cost.

(a) We start with the continued fraction expansion of Corollary 3:
' 1

1 [2]2?
1 [3l2%

so that the corresponding &, polynomials satisfy for h21;
Q1=1.Q=1.6 =G -[h]*G
Eqmvalently for the rec:procal polynomlals ’ :

91—1 = z'f Qh—:(%)'

Bl %=1 & =& -G
We now introdoce the 'follovlving generating function of the @ polynorﬁials:

- th :
: K(t.z-Q) = E°&-1(2-9)m

(b) Let us define the followmg generatmg function of the @ polynormals
K(t,2.q) = ER,.(t g)z" . |

~ Applying the linear form < > to both expressions of K. we obtain:

Y <@“?(é'Q)>'[—1j[_;]¢W = "goﬁn(t.q)<z">.

h20

Since we have: A 4
<2™> = [2"]PT = Y T, ,q% = To(q)
: k20 ) )
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by definition of the linear formf.’ and: .
< 1> =<G-1.1>= <@-,.§,,-,> =0 if h>0
(b_y viriué of Theorem 2, and <@_,> = 1), the last _'equalit.y reduces to:
L Ral(t.g)Tal(g) =1.
na0 .

This irﬁplies: . ‘
L)1) =1 | ' Y
21? (¢.1)Th(1) = -ER 1) T (1) : - (32)
LRt0TI0) = 2B A DTW- TR, YW (@

(c) From equation (23) we deduce the functional relation:
K(qt.z.q)-K(tz.q)= (q—l)t(z—t)K(t z.9)

Denotlng by D the Ha)m difference operator:

tg)—f (¢
— ]
P t(g=1).
this relatlon takes the simpler form -
' DK-(z ~t)K o (34)

(d) By successive differentiations of equation (34), we obt.am, writing here K ( )

forK(t z q)

!

t %qu -f?ﬁmt) FAQ) = t(a—)K(E)H(g -1t (z 1) f’-’%t)

2 aK, a"’K, 8K

_'_ax__ oop) BK
= 2t(2~t) J{t)+(g~1t( t)‘F(t)‘

RK, s 03K K 6 K aI(
t3 —{qt)+3t% ———{(qt)+3¢t { {t
at2 ) " at%aq at) 3 atag? aq (at) - ag3 )

= 8t (2 1) ZE )4 (g-1)t (2 —t) )
8q°® aq? .

from which we derive, after lett.mg g=1 (K and its derlvatlves are to be taken
here at (¢,2,1)):

TWe denote as usual by [2™ ]f (2) the coefficient of 2™ in the Taylor expansionof f .
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8K S : o -

ﬁ_—-(z t)K—O . B ..'(35)
' - 8, 8K, |, 8K _ t d° N : : :

o (z—p) 8K _ _t K , _ 6
', ! B__t_(-aﬁ(z t)aqv Z Bt . : (3)
8, 8®Ky ,. ..\ 0°K %K t? 9%k ‘ . ey

(2 — = -t — . . 37)

A qu) (z-t) 3g% ~ ot%aq 3 ot° (87)

Let L be the first order linéar partial differential operator:
L: S = QL-— (‘z-t)f

Since K(0,2,1)=8_,(z,1)= 1,the function K (¢,2.1) is the solution of t.he equatlon
I =0 which satlsﬁes the initial condition u(0)=0, i.e. : - T

a-tt
K(tzl)—e g, .

and thus the polynomials & (z,1) are Hermzte polynom.lals From the
differential system (35),(36),(37), we get: '

aR",t 1) R, ,

Rn(t 1) aqg \t'l)
which are the coefficients of 2™ in :
; : "K(t,2,1), -a-ﬁ(t.z.l) s g—jz((t.z.l).
) S 8q aq :
We find":
¢
-2
— 2 &
' OR, _ -‘-21 tz tﬁ—z s t“ 1 t4 iz th
" dg {t.l)_-a - 4 (n-2) tE n-1) + 8 +ﬁ n!
a"’R,,{ N i T . 23, ¢n-8 255 5t (12, gn2
ag? 1) =e [F(n—‘;){ ) .( 144 8 "4 (o2

£7 1785 pe3, -l £8  25¢6 74 g2 4n
Yt e 3 ot ¢ 42718 4 Fi

(e) Equations (31).(32).(33) now enable us to calculate

Ve tm ry
ngoT"(l);_;!—' EoTn(l?F. and :L;‘OTn(l)n! <

TThe computations that follow have been developed with the help of MACSYMA system ror
symbolic calculations. _
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We have:

t2
t S——
ngcTn(l);-'—: e ? .
]
tn _ t4 52—-
,§°T»‘”m D
PR 5= (rgrage T

Performing standard Taylor expansions of these functions, we get:

Ton(1) = 185...3n=1) =2  (Tonen(1)=0)

Ton(1) = n? 3—‘-(%19-

Té,,.(l) =n? n(nfl)(nQZ)g%—g)—-.'

Combining these expressmns of the factorial moments of the dlstnbutlon of
integrated time, we obtain:

Theorem A: The distribution of the integrated time o f 2n operations pe'rforrn.ed
ona sorted list zmplementatzm.s of p'rwnt'y queues has mean:

n!n-—l!

and variance:

‘__ n(n-l)(n+3)
V= 45

33 Pnontws queues: total storage utdtza,twn of general list structures and the

 integrated time of unsorted lists.

The continued fraction relative to the storage utlhzatxcn of PQ structures -

has been glven m Corollary 2; it is

J(zq)= A

1q12®
1= 2g322
1-
. 1-32522 .

We propose to work instead with the modified fraction:
’ 1
) "I(z'q) = 1q12%
1-—29%2%
- 4_39 922

1—-

is



- which satisfles
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J(z g)= Jl(zq_” %),

By (6.a), J, is nothing but the generatmg function of the d1st.r1butlon of

mtegrated time costs of unsorted lists.
The convergents of J; are such that: -

& =26h-1 - hg* &, 2.
As a consequence _ '
- _ . 4h
K(tz.9) = Y Gha(z.9) ;ﬁ—,—
: A0 f

is a solution of:

0K

TS zI(—th(qt)

'From that equation we derive that

i) K(t,z,1)is the solution of:
‘ Lu 0; u(O) =1
where L is the differential operator

Iu = .Q?"'_._ (z -—t)'u.

'u) -—(t z,1) is the solution of

Iu = (~t%2 +t3-t) K ; u(0)=

N K ) o
iii) —q—z(t.z.l) is the solution mth uw=0 of:
3

Hence, solving these equations, we obtain:

Raltil) = [z JK(t.2.0) = ¢ ‘-2-% |

OBy, 0K,
—aq—(t.l)-[z ]—a—‘;-(t.z.l)

K
—= tr ts tn-l
3

& g2 42, gn
= n! 8 (n-1) (4_2—)1—5_]

82 ' 2p
8—;”5'-_{:,1) =[] %;g—(t.z.l)

Iu = [(2; = —t3)2%4+(- —¢°+ 17 tz)z+t—-—§t°+6ts]K

2 .
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t8 ] ’ ' o _ .
- tn . 19 g4, tn? , 87 175 2t3, ¢n! t8 3t9 3t
B G +( ) + -

=e

ntt' 9 4’ =Ry ‘8 15 37 (n-1) ¢ 2/

from which. we deduce that the exponential'génerating function of the distribu-
tion of total storage utilization, and those of its first two moments are the follow-

ing:

e _ et
n};osn(l) YRl

Sy s (L e
S e T2 72

. El__ ‘Ul‘g 13 6, 1 4_811
% Sa(1) o= (Tt +get t it 5

By identification of left and right hénd sides of these equations, we get: -

Sé,.(l) =135 - (2n-1) =n? (ng'l(.l) = 0)

Szu(l) n? ‘11—(7,'3_+2‘)—

(1) n? n(n—l)(51:;+27n +31)

'l'heorem.‘B The distribution of the integrated time cost of 2n operations
performed an an unsorted list implementation of p'n.onty queues has mean and
variance gwe'n. by '

o

o =' n§n+2!
3

n(n-=1)(2n+1)
V=-n'n. A '.

Using the remarks at the beginning of this section, we gét immedia_tély:

. Theorem B’: The integrated sto'ra.ge af en operatwns 0 j’ a list implementation of
pn.onty queues has mean and variance given by:

M= __(__L

4‘n@.—1)(2‘n +1)
45 ’

V=
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3 4 Drstrzbutmn of the number of comparisons between keys under sequences
of operations for sorted l'z.st zmplementa.tw'ns of du:tmnanes

" The continued fraction expansion of 2 T, (g)z™ is:

1
[1]222

1-[3]= __[g]iz_z_

1-;[1]z.—

@ = [2-(2[h1+g")]Gh-1 — [h]%Gh 2

“As a consequence,

K(t.2.9)= T oa(z0)pr

is a solution of:
(1+£)(1+gt)DK = (z-1—t)K
(where D is the Hahn operator). From that equation, we derive that: '

i) K(t,z,1) is the solution of:

where

Lu = (1+t)""-51:—— (z-1—t)u.

it) %%(t .2,1) is the solution of:

=t 2 2K _ 9K . =
= 5{1+t) Pye t(1+t)6t ;u(0)=0

2p - ' o
) g—q%(t.z.l) is the solution, with %(0) = 0, of:

t3(1+t)° 83K
ataq_ 3 a8

S 83K
= —t(1+¢)?
Llu ( ) atza

"z
—2t(1+t)-2 —,t2(1+t)g—t§— .

In order to obtain, in a later step of the calculations, the exponential gén-

erating function of the time costs involved, it is convenient to make the change

of variable: v= -ltTt- As a function of v, K is such that

i) K(v ,2,1) is the solution of:

The reciprocal polynomials of the denominators of the convergents are such
that: . .

Lu=0;u(0)=1 L
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Iu=0; u(0)=1
where : : _
' du 1
Iu = 7 (z T
8K, _ \. o
ii) W('u ,2,1) is the solution of:

Iu = (%2—-;—)224-112]1( u(0)=0

2
iii) ZTIZ(-('u .2,1) is the solution, with =0, of:

_rov® o 5vt w8, . 83vt Tl 20R, 4 s_5v? vy s 2
L.”‘“'e“?é'*z*z T R z—*?’ Hlt)z 1K

These relations show that the polynormals Qg(z 1) are Laguerre polynomlals.'
From the above equations, we get: .

an(v-l) = [2"]K(u,2.1) = (1-v) .':_

a_R.’_"_(u,l) = [zn]%.(é;,z,i) = (1-v) [(1’; %(v_—;)l 'U; (xt—ll)l 1
?_Z’R_( 1) =[e "]Qa—K(v,z,l)

8 s .U4 bn—«l-_ 3..,5 71,4.-2.”8\ .un—s

"'(1"”)[(36 12" 16)(n—4)' *( 12 98 ' (n-3)
304 51/3 .unz .Us ve ,vn-l

H55 ‘4 m 3 2 oy !

From these'. we can derive the following expansions:

v 1 -
'EOT"(l)n! Tl
VU™ 1 1 1 1
To(1) E—= -2+
nz,:o "()m 8 2(1-v) 2(1—1;)2 8(1—)3 '
nso - m! T 15 30 B8(1-v) B3(1-w)? 6(1-v)3 30(1-v)* 6(1—w)s "

This leads to the explicit torms:

Tan(1) =7t (Tapei(1) = 0)
Tan 1) =n! ,('"'_1).(3_@_ (n=1), T0(1) 0
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Tin(1) = ! (""2)(n—37)§05n f-n.—16) (nzz);'ra(l)#ré(1)=0-

We are now ina pos1t10n to conclude with:'
N 1

.'lheorem C: The mean and variance of the distribution of the time cost far
sorted list zmplementatwns of dwtwnanes subjected to n operations satisfy:

M= 1"—‘121"—2)- ifn>1; M=0 ifn=0

- 2
y={o ,2)(2:’3‘6;“" ) itnaz; V=0 #tn=0or n=1

- 8.5, Dictionaries: tbtal storage utilization:

The reciprocal polynomials of the denommators of the convergents of the
contmued fraction: -

.
12glz
zzqszz
1-3qlz - Ras,?

1-1(102-

. are such that: o A - A
' & = (2~(2R+1)g") Gy =~ K315,
Asa conséquéhée, , o V
. ~ o
K(tz.g)= 3 Ch-1(2.9) 35
. M .
is a solution of: .
L %%th%&qt)wstzﬂ{-(qzt) = zK-K(qt)- th(q"’t)
The function K(f,2,1) is a solution of the partial differential equation:
Lew =0 ; u(0)=1 |

where the differential operator is now:

- ga‘u
Lou (1+t) ot

(2 —t-l)u.

From there, we proceed as before (we skip the details here) After the change of

vanable V= ;we get:

¢
1+t°
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1
25»“ YR ey

1 1
IS0 "5 ESAE .

1200 1580 . 1225 528 . 100
v (1-w)? (1) (1)t (1-v)?

Y S,.(l)—— ~407-83v +
na0 n!

" Finally we find:

Theorem D: The total storage utilization for n operations on a sorted list 'imple-' ‘
mentation of dictionaries has mean and variance given by:

M=‘L'1)é(ﬁ—+—1)— ifn=1;, #=0 itn=0

20n.4—278fn.3+ 1422n%-3073n +2407
180

" V=0ifn=00r n=1. .

if n=2;

4.CONCLUSIONS

We have developed a method for characterizing (through their moments)
the distributions of various cost measures of simple data structures under
sequences of operations. The reader should be aware of the fact that our proba-
bilistic model, 6btained through a type of "sampling”, amounts to considering _
sequences of operations only up to (local) order isomorphism. Other analyses of
dynamic data structures have been performed using different probabilistic
models. Most notably, in [JK78], the authors show how to evaluate integrated
costs of binary search trees when the schemas obey a simple repetitive pattern
and keys are drawn uniformly over the real interval [0;1]; the analysis there
requires the use of Bessel functions. In [BuB1], Burge has also analyzed
integrated costs of stacks using continued fraction techniques.

We thus believe that our results are yet another illustration of the rich
mathematical structure behind the performance evaluation of dynamic data
structures. '

The parameters we have been considering are related to some class1cal
quantities in combinatorial analysis. The continued fraction of Section 3.2 actu-
ally appears in a paper of Touchard [To52] in connection with chord intersection
problems, and a result equivalent to our Theorem B is given without proof in a
paper by Riordan [Ri75]. Also, as indicated by A. Odlyzko (private communica-
tion), the continued fraction of Section 3.3 appears in connectmn with the
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distribution of correlated Gaussian variables!

. Letus furthermore mention that it would be of interest to charactenze the
hrmtmg distribution of integrated costs for large n (numerical calculations
clearly show the existence of such limiting distributions). A first step in this -
direction is a recent result by Louchard [LoB2], where limiting dlstrlbutlons for -
the integrated costs of stack structures are obtained. Such problems are
related to a more general class of questions, namely how to characterize the dis- -
tribution of costs for algorithms with a quadratic worst-case. We are still in need
of general methods to attack them. :
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