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PARTIAL MATCH RETRIEVAL OF MULTIDIMENSIONAL DATA

Philippe FIAJOIET" and Claude PUECH™*

- Abstract :. We present a precise analysis of partial match retrieval of multl-

dlmen51ona1 data. The structures considered here are multidimensional search
(trees (k-d-trees) dans digitél search trees (k-d-tries) as well as structures
designed for efficient retrieval of information stored on external devices.
The methods used include a detailed study of a differential system around
a regular singular point in conjonction with suitable contour integration
- techniques (for the analysis of k~d-trees) and properties of the Mellin

integral transform (for k-d-tries) and extendible cell algorithms).

Résumé : Nous présentons une analyse précise de la recherche partlellement
spécifiée de données multidimensionnelles. Les structures etudlees sont les
arbres binaires de recherche et les arbres 1ex1cograph1ques mu1t1d1men51onnels
(”k—d ~trees", "k-d-tries") ainsi que certaines structures ('grid-files",
extend1b1e cells™) congues pour une recherche efficace en mémoire externe.
Les analyses reposent, en particulier, sur une &tude précise du comportement
des solutions d'un systeme différentiel autour d'un p01nt singulier régulier

en liaison avec des technlques d'intégration de contour, et sur l'utilisation

. de propriétés de la transformation de Mellin,
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INTRODUCTION

Methods for retrieval- of multldlmen81ona1 data are of prime 1mportance

to the design of data base systems and to spec1f1c appllcatlons including
the management of geographlcal data or graphlcs algorltth. The ancestry
of most currently developped algorlthms is to be found in early works by
Rivest [Ri76], where hashing and- dlgltal'techniques ate explored, and by -
Bentley, Finkel [Be75], [FB74] who proposed quad-tree and k-d-trees which

are comparison-based structures. A description of early algorithms appears

in section6.5 of Knuth's book [Kn73| . Recent developments in the context of
large external files combine some of these'techniques with ideas derived
from dynamic hashing schemes for single-attribute records (Virtual Hashing
[Li78], Dynamic Hashing [La78], Extendible Hashing [FNPS79]); a few such
examples are the grid-file of N1everge1t et al, [NHS81], the extendible

cell method [Ta82] and the mult1d1mens1ona1 extendlble hashing algorithm
of [LR82]

- This paper describes evaluation methods for the major multidimensional

search algorlthms. We concentrate here on the problem known as partial match

retrieval where all records in a flle having specified values for some of
their attributes are to be found. Contrary to the case of single attribute
search, no general algorithm is known for locating a record in a file of

size or'using O0(logn) time and linear storage (It is indeed conjectured that

no such aigorithm exists, see [Ri76]). We prove here that the average search

‘cost in a file of size n, containing k-dimensional records, when s attributes

- are specified (O<s<k) is:

(a) for k- d ~trees: O(nl s/k+9(s/k)) field comparisons where 6(u) is a

strictly positive function of.u for O<u<l, with maximum value 0.07. This

result is of 1nterest since it disproves an (often quoted) old claim of

Bentley that k-d-trees perform in expected time O(n S/k)

(b) for k-d-tries: O(nl s/k ) bit comparisons where the implied constant

in the 0( ) is precisely characterized and turns out to be quite small. This
result is a useful complement to some of Rivest's analyses made under a
different statistical model Wthh suggested a higher order of

O(n log2(2 S/k)) for k-d-tries.

(c) for grid-file algorithms:,o(nl_s/k) page accesses; there again the

implied constants can be precisely determined.



A comparison of these results shows that, for multidimensional search trees,

digital methods asymptotically outperform comparison-based techniques. As

an example, partial match retrieval of 2- -dimensional records with one attrlbute
specified has average cost:

vI7-3 0.5 ’

0(n 2 ) =0(n" 6) for 2-d-trees

1/2

and o(n %) for 2-d-tries.

Performances of the type O(nl—s/k) have Beén‘conjectured to be optimal by
Rivest [Ri76]. '

We feel that the interest of the paper also lies in the proof techniques
employed (especially in case (a), where previous analyses appear to be 1nvalld)

(a)=- For k-d trees, we start by setting up a system of integral equations

for adequately chosen generating functions of costs. The system transforms into

‘a linear differential system (with variable coefficients) of order 2k-s, which

does not seem to admit closed form solutions. Indeed, the shape of our final
results strongly suggests that no such form exists and that no elementary

combinatorial approach is likely to be workable. We then proceed to study the
way the system becomes singular, and with the help of classical results from

the theory of "regular singular points" of differential systems, we obtain the

asymptotic behaviour of cost generating functions around their common singula-

rity. We then use the Cauchy integral formula for Taylor coefficients of power

series in conjunction with suitable contours of integration (in a manner

similar to [F082]) to conclude the analysis of k-d-trees.

(b-c) There, we set up in each case a system of difference equations for

generating functions of costs that can be solved explicity. This leads to exact
expressions for the average case behaviour of algorithms considered. We then
appeal to Mellin transform techniques (see [Kn73]) to derive the results stated
in (b) and (c)' relative to k-d-tries and grid-file algorlthms.

It should be stressed that the methods used here are of a rather wide appli-
cability: those of type (a) could serve to derive direct asymptotic¢ evaluations
for a number of comparison baséd algorithms; methods of type (b-c) may be used
to analyze in detail a number of data structures and algorithms closely related
to tries, like the double chained trees [C877], multiattribute trees [KSY77]
and the like. These analysls will be given in a companlon paper (see [FP83]. For

a8 preliminary report).

T See in particular the Section on radix exchange sort [Kn73,p 131] where Knuth

uses Mellin transform techniques under the name of "Gamma Ffunction method".



1~ GENERAL SETTING

We consider the problem of retrieving multiattribute records that belong to

some k-dimensional domain

D= D1 X D2 x...ka

A file F is any finite subset of D and the size of F, usually denoted by
n in the sequel is the number of elements in F. Qur interest is in data structures

for performing partial match retrieval: given F and a query qS(ql,ng---qk)i

‘qe (DILJ{*}) X (D2 u{*})... x (DkLJ{*}),

one is asked to find all records in F satisfying query q, i.e. to determine the

. subset q(F) of F of records r=(r1,r2,...rk) in F satisfying for all j: I<jsk

. J J
Thus a query q= (TOTO, =, 39, 35000 * ) asks for all (5-dimensional) records

whose first attribute is TOTO, thlrd attribute 39 and fourth attrlbute 35000,

r.= q. if 1; # *

attributes 2 and 5 being left unspecified. The specification pattern of a query

q is a word u of length k over the alphabet {S,*} where U= S if % is specified
and ug= * if 4y is left unspecified. In the above example, the specification
pattern is thus S*S$S+*, _
In the sequel, for the sake of unity, we assume that each of the attribute

domain is assimulated to the real interval [0;1]; this is practically justified
- when the binary encodings of attrlbutes are suff1c1ent1y long strlngs. Our
”analyses are relatlve to the uniform probabilistic model where we assume that
attributes in either f11es or queries are uniformly and independently dlstrlbuted
over the interval. As is well known, in the case of comparison based algorlthms,
this model is equivalent to the more general model where attributes are only
assumed to be independently'drawn from any continuous distribution over any in-
terval, so that there the uniform model is general enough. In the case of digital
téchniques, the uniform model constitutes an excellent approx1mat10n to real
situations when superposed hashing is used, and otherwise an optimistic model

of varying accuracy depending upon the particular structure of the data manlpu-'
lated; however, our analyses can be easily generalized to cover biased probabi~
lities of occurrences of bits or characters in records, and the orders of ma-
gnitude of expected case complexitiés appéar to be only very slightly affected
by this change in the model. Thus our general conclusions remain validvfor a

wide range of situations.



The general pattern of our anaiyses is as follows: we let Cun with n an
b

integer and u= Upstyee.u a specification pattern denote the expected cost

of a query with specification pattern u in a file of size n. We then introduce-
some generating function c. () of the 'sequence’ {c } nzo° We find in each case

(a), (b), (c) that there are two operators ¢ _ and @ such that ‘

[ cut@ = %, eyt (@)

¢ i (2)= ¢u2(cu|(2))

c z)= c (z )
RURNOLENICHOD
where u',u",u"',... designate the patterns obtained by circularly shifting the
- letters of u to the left by 1,2,3,... positions. The structure of system 2
reflects the cyclical changes of the partitioning attributes in the multidimen-—
sional trees.

For k-d-trees, ®* and @S turn out to be integral operators; for the other

cases, they are difference operators.

2- MULTIDIMENSIONAL BINARY SEARCH TREES

Multidimensional binary search trees (or k-d-trees) are constructed by

repeated insertions from the file to be represented. At the root of the tree,
we use the first field of the record stored there as a discriminator; we choose
to go right or left by comparing the first field :of the record to be inserted
with the first field of the root (going to the left if it is smaller, going to
the right otherwise). At the second level of the tree, the second attribute
serves to discriminate records and so on, attributes 1,2,3, »k being used
cyclically as’ dlscrlmlnators. From the definition follows that l-d trees
coincide with the usual binary search trees.

A partial match query proceeds along the tree, branching to one side if
the correspondlng field 1is specified by the query or proceeding along both
subtrees if the field is unspecified. i

From the definition also follows that a k~d-tree can be viewed as a recursive’

partitioning of the underlying space according to alternate d1men31ons Figure |

represents a tree constructed from a file of 7 elements together with the associa-

ted partitioning of the plane.



DISCRIMINATORS

teeessess.. Field 1

e eeees .. Field 2

ceeeess. Fileld I

.... Field 2

Figure l: The 2-d-tree associated to the file F= {(0.4,0.2);
(0.1,0.6); (0.7,0.3); (0.2,0.4); (0.8,0.5); (0.9,0.1); (0.5,0.7)},
elements arriving in the order they are 1isted, and a representation of the

corresponding partitioning of [0;1] x [0;1].

The main theorem that we prove for k-d-trees is as follows:



Theorem 1: The average cost of a partial match query of specification pattern
u in a k~d-tree constructed by random insertions from a file of size n satis-
fies:

nl "SRG/ 1y

u,n u

where Y is a strictly positive real constant, and the function 6(x) is
defined as the unique positive real root in the interval [0;1] of the

equation:
O©+3-0* (8(x)+2-x)' ¥ = 2 = o,

so that,.for 0<x<1 :

0<6(x)<<0.07

This theorem is proved through a chain of lemmas. Lemma 1 below expresses
the recurrences satisfied by the quantities ¢, ¢, ,c¢ ., with u,u',u"...
u,n’ “u',n® "u',n
- being the successive left circular shifts of u. The natural expressions of these

recurrences is in terms of corresponding generating fonctionms.

Lemma 1: For each specification pattern u, define the generating functions:

c (z) = ¥ c zn
u nso Ush

_ : n
du(z) = nfg cu§n(n+l)z .

One has:

(i) if u= *v (i.e. the first attribute is unspecified):

e = - [ o (ot
u 1-2 ‘ u' 1-t

(e}

(ii) if u= sv (i.e. the first attribute is specified):

d (2) I S 1+2 Jz d , (1) gt
u : 2 u' I-t °
(1-2) (o]

Proof: (i) The average search cost in a fixed tree t=t tz’satisfies:

1
e el = de Le ]+ c (e, M

since, the first attribute being unspecified, one needs to visit the root of

the tree and then recursively continue the search in both t and t, with speci-



flcatlon pattern u'. Taking expected values of (1), and noticing that’ the
probablllty that. t1 contains #® nodes, for any p: 0<p<n,1s uniformly l (thus
be1ng independent of p), we f1nd for n21:

-, Wl
Cu,n 1*'5 ;io[cu',4p+ eu',n—l—.p]"
and by symmetry:
. 2 ‘n=-1 : . ’
c = ]+= E C f R . v (2) .
u,n B opeg WP _ '

Taking correspond1ng generatlng functions, and using (2), establlshes part (i)

of the claim of the lemma.

(ii) The average search cost in a fixed tree t=t ; when the first

attribute is specified satisfies: ! 2

-2—_:T c ,[t ], wherep=lt l '. (3)

This correspond to the fact that a search with first attribute specified

P+l
n+]

probability. Thus multiplying (3) by (n+1), and taking average values over

proceeds along t with probability and .along t2 with the complementary

all possible trees t, we get in a similar manner for n21:

-1
- 1 n
‘ 2 n-l
(n+1) Cn = (n+1)_+.E 2 C(p+l) ¢ ' p _ ‘ (4)

Part (ii) of the claim is nothing but the translation of recurrence (4) in terms

of generatlng functions. . 0O

We notice here that Lemma I'is essentially equivalent to Bentley's observa-
tion that the probablllty distribution of the shapes of k-d-trees constructed
by n random insertions (forgetting about key values) coincides with the corres-
- ponding distribution on l-d trees. This probablllty as a function of the shape
of the tree is glven in [Kn73, 6 2.2 ex.5]. )

Our next step consists in reduc1ng the equatlons of Lemma I to a vectorial
 differential system of order 2k-s. The first k-components of the solutlon of

the system represent the quantities;



du(Z) ’ dul (2), duu(z) yeeey du.(k_.l) (2) ‘ (5)

and the remaining k~s components are the primitives of those functions in

(5) whose specification pattern starts with a star (*).

Lemma 2: The function du(z) is the first component, yl(z),of the solution
of the differential system of order 2k-s:

L [y = U2 y&) + b2 | @

(7,200 79(2) e s¥gpe, (2N

where: Z(z)

T
P(z) hnd (bl(z)! bz(z)".',bZk"S(z))
€ .
with b.(2) = : £.=0 if i>ky e.=1 if i<k and u,=S3
i (1_2)3 i i

€.=2 if 1<k and u,=*.
i i

The initial conditions are yj(0)=0. The transition matrix Q(z) admits the

A C
()
B D

where matrices A,B,C,D have respective dimensions k x k, (k-s) x k, kx (k-s),

block decomposition:

(k~s) x (k-s) and elements given by:

. _ ce o a. - . .
(1) Aii_ 0 if ui~S, Aii 20D if ug=*;

2 B
=~ ; other elements are all zero;

Ai,i+l mod k 1-z
(ii) Bij= 1 if j is the rank of the i-th unspecified attribute in u, and
B..=0 otherwise;
i

'1 .

(iii) c= T

zz(l—z)

(iv) D is the zero (k-s) x (k-s) matrix.

Proof: Let»nl, MoseseM g be the ranks of the unspecified attributes in_u;
ranks are assumed to be numbered from 1. For instance if u= *SS*%Sx, then

M= 1, Ty= 4, = 5, m,= 7.



We set up a differential system for the quantities yl(z), yz(z).-rYZk_s(Z),

 where:
y.(z) = d .. , for 1 1<ie 6
YJ(z) du(Jfl)(Z) for j: 1sjsk | )
. 2 _ | |
and Yk+j(z)= JO du(ﬂj_l)(t)dt, for j: 1£j<k-s ‘7)

The differential relations between the yj's are obtained as follows:

(a) if j<k and w= u(J-l) starts with an S, differentiating the relation
given by Lemma I - (ii), we have:

2 2 | ,
d' (z) = - d i(z). (8)
v (1-z)3 1, ¥

(b) if jsk and w= u(J ).starts with a *, differentiating the relation

given by Lemma 14(i) , we findf

1 2
et (z) = + €at(2)
v (1-2)? -z ¥

mﬁltiplying this relation by z and adding to both members Cw(z), we find

d (z) = ZC'W(Z)RW(Z) = = 7 * e, (2) + z_ e n(2).
(1-2) -2z

We now multiply this last relation by (l1-z), differentiate then multiply

again by Té;A andzisolate-d'w(z), so that we get:

' 1 1 1 2 2
d' (z) = + d (z) + ——o f d (z) dz+ — d _,(z) (9)
VU - z(i-z) ¥ 22(1-z) o ¥ =z “w |
Sincé

; |z
cw(z) = jo .dw(z) d?.

(c) Finally relation (7) is clearly equivalent to:

Vi 45(2) = (@ | | (10
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Putting together relations (8), (9)} (10) leads to a differential system
for the yj's defined by (6), (7) and the matricial form of this system is

none other than the one given by the statement of the lemma.

a

As an illustration of Lemma 2, we consider the specification pattern1r=S*S,

so that k=3 and s=2. The system is then of order 4, and its form is:

2 2

¥y ° 1z 0 R T 1ony?
1 2 1 1
0 S
Y2 z(1-z) 1~z 22(1_2) 72 (1-z)3
4 = +
dz
2 2
Y3 Tz © 0 0 Y3 (13
‘. 0 1 ' 0 0 Y, 0

At this stage, we start plunging into complex analysis. Since by their

combinatorial origin, the coefficients Cun satisfy
3

ch,n= 0 (n) (11)

we thus know that functlons c (z) and d (z) are analytic in the domain
]z|< 1. From the general theory of 11near d1fferent1a1 systems+ in the

complex plane follows that a solution to system Z:

£ @1 =26y + 13<z> | (12)

is analytic in any region where the coefficient'matrix Q and the vector b
are analytic. The only singularities of Q and b are at z=0 and z=l. However,
we have seen that the solution defined by our initial comditions is analytic
around O. Thus there only remains z=1 as the unique singularity of the vector

y(z). We propose to estimate the coefficients of du(z)E yl(z) by means of the

T Here and in the sequel, we shall refer to the book by Henrici ([He77],

chapter 9) as our main source on differential systems.
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complex integral:

. S dz '
. = e : 13
du,n 2im [F- du(z) zn+l ' . - (13

where[ 1is any contour that simply enc1rc1es the or1g1n 1ns1de the domaln

of analycity of d w(2)+ Following [0d82 and [ FO82] , we propose to choose

for Ta contour that comes close to the singularity z=1. To evaluate the
integral (12) then requires detailed expansions for the solutions to system 2

around this point. The matrix Q(z) be1ng meromorphic with a single pole at

'z~l, the homogeneous system (defined by setting b to D in (12)) has what is

known as a singularity of the first kind and the yJ 's are expected to have

a logarithmic s1ngu1ar1ty at z=1, We shall see that the dominant contribution

in the Iocal expan31on of d (z) there is of the form

du(z)‘ ~_6.(l—z)k as z>l i : , (14)
with
X the emailest root of the indicial equation:
det (2 -2 1I) = 0. ' ‘ (15)

where

- I is the (ZkeS) x (2k-s) identity matrix and

'Qo= lim (z~1) Q(z).

z->1

The use of an approprlate contour I' in (13), shows that we can translate the
approximation of a funct1on (14) into an approximation for its Taylor coeffl-

c1ents ‘
127 s, - | | a6y

Now, the asymptotics of the coefficients of the right hand side of (16) is

well known; thus , provided that & is non zero:

T We let [z ] £(z) denote as usual the coefficient of z" in the Taylor

expansion of f(z)
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d ~ S n (17

with I(s) denoting the Euler gamma function. Theorem ! then follows from
the explicit form of the indicial equation (15).

To proceed with this programme, we now prove the key proposition that des-

cribes the behaviour of function du(z).

Proposition 1: Around z=1, the function du(z) has an expansion of the form:

hul u ga(log(z-l)) 1
du(z) = ——a— + z S + 0 2)
: (1-2z)" aeI\{a;} (1-z) (142)

where I is the set of all complex roots o of the equation

Sa-nks ok L g

satisfying Re(a) =2 ,
e = max (I)
and each ga(u) 1s a polynomial of degree at most 5.

We shall summarize here the discussion of the proof; details can be filled
in by referring to the extensive treatment given by Henrici. The general solu-

tion of the non-homogeneous system X is the sum of a particular solution

and of the general solution of the homogeneous system :

£ @)= 22) w(z) ‘ (19)

We thus study separately the solutions to the homogeneous system (Lemma 3)
and then construct a particular solution (Lemma 4).

There is however a difficulty that arises in this process: in differential
systems logarithmic terms may be introduced when some confluences occur in
expansions. As we shall see, the distribution is based on the roots of the
indicial equation (15) and complications occur when two such roots differ v
by an integer. We need to distinguish two cases (1abe11ed A and B) in lemmas

3, 4 depending on the following condition H’k o

. . R 1
Koot ¥AA [X(O) = 0andX(A') = 0=2a's z]



-13-

where the polynomial X' (1) related to the indicial equation (14) is defined by
XY = (-5 (-1-0)k™s 2 ok
This condition is satisfied for instance by all integers k,s: O<s<k<l10.

Lemma 34 :If k and s satisfy condition 3i g» then,around z=l,any solution
—=ama oo K,
of the homogeneous system (19) has an expansion of the form:

| | ho, | ,
w(z) = Z 5 *+ 0 ( : 2)
- ael  (l-2) - (1-2)

for some constant vectors ha'

Proof: A fundamental matrix W of system (19) is defined as a matrix whose

columns form a linearly independent set of sdlutions, and thus it satisfies

the mafrix differential system:

L @ = e we. | | (20)

The matrix Q(z) is meromorphic at z=1 and we can write

1 ' _1a\m
Q(z)—‘ T mfo Qm(z 1.

The matrix Qo is in the case of system Z of the form

with'Ao’a matrix of dimension k x k whose elements are found from matrix A:

.'= 3 .= " ..= 1 ‘= . . . =2u
Ao,11 0 if Yy S3 A0,11 I if Ui=*s A0,1,1+1modk ’

, ‘ . . T .. .
Other elements are all equal to 0. The matrix Co is equal to B" (B defined in

Lemma 2).

Returning to our previous example where u=5*S, we have for instance:

0 -2 0 0
0 -1-2-1
Q =
© =2 0 0 0 o

0O 0 0 0
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K

The characteristic polynomial of matrix Q is determined by successive

expansions along the last k-s rows:
k-s
char (Qo) = (=) char(Ao)

and a direct calculation from the definition of Ao shows that

-1k, char(a ) = (-1)° (-1-0)%75 _ 5k, 1)

This is the polynomial X(\) introduced in the definition of JCk s Since
’ .

X ) = (<135 (15 oy

we directly check that X (A) has only simple roots for s #0,k. Thus A can
be diagonalized and its block structure shows that the same property holds

true for Q - Therefore for some transition matrix T, we have:

Q =T"1AT

where A is diagonal with last k-s diagonal elements equal to zero. The system

Q

W (z) = 2w (22)

can be viewed as an "approximation" to system (20); it has a fundamental

matrix of the form

W(z) = (z—l)A. ' (23)

Considering the system (20) as a perturbation of system (22), one proves by

the method of indeterminate coefficients that (20) has a solution of the form
W(z) =P(z) (z—l) (24)

where P is analytic at z=] and P(i)=T—l under the conditibn that no two roots
of X(A) differ by an integer.

We have assumed here that k and .s satisfy this condition m‘k,s’ Expressed
differently equation (24) then means that every component WJ of a solution

W of the homogeneous system (19) has a finite expansion of the form

@) .
Wj(z) = g _~££—7§ + ho (2) : (25)
(1-2)
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: . . '
for some functions th)(z) analytic at z=] where the sum is over o s

solution of the equation

X (=)=0  or oS(a-1KS-2k.g . A , (26)
(with again X(X) defined by (21)). The term ho(z) cofreSponds to the
eigenvalue O of matrix Q .
To conclude with the proof of Lemma 3 » we therefore only need to study the

localisation of the exponents o in equation (26). Since these are zeros of

the polynomial

X (-a) = a® (a-1)%7 8- ok
they have to satisfy

| laf <3
for all values of k and s and there is always a unique zero oy of X(-a)
‘in the interval (2,3). Furthermore, it is easy to check that all other roots
of X (-a) have a real part strictly less than Oy« (Actually it can be also
proved that when k is large enough X(-0) has several complex roots whose
real parts are in the 1nterval 2,o )) We thus obtain the statement of the
lemma by selecting in (25) only those terms whose o satisties Re(a)>2 and
retaining only the first terms h(J) (1) of the h(J) (z). 0

Lemma 3 : If k and s do not satisfy condition ¥ S,'then around z=1 any
’
solutlon to the homogeneous system (19) has an expansion of the form

Chy, . gy(log(z-1)) :
~O1 . b gqlioglz ‘0 (———L——O

W(z) = _
(1-2)%1 aeI\{a } (1-z) (1-2)2

[

.9

where each component g(J)(u) of &, (u) is a polynomial of degree at most 5 in u.

Proof: The reduction method (Theorem 9.5.d of [He77], p 122) transforms a

‘ system

W = Q(z) W
T (z-1) -
~ where matrix Q(1) has eigenvalues A 12, ven Am into a system _ -
ve—1" Q@) W @27) -

(zl)- ~
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-~

where matrix Q(1) has eigenvalues Al_l* A

seeey A_3 the relation between
2 m

W and W being of the form

o W(z) = H(z) W(z) " (28)

for some analytic matrix H(z).

Uéing it rebeatedly, we transform the or1g1na1 system into a system of the
form (27) w1th the correspondence given by (28), in such a manner that:

(a) the eigenvalues of (1) are a subset of the eigenvalues of R(1); (b) no
wo eigenvalues of é(l) differ by an integer. Furthermore, the "dominant"
eigenvalue o) still has multiplicity 1; each other non-zero eigenvalue has
multiplicity at most 6, since any root of ¥(\) has to satisfy IAI< 3;
finally eigenvalue O admits a set of k-s linearly independent eigenvectors.

A fundamental matrix of system (27) can thus be put under the form:
W(z) =P (2) (z-1)° (29)
with @(z) analytic at 1 and S upper triangular.

However we are no longer guaranteed that g may be diagonalized. Matrix S

decomposes into
| S= A+1

with Z di agonal, ﬁeastrlct upper trlangular matrix (i.e. with all its diagonal

elements being 0) which commutes with A (see [He77] p 120) and 66==0 (the null

matrix). Thus

N - - 5 .
- k : 30
(z=1)% = e ST8ED (o 8 (1 5 T (e ) 0
k=l k! |
Grouping (28),(29) and (30) establishes the claim of the Lemma. o

The next stage now consists in constructing a particular solution of the non-
homogeneous system Z. This is achieved by means of the matricial '"variation-

of—constants? formula.

Lemma 4A: If hypothesis Jfk s is satisfied, the non-homogeneous system Z
b

admits in a neighbourhood of z=1 a particular solution of the form

H(z)
(1-2)2

+ G(z) log(z-1) .

where H(z) and G(z) are analytic at z=1l.
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Proof: By the variation of-constants formula ([He77], p 99), if z is a-

"regular point of the system(for 1nstance z= l) and W(z) a fundamental

matrix of the homogeneous system, the general solution to the non—homo-

geneous system is given by

- z )
W(z) = W(z) wf‘(z) c + W(z) JA Wt B(®) de, €)Y}
. . 2 !

and the second term is a particular qolutlon of the non—homogencous system.

We know that the homogeneous system has a fundamental matrix of the form
W(z) = P(2) (z—l)

where P(z) is analytic at 1:

P(z) = Z P (z-1)T
- m20 o .

and Po is regular. Thus

Wl (z) = (=)0 Qo

where

Q(Z)= z qm(z-l)

m20

and again Qo regular. Since

bO
b(z) = —3
(z-l)

for some constant vector by, we find for the particular solution

Z
U(z) = W(z) J wle) b(t) dt

.z
the expansion:

Z oo .
U(2) =P(2). [ T (2-1)° J, (e-1)"™3 4e g b ]. (32)

n20 z .

~ -

. . . . - 1
Integration of the matrix shows that (taking for instance z==§)
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U@ 2@ [ 2 D (1 () -1 G o b

n=0

where In(z) is a diagonal matrix whose elements are:

- if n#2
: -A. +n-2
_(Z__ll-_L_.__ lsjsk
=N +n-2

(z-1)"2 k<j<2k~s

n-2
- if n=2

(z—l)-k'
e 1sy<k

=X,
]

log(z~1) k<j<2k-s. (33)

with Al’ Kz, ooy kk the roots of polynomial X ()).
Splitting the sum in (32) we find
U(2) =U,(2) - U,(2)

where .

U2 =2 2 G-DY1 () Q b,
nz0
Uy(2) = P(z2) T (po1yP I (2) Q b

n2o

The vector Uz(z) is a solution of the homogeneous system, so that a particular
solution of system Z is provided by U,(z). Separating the terms in the sum

according to n#2, n=2, we have:
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5@ =@ 2 @Dt q b
n#2 : »

RICNCEILE RGN (34)

A ‘ ) ) : %)
The diagonal form of In(z) in (33) shows that terms of the form (z-~1)
disappear in the products of (34) and we are left with

H(z)
U}(z) = :;_——TZ +. G(z) log(z-1)
(z-1) ” .
for some vectors H and G analytic at z=], ' ' O

Lemma 4B: If hypothesis ﬂk ; is not satisfied, then the non-homogeneous
I » b

‘system I admits in a neighbounhood of z=] a particular solution of the form

H(z) s - K
_:___§-~+ z Gk(z) (log(z-1))
 (1-2) k=1 . 7 . o

where H(z) and the Gk(z) are analytic at z=},

Proof: The previous method applied to this case would rather tfivially imply

‘the existence of a particular solution with dominant terms of the form

(log(z-1))°
(z-1)2
However the stronger property of the statement of the lemma is reqﬁired.for
‘the later part of the analysis. It is derived by what looks like a "failed

‘attempt” at a direct solution of system X by the method of indeterminate

coefficients.

Lét H(z) have the expansion

H(z) = Z H (2-1)®,
- m>0 "¢
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If we try to identify coefficients of H(z) so that

'H(z)

(z-1)*
satisfies system = we.find the equations:
( QO + 2I) §o=1)‘0
(R +1I)H =-Q H. (35)

1 o

where bo is a constant vector defined by

b(z) =

(z-l)

- System (35) is solvable since (Y’ +2I) and (9 +I) are non s1ngu1ar. The next

equation would be

£, 8y = - @) H) Sy H

which need not be solvable since Q is singular. However if W(z) is a

solution to system Z and H)» H, are defined by (35), we find that

_ H B,
w(z) = vi(z) - _:2_.___ - (36)
~ (z-1)2 (z-1)
satisfies the modified system:
L 9 = #(2) + b(z) | | (37)

where E(Z)'has now only a simple pole at z=1. It is to the transformed system
(37). that we now apply the method of variation of constants. By the developments

of Lemma 3B, a fundamental matrix of the homogeneous system corresponding to
(37) is of the form

W(z) = P(z) (z—l) = P(z) (z 1) (1+ §~——— (1og(z 1)) ) -
: k=] K!
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and. its inverse may be similariy written
o | 5 .ok A
@l B D L (log 1) M (eeny™ gz
- k=1 okt

We can use,as in Lemma 4A thls form 1nto the var1at10n—of-constants formula.

A partlcular solution to (37) is thus given by

z N .
- _ A ' , 1y —A-I 5
% w(z)-—P(z) (Zfl) X n§0 fA Y (t-1) ~dt Qﬂ*o

: ‘ : . .z
| for some vector of constants b o’ and some matrices X Y whose coefficients are
polynomial in 1og(z-1) X and Y also commute with A or with matrices of a

3 similar block structure like (z—l) . Carrying out the integration expl}c1t1y
leads to '

- - 3 k

w(z) =H(z) + T ¢ (z) log(z-1)

A k=1 ~K

. , ' O
| which, combined with (36) yields the claim of the lemma.

We can now conclude with the proof of Proposition 2: the most general solution
to system 2 is obtained as a sum of ‘the part1cu1ar solution v(z) constructed

1n Lemma 5 which satlsfles

W(z) = 0(

)
(z-l)

and of the general solution to the homogeneous system whose behaviour is
described in Lemma 3. _

The next stage consists in translating the expansion of 'd (z) around its singula-
rity z=1 1nto information about the asymptotics of its coefflclents. This uses

the following result:

Proposition 2: (i)‘The'n—th Taylor coefficient < of the function

c(2) = (1-2) Y 1og (1-2)]%

.satisfies:
~1

c, = n® ' (logn) + O(nc"_2 logkn)v

for some polynomial II (depending on o and k) of degree at most k.




(ii) Suppose that g(z) is analytic. in

lz,s l, z# 1}

- and that for zeE.

g(z) = o(|1-z| %)

for some B>0. Then the n-th Taylor coefficient g, of 8(z) satisfies:

g, = o(n"~

).

Proof: Part (11) of the prop031t10n is taken from [ F082] (Proposltlon 7 p 209):

it is proved there by expressing cy by means of the Cauchy integral formula and
taking as a contour of 1ntegrat10n the circle of convergence of g(z) except for

a small notch inside the circle at distance i of the singularity 1. (See also
[082] for related results). Proof of part (i) of the proposition relies on similar
methods, except that now precise asymptotic results are needed. One starts from

the integral form of et

n "
2im Znt!

c fl_. f c(zy -4z o (38)

and use for I' the contour (oriented anticlockwise):

1 2 4
where: .
e18 T 3w

PI= {z=1 + =— 96[5 H —2—]}

F2= {z=1 +‘i + % xe [13n]}
1 1/2

Ty=dz : [z] = (4+ ), [Re(2)]<2}
n .

F4={z tze F .

This contour is depicted in Figure 2. Decomposing the 1ntegra1 (38) along the

partlcular contour [', we have:

. (D

Cn . n (3) +‘C B

+ c (2) +c
n n n
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Since c(z) is bounded along'TB:

cn(3) =02, - a '_:' h . ' (39)

2/n

Figure 2: The contour T used in the proof of Pfoposition 2.

" so that we only have to evaluate cn(l) on the one hand and cn(z), cﬁ(A) on the

other hand. Proceeding with the evaluation of cn(l), the change of variable:
z =1+ e
n
.shpws that:
| 1y _ o _3_23 k _-i(o-1)8 18 - (@D
c v == J (16 - logn)© e"1'\C (1- =—) dé
n . : n
2T
T
2

Using the exponential approximation
, i (n+1)y  i6
(-2

. n . n

in the previous integral, we find:
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3 .
a-1 [ 2 . B
cn(l)='-'—--nz_rT J (ie - 1ogn)k el(a—lﬁ e® d6+(x-((logn)k n® 2)- (40)
T
2

The ‘integral there is clearly a polynomial of degree at most k in logn.

For the integral along FZ’ we use the change of variable:
i

z=1+324+ %
‘n n

with which we find:

n 2im | (-i-x)®

Wi [[ et Ly,

Similarly using the exponential approximation for x<n /3

. . 2
(10 Xm0 | miox g @l

n
() . 1/3 . .
ine (the integral from n to n 1s exponentially small), we find:
. 1/3 . o
o-1 o . k . k -2
cn(Z) - n Slgéiflfx)°¥2§;p) PR dx + 0((logn) % ).
2im (~i-x)
0

The integral can be extended from 0 to « introducing only exponentially
small terms, so that )

-]

i . k
c.n(2) =l e [ cealimclogn) o dx+0((log m)* n*7?) (41
2ir '

A (-i-x)%

the integral being again a polynomial in logn of degree at most k. The case
of cn(4) is entirely similar, and combining (39), (40), (41) establishes the
claim of the Lemma . Notice also that the same method would make it possible
to determine a complete asymptotic expansion of ¢ for any fixed k and fixed
k and n. Finally part (ii) of the proposition shozs that the polynomials II

cannot be identically zero. _ L
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Now a direct application of Proposition 2 to the result of Proposition 1

shows that du n'admits the asymptotic expansion:

?

h _ .
o
d = f_l; ar-l + I £ (logn) RLLI 0(n)
s Tlap aeI\{al} o '

where the €y (u) are polynbmials of degree at most 5. Since

c =-—d s
RS B R
we thus have:
1 1= - }
Cun = n 1-2 + z Ea(logtﬂ n’ 2+O(1). (42)
= Toy) aeI\{aj} . o

To complete the proof of Theorem’l, we therefore only need to show that the.
actual order of Cyn is given by the first term of (42):

3

- o1-2
carn = @17

or equivalently:

‘hal # 0.

Lemma 5: The coefficient hd in the expansion of 4 n'is strictly positive.
1 »

Proof: The proof which is non-constructive proceeds fhrough an indirect argu-
ment using the positivity of the Cu,n and a logarithmic lowerbound oy the Cyu,n’
‘Assume a contrario that hal=0.

(1) if all the hu were equal to zero, then we would have Cu’n#o(l), du’n=0(n)
as n»o, _

Ihié contradicts the fact that cu,n is at least as large as the cost of a

complétely specified search which is known to be O(logn ). The analytic equi-

valent of this argument conmsists in observing that

du,n Z_dc,n .where 0=8S§...5, |0|=k,

ot .



-26-

as follows from recurrences (2), (4). Then the solution of the equation
for dc(z):

do(z)=-—-2...._.+-_2._ d(z)

(l—z) l-z
is found to be

2
d (z) = ——— log(——)
o (1-2)2 1z

so that

do,n ~2n logn

whence a contradiction in this case.

(ii) Thus if h 1=0 atleast one of the h for aeI\{a } is non zero. The complex -

roots of the indicial equatlon
X(-a) =0

occur in pairs of complex conjugates. Let therefore B, B be the roots of

highest real part such that

hB#(), hz

B =hg #0;

from Proposition 2 follows that for some constant C # O:

u,n n8-2 (logn)kﬂ' Cns—z(logn)k

for some k : 0<k<5. Thus with

C=a+ib , B=o+it

we find:

c ~ ZnOm2 (logn)k (a cos(t logn)-b sin(t Logn)).
u,n

But such an equation contradicts the fact that the ¢, pn are non-negative
’

numbers.-

We have thus seen that in all cases the assumption h =0 leads to a contradic-_

tion, so that Lemma 5 is established. l
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This lehma Jtself allows us to complete the proof of Theorem 1: the dominant

exponent e in the asymptotic form of Cn’
,n.

is e=a142, and it is the unique positive real root &f the equation

X(-Zfe) .= 0

that is

(e+2)° (e+1)¥75 _ 2k g

or equivalently

(e+2)s/k l-s/k

(e+]). -2=0, .. .

. and the function G(E) is

e(ﬁ) =e-(l- 1%)

which therefore satisfies the equation of the statement of Theorem 1.~

3- DIGITAL TECHNIQUES FOR INTERNAL AND EXTERNAL SEARCH

In this section, we provide an analysis of partial match retrieval for

k=d-tries (in Section 3.1) and for grid file algorithms (Section 3.2). Our

basic interest is in the so-called Bernoulli model corresponding to the

description given in Section 1 : the number of keys in the file is a fixed
1nteger n and keys are assumed fo be taken independently from a uniform
dlstrlbutlon. As a consequence of these hypotheses, bits of arbitrary pos1t10ns
in arbltrary fields of keys are independent uniform {o,1} random variables.
There is also strong interest in a closely related model, called the Poisson
model (see for instance [FNPS79] for analyses under this model) : there, the
number of keys in the file is assumed to be a random variable N with a Poisson

dlstrlbutlon, i.e. such that

k

“nn
kT

Pr(N=k) =

for some fixed parameter n which corresponds to the expectation of N. The

interest of the Poisson model is to make sometimes technical developments
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simpler because of some strong independence properties of the localization

of keys in non~overlapping subintervals. |

We have analyzed k-d-tries and grid files under both the Bernoulli and Poisson-
models, and the main orders of costs appear to be idential. For the sake of
conciseneés, we illustrate the analytic techniques involved by giving only
the proof of the evaluation of k-d-tries uﬁder the Bernoulli model and of
grid-file algorithms under the Poisson model.

3.1- Multidimensional tries

Consider again a file F<:DlxD2x...ka where each attribute domain‘Di is

assimilated to the set of infinite binary sequences:
~ o]
D, = {0,1}".

To any record r=(rl,r2,...fk) is associated an infinite binary sequence in

the usual manner through regular shuffling:

let
r.= ) 2 3 , rgk)e{o,l}
J J ] J
be the binary representation of attribute rj; the infinite sequence associated

to r is
p = shuffle(r) = p(l) 9(2) p(3)... , p(k)e {0,1}

where

o}

ey ceey ceey grees

e, D, L 0,0 @ e

(3)
k 2

O
Thus the shuffle of a k-tuple is obtained by taking.in sequence the first
bit of attribute 1, the first bit of attribute 2, ..., the first bit of
attribute k, then starting cyclically again with the second bits of attributes
1,2,...k, etc....

By definition, the k-d-trie constructed on a finite set F is the (l-d-) trie
constructed on the set {shuffle(r)/reF}. Thus k-d-tries have some analogy to
k-d-trees with the notable difference that the partitioning of elements -
corresponds to fixed values of the fields instead of values provided by the
file itéelf, and records are stored at the leaves of the tree. The fact that
l-d-trieé tend to be better balanced than |-d-search trees does not crucially.
affect the performances of one dimensional search which are logarithmic in

both cases. However, in the context of multidimensional search it leads to
asymptotically smaller orders as we now prove it.
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Theorem.Z' The average cost of a partlal match query of spec1f1cat10n pattern
u with s specified attrlbutes in a k-d-trie constructed from a flle of either
size n (under the Bernoulli model) or expected size n (under the Poisson
model) satisfies

I-s/k

ol
Coyn = VG oggm 0 K o

where y(u) is a periodic function of u with period 1, small amplitude and
mean value .
B |
“2(1~
Y= TE-1 3 (6 8, ...6) 2 (1-s/k)

©  KP10gr K £+0

@

with 8p=1 if the £-th attribute of the query is specified, and 5£—2 if it is

unspecified. _ ‘
As announced earlier, we only give here the proof of the estimate under

the Bernoulli model. The proof under the Poisson model follows trivially by

adapting the methods introduced in Section 3.2 below.

Lemma 6: The exponential generating function of the average costs Cu.n under
— b ’

the Bernoulli model:

. . Zn
cu(z) = X ¢ oT

satisfies the relation:

/2

cufz) = cu'(z/2) + g%~z

with u' obtained by c1rcu1arly shlftlng the letters of-u by one position to
the left. ‘ '

Proof: Let t= t{“tz. be a k-d-trie associated to a particular file F. If the

first attribute of the query is non spec1f1ed we have, for the expected .cost

of a random query:
Gy [tl=Tscr e+ crpe] e

since the search then has to proceed in parallel along both subtrees with
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attributes changing cyclically according to pattern u'. If the first attribute

is specified, on the contrary, we find

el tl= v @yl ]+ e 't ] | o

since with probability % the first bit of the first attribute of the query
‘o 1.
starts with a O (the search then proceeds in tl) and with probablllty 7 it
starts with a 1 (the search then proceeds in t2).
Given n random elements n>2 organized in a k-d-trie t=t1(\t2, the probabi-
lity that

ENES lty= n-p

is given by the Bernoulli probabilities:

) <1>p‘(1 S e
p’ (3 ) Y p)’

whence for the expected values the recurrences

2 n
i = = 1+ = ! :
if us*vy cu,n o0 g (p) Cu,p n22;
. 1 n '
if u=Sv c =+ —2 (Y ¢ n=2,
u,n o P P u,p

In general, for all u and n we therefore have
8

_,;_]_ n ' - 3
cu,n-l+2n % (p) u,p <Sn,o 6n,1’ (3

The translation of (3) in terms of exponential generating functions yields
the claim of the lemma. ' 0

Lemma 7: The generating function cu(z) satisfies the difference equation

- _1/-k k-1 o3 'z/zj_ oz
cu(z)=2k séz(l 1/2 )%I(J%Q+ z (5162...6j) eZ(l 1/729). (e 1 2j)
2 j=o ]

Proof: From Lemma 6, we see that cu(z) is the first component of a vectorial

system of difference equations:
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Cu(z). 6lez/2 C'u'(z/2) + :ez.-'l-'z

- -Cu' (z)= 62ez_/2 Cu"b (z/2)+ez—l'-;z o
(0]

(k l)(z)_ 6, .e z/2 éﬁ(z/2)+e?--;_s

. This system can be solved by successive eliminations. Let a(z) denote

e®-1-z. Transportlng the expression of cy ' (z) given by the second equation V

inside the defining equation for cu(z), we find

cu@)= a(e) + §,¢%2 a(a/2) +5.5, &2 (/4 e n(z/4). ,
We contlnue in this fashion, using the equation satisfied by c o'’ Cu"' unt11
‘the relation is only in terms of e, (2 itself. D

A functional equatlon of the- form satisfied by o (z), namely:

$(z) = Z dlyz) + A(Z)

(w1th ¢ the unknown functlon) may be solved formally by iteration in a manner
similar to the proof of Lemma 7:

¢(z)%"A‘(z)+ae *A(y2) + o e(B*BY)",q:(yzz)

Bz

2y g3
= Al2)+ae "Aly2) + o 2 BNz 4 (2513 BHBTHBY )z b(r2)

© +1 S
= 2 o rexp(8(dy, A(ylz).
J=zo ' 1=y

Thus using here the particular form of a,8, Yy and A(z) we find

o ) ,' _ K j
e (= A3 frez 20 1723 Y1 Z01 4

Gl[ez_ez(‘l-"l/zz )(1+

. kj :
z z_ z(1-1/42") z
=)] + 6.8, [e?- (1 =]+... %,
2.2k 1°2°¢ "¢ 45,283 }
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where inside the infinite summation we have a sum of k terms.

Extracting the Taylor coefficients of cu(z) given by this sum, we get:

Lemma 8: The expected cost of a partial match retrieval has for n22 the
explicit form: '
k-1 , | | |
= _ i (k=s) (4)
e z 6]62...§e z 2 Tj‘e(n)

R j=zo ’

where for j and £ not both zero:

, . p X . . _p %=1
Ty pW=1-(1-27K ) ki1 ki) o (5)

and
To’o(x)=1.

We observe that the convergence of (4) is guaranteed by the fact that, for
fixed n, as j tends to infinity:

T e(n)~ 1—exp-(-n2'kj'£) - n2ki-¢

exp(-n2 K780 o272y, (5
Indeed the exponential approximation (6) is usually the starting point of
asymptotic evaluations, but here we shall use a different approach (see
[Re83] for other applications) which is more direct and may be used to obtain

asymptotic expansions to any order if required.

We also observe that each Tj ) is a positive number at most 1, so that if
?
we sum on j=1 to ® in (4), we introduce an error term that is bounded above
by k.ZS-k :

c =
' u,n
| k-1 § (k-s)
where ¢(x) = 2 8, 8,yn 8, T dkTs) o 2 () (7)
£=0 izl 1 '

¢(n) + 0(1)

Equatioﬁs.(S) and (7) thus define ¢(x) for arbitrary real x20. We propose

to perform the asymptotic analysis of ¢(x) by investigating properties of its
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Mellin transform given by
. = ’i _
o (o) = f o (x) %0 dx. n (8)

.l.‘ kS

It is known (see for instance [DoSS],[Da78]) that under suitable énalytic
condition, ‘the asymptotlc properties of ¢(x) as x+o are d1rect1y related to
the 31ngular1t1es of ¢ (s) in a right half Plane. We therefore need to derive
an expression for ¢ (s) that reveals some of its singularities and provides'

an analytic continuation of the integral definition (8). We prove:

Proposition 3: The Mellin transform of the function ¢(x) g1ven by equation
(7) and such that: '

= ¢(n) + o(l)

has the form:

. k(o—co) k-1 : P
¢ (0)= - (1+0)F(o)[——————-——-+ A@] Z §,4...68, 2"
| IR o 1%
where 00;-(1— E) and A(0) is analytic in -15Re(0) < f% and satisfies in this

region- .
A(@) = o(|o]?.

Proof: We appeal to the following classical properties of Mellin transforms:

o | |
j (e—x‘l)xo_ldx= I'(o)s . -1<Re(s)<0
0
(ii) - ‘
(xe ) x0 dx = GIYO) -1<Re(s)
o
(1ii)

* o-1 —a | o-1 ‘
J fax)x™ " dx= a Sf(x) x 0 dx g a>0.
o]
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Writing Tj@(x) under the form:

TJ'E (x)=1 - eXP(—xajz) - Bj}_{ e'Xi)(-an.z) ‘

with

Q -
I

= - log(1-27%i"¢y

-1
-k )

= 2 J."e (1._2-kj'Z

w )
I

we find thus that the Mellin transform of sz(x) is:

*

-0 -s-1 ;
Tip = _(aj!_) I'(o) - iji (O‘jz) oT (o) (9)

. * .
provided -1<Re(0) < 0. From (9), we can determine the expression of ¢ (o) -
applying the linearity of the transform to the defining equation (7). The
conditions on the values of O, in order for the interchange of integration

in (8) and the infinitevsummation in (7) to be justified,are that the sums

w,(0)= 2 23 (k=s) (a.,)° '£<0)= z 2j<k_s)8.

-o—1
. 10
£ 521 i0 #e j21 ¢ _( ‘

be absolutely convergent. Using the asymptotic equivalents

-0 kjRe (0) K
Q. = 0(2 B.,=0(2
(JE) ( ), e ( )
we see that the sums defining wl(O) and'wi(o) are uniformly and absolutely

convergent when 0 is in any stripe:

St ~I<Re(0) <-(1- 2) -n , n»o. : (1
n K
Thus the transform of »(x) is definedin the So strip- and there:

k-1 . '
$7() = - 3 8 850028 (W (0) + ow (9)). I(o) (12)
L=0 £ 2 L o
- *
the next stage comsists in analytically continuing ¢ (o),
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that is to say of the wp(o) to a domain that extends to the right of
o,= - (- ) To that purpose we use the expansion valid for small u, uni-

formly in 0 for ¢ in any fixed stripe c<Re(o)<d:

(-1og(1-u))“? = ufc(l- S+ 0(|0| u?))y. o (13)

this expansion sugggsts'napproximating" wz(c) and wk‘d) by the series:.

-~ . oy O
w0 = T 2 (k=s) (pki+%
21

" This series can be summed exactly when Re(o) < 0°=.—(Ir %):

w,(c) = zo __g__;____
£ 1—pk-s+ko ’ (14)
and expansion (11) shows that the differences w (0) 2(0) and'wiﬁc)'- wzﬁg)

have a general term of the form

0(2j (kRe(O) —S))

(1]

and therefore are analytic for Re(o)< 2. Equation (13) also shows that

. 2 - 2 .
- = . e ' -_— = . 15
wz(o) mz(c)_ o(|a|%) ; wz(o). wz(c)v o(la|) | (15)
for large |o| with -1<Re(0)< f% .
Thus
X k-1 .
: ¢ (o) =-I'(0) (l+0) Z 5162...6 w (o)
i : £=0 Z L
| k-1 . -~
-I'(g) Z & 6 8 [w (0) ~w (0) + 0@'(0) - w (0))]
£2=0 £ 2 2 L '
and using (14), (15) concludes the proof of the proposition. u]

The final stage to conclude with the asymptotlc analysis of ¢(x) for large x,

thus with the asymptotlcs of ., is to use the inversion theorem for Mellin

’
s

transforms:
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re+io ‘
“B(x) = —— J 0¥ (@)x do , -1<c<- (1- ) (16)

2im
c-ie ‘

and, under suitable conditions evaluate the integral using Cauchy's theorem °
as a sum of residues to the right of the vertical line {c+it /téR} and a

remainder term of a small order when x is large.

We consider the integral

by (0 = —— f ¢" ()% %do | an
2im ‘T

where PN is the rectangular contour oriented clockwise (see Figure 3)

=711 2 3 4
I"N PN + PN + FN + PN (18)
A
* , >
-l -1+ s
k 3
c .

Figure 3: The rectangular contour Ty used in evaluating ¢(x) through an.
inverse Mellin transform.
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S| e i
PN =_{c+1tl : ]t] gf }

p 2 (2N+1)im | s
PN = {u+ W H csus 3k }

3 . 2N+I T
ry = { f%’* it: |t] < 2N+ D)m

b NEDiT | P
T -{uw. Lux - },

with N an integer (contours of a s1m11ar type are used for instance in

[Kn73] pl132).
Setting

by = 0y 0+ 02 + 0P 4+ g @

where ¢N corresponds to the contributions to 1ntegra1 (17) of the part F i
"of ‘the contour, we have the folloW1ng results:

(i) ¢N (x) > ¢(x) as N » «

(1) ¢ 2(x) = 0(1) as N+

o

- .
(iii) |¢N3(x)l < f|¢*(c)J do = 0(x 3k)
r

o
. 4 ' L
(iv) by (%) =0(l) as N » =,
Of these assertions (i) is obvious.by continuity; (ii) and (iv) come from the
exponential decrease of I'(s) towards iw; (iii) is the trivial majorization of

the absolute value of an integral.

Thus letting N tend to infinity, we find:

| . , .
b, (x) = ¢(x) + O(x 3K). o (18)
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Now the integral (17) can also be evaluated as the sum of the re:icuzs of
the integrand inside FN‘ As N==, this sum is absolutely convergent and

we have:

0,(x) == T Res(¢ (0)x 7 ,0=0) (19)
aePole (p*(a)) .

The poles of ¢*(O) inside Pm are:

~ simple poles at
&_ = 0 + —2_i_'..j_Tl._
I % kiog2

- a simple pole at 0=0.

Thus (18) (19) can be rewritten as:

-0 * __S__
¢(x) = - T x Res (¢ (0),0=0)+0(x  3k)
aePole(¢*(o))

which is precisely an asymptotic expansion of ¢(x) for large x. The contri-
bution of the pole a=0 is 0(l); the contribution of a=co is derived from the

result of Proposition 2, and is:

. (+0 ) T(c) | k-1 '
x%o __0o o X 88,... 8 2%, (20)
klog2 £=0
The contribution of aj is similarly:
_ - 2ijm log x k-1 . 1
x%° " TR 2 (Ita) Ma) T 6.6....6 4% 1)
] 3 g 12 b
so that
. log,x
_ l=s/k 2
C4,n = 1 Y(—_ﬁ_-o

with y(u) a periodic function of u with period 1, mean value and Fourier

coefficients obtained from (20), (21) respectively, -
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3.2- Grid file algorithms

Grid file or extendlble cell methods are a class of algorlthms suitable

for ma1nta1n1ng large collectlons of multiattribute records on secondary
storage (see [NHS81],[LR82] , [Ta82]).
They are based on a dynamically varying partitioning of the underlying
record space that adapts ‘itself gracefully to the particﬁlar structure
of . the file being operated on. These algorithms can be viewed as multidi-
mensional generalization of Dynamic Hashing [La78] Extendible Hashing
[FNPS79] or Virtual Hashing [Li78].

If a suitable splitting policy is used (like in [Ta82] or [NHS8I when
one uses level alternation for attribute-splittings instead of time alter- ,

nat1on), the paging of the file is equivalent to the paging of a k- d ~trie.

Def1n1t10n The paged k-d-trie with page capacity b built on a file F is
obtained from the k-d-tree built on F by placing in single pages all maximal
subtrees containing at most b records.

The part of the tree obtained by pruning all leaf pages is called the
index (or directory) of the paged k-d-trie.

This definition is illustrated by Figure 4 .

page f11e

Figure 4: The paged 2-d-trie corresponding to F={a,b,...,i} with page
capacity 3 when: a=(00~, 00- -); b=(00-,01- -); c=(00-,10- =) d=(00-,11-);
e—(Ol— 10) £=(01-,11- ), g=(1-,0~-); h=(l0~,1-); i= (11-,1-),
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The various schemes mentioned above differ by the way the index is
impleﬁented: it may be kept in core (like in Dynamic Hashing of [La78]),
it may be represented as a perfect tree embedding encoded into an array

([Ta82] generalizing [FNPS79]) or as a multidimensional array [ NHS81].

The characteristic parameter of the cost -of a partial match retrieval
that is independent of the particular representation of the index is the
number of accesses to the paged file. Its expected value is given by the

following ‘theorem.

Theorem 3: The expected cost of a partial match query measured by the
number of page accesses in a paged k-d-trie constructed from a file of
size n (under the Bernoulli model) or from a file of expected size n

(under the Poisson model) satisfies:

where Y(u) is a periodic function of u with period 1 and mean value

rE -1 (i) £ (k-1><§-1)]

k
[(61—1)+61 (6,-D2" +.. 468,008, (6, -1) 2

° klog2

The expected cost measured in the number of page accesses corresponding
to a tree t= tf’\tz for a random query with specification pattern u
satisfies: '

81

- (cu'[tl]+ ¢y [tz]) if |t|>b

1 if |t|sb.

It proves necessary for our later treatment to operate with the modified -

quantity
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e ltl= e tl-1;

it satisfies for all t the recurrence:
‘61 ' ' . . ' ’

- ' ' - - .

cu[bt]— 5 (e '[t)d+ c Leh)+ (8 -1 x(Jt]>b) _ ) (22) -

with X(P) the characteristic function of predicate P,

T = - | f size n
he expected value cu,n cu,n 1 of cu[t] ;aken over all trees o

under the Bernoulli model therefore satisfies:

= o ,
®u,n” & kfo =W Syt (67D x@b) - @23)

The exponential generating function of the Sun’
. . . b

c(z) = L ¢ —

“u o Wsm n!

o

satisfies a relation obtained. from (23):

-~

Eu(z) =5 e?/? c ' (2/2) & (6?—1) [e®-e, ()] e

with eb(z) denoting - the truncated exponential:

b ] : '
e (2) = .z T : (25);
1=0

We now let du(z) denote the quantity:

d (2) = &7 ;ﬁ(z).

Thus du(z) is the expectation of cu[t] if the number of elements in the
file follows a Poisson distribution with parameter z,

Eqﬁation (24) then leads to a difference system reléting du(z), du‘(z),...i
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d (2)= 8, d "(2/2) + (5-1) (l—e_zeb(z))

d,'(2) =8, d,"(2/2) + (§,-1) (1-¢ %e,(2))

4, 6D P = 8 4 (2/2) + (8,71 (1-e7%, (2))

+1
From the combinatorial origin of parameters, we know that d (z)-O(zb

)
for small z and d (z)-O(z) for large z.

Thus the Mellin transforms of du(Z), u'(z)... are all defined in the stripe

~(b+1) < Re(0) < ~1. (26)

We let now d - (0) denote the Mellin transform of d (z) From functional
properties of the Mellin transforms recalled in the previous section follows

that the transforms satisfy the linear system:

" @) = 6,2° & (@) + (8,-1) a(0)

a () = 6220 a* (o) + (8,-1) a(o)

. )
& (k-1 ©) = & 127 d¥ (0) + (8,-1) a(o)

where

o

a(o) = J (l-eb(x)éq<) xo-1 dx.
°
This last transform is also defined in the stripe (26), and it can be computed

by linearity. We find:

b Id
a@ =~ T HRD - 1) (o) |
j=o J: .

where
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Bb(d) = 1+ —7"" '7!—-'4' A G(O+l)'l;i(0+b ) = (b ) . (27)

*
The system X can be solved in a manner similar to what was done before

for k- d-trles, successively e11m1nat1ng d u'’ d*u""' we get:

d* (0)= 2578 k9 g* (@) - 8, (@) T(®) w(o)

Whence by solving for d u(G):

-Bb (0) T(0)w(o)
(28)
1—23(0_60) .

d*u(c) =

with:

P 2119048 & (8 _11n20.
w(o)= (51 D + 61(52 12 +5162(53—1)2 +...+8 &

(k-1)o
185 k 1(6 -1)2 (29)

and

o, = - (1— —)
-We can now conclude with the asymptotic analysis recovering d (z) from
(0) by means of the inversion theorem for Mellin transforms, using
the contours F of section 3.2 and calculating residues as was done before.
' O
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