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ABSTRACT

Using group algebra and Fourier transform, we introduce a combinatorial
matrix of which a factorization into integer matrices is investigated. The
combinatorial signification of that factorization is exhibited. This leads in
particular to show the relation between the work of several authors and the
fundamental results of Delsarte.

RESUME

A 1'aide d'une algébre de groupe et d'une transformation de Fourier, nous
introduisons une matrice dont nous étudions une factorisation en matrices a
coefficients entiers. L'interprétation combinatoire de cette factorisation est
mise en évidence. Ceci permet en particulier d'é&tablir un lien entre les travaux
de plusieurs auteurs et les résultats fondamentaux de Delsarte.

H! ![:] PAPIER RECUPERE ET RECYCLE




L.~ INTRODUCTION

The aim of this paper is to introduce a combinatorial approach to
thé distance matrix of Delsarte in the case of a 11n§a£ code over any‘finite
field Fq' This will be done by using systematically group algebra and
Fourier transform. Considering the i-th convolution power of an element of a
group algebra closely related to the code C, we naturally introduce the.
combinatorial matrix. The Fourier transform is then use to obtain some
results about the orthogonal code and two linear recurrences for the rows
of the combinatorial matrix.

In section 3 we established a relationship between the distance
matrix B  of Delsarte‘ana the combinatorial matrix A first by using
Fourier transform and a result of Delsarte about Krawtchouk polynomials and
secondly by using génerating functions; These two approach give identities which
contain the Pless'ones. Furthermore, tﬁe relation A = q—nB(PV) iﬁ;roduces
the matrix S = q—nPV where P 1is the Krawtchouk matrix and V. is an
infinite Vandermonde matrix. The combinatorial approach implies thét S
is upper triangular. Tﬁis matrix defines a transform which may bé usefull

even in the non linear case.

Finally, splving a recurrence on the rows of the combinatorial
matrix we obtain a formula to cvaluate the distance matrix In terms of
the possible initial data [xOh . xs'h] where s' 1is the number of non

zero weights of the orthogonal code. '
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2. A COMBINATORIAL MATRIX

2.1 GENERALITIES

Let F = Eq- be the q elements field, where q is -a power of a prime p.
% . . ’
Set [F = \ {0}. We refer to [81] for the fundamental concepts of coding

theory needed in this paper.

Lef' Q = {gl, N gn} E_Ek be the setAof columns of a pa?ity check
matrix of a linear e-error correcting (n, n-k')-code C with e 21 and
k'=rank Q<k. We shall denote this parity check matrix by the same letter £.
The syndrom'of u é En with respect'éo C is then s(u) = fu and the ortho-
gonal code pl (also called the projective.code aésociatgd to SDA_of C is

is ¢t = {c(g) = gTQ|geEk} where g7 is the transposed of the column vector
g:
_ T - T - '
c(g) = (g gy +»-» 88 1= leegys ooy e8]

. ) 4
where 8.8 is the ustual dot product of g and 84 in Ek .

2.2 GROUP_ALGEBRA AND THE COMBINATORIAL MATRIX

If G = Fk, the elements x of the group algebra €[G] of G over

the complex numbers will be expressed in the polynomial notation
X = X x X5 where x, € C.
gcG &

The multiplication in €[G] is the convolution

»

Xy = Z <-h+z n YZ> Xg

gecG L=g




The i - th convolution power of x will be denoted

xi = Z Xip Xh =X ... x (i times). v
heG *
~ % )
Set Q =fF £ and let x = ZN X% be the characteristic function
gefl

of § as an element in the group algebra C€[G]. It is easy to see [ 4]

that in this case

i
(1) X F card{(al, ey a)|h o= Z a, a € Q}

for all h e Ek.

DEFINITION 2.2.L

The combinatorial matrix of Ek = G with respect to the subset

k .
is the (q X ©) matrix A whose rows and columns are numbered with G and

N respectively, the (h, i)-entry being Xip'

A=<x. ;he[Fk, ie[N).
ih

2.3 FOURIER TRANSFORM

To obtain connections between the combinatorial matrix A and the

projective code associated to § we need the Fourier transform.

Let f: [ ~» Wp be a fixed non zero linear form of [ considered

as a vector space over its prime field [F and let § be a primitive p-th

’

root of unity in €. The Fourier transform [ 2]




x = F(x) of the element x = ) x Xglg.CLGJ is

geG
‘ F(x) = X X, Xh I
" heG
were 3= T x £ g ST -
re. X, = x L is called the Fourier coefficient of x associated
 geG B -
. to h. o

Theffolloﬁing property is. proved in [ 2] : F is:a linear isomorphism
~of the gfoup:algebri' €[G]  onto the Hadémard algebra that is the vector space
€[G] ‘provided with. the Hadamard product

N

X X = (x )Xg.
y= ) oJe

Thus F(xy) = F(x) x F(y) and

F(xb) = F(x) % ... x F(x) (i times) = F(x)[i]’ .

Furthermore, we have an inversion £ormula

FF(x) = ¢~ %
where x = - 2 X_ X8 is the reciproqual of x = Z- x X5 Now let
geG ‘g . geG 8
' . - . o~ *
X = ZN Xg be as above the characteristic function of § = . The

geQ

connection between de Fourier transform of x and the weights of the

projective code associated to Q is  [2,4 |

(2) ‘;h = n(q-l)'-'q'w(c(h)) o

where w(c(h)) 1is the Hamming weight of the codeword c(h§ = (heg) Q" ¢t
. . ge

(%))
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LEMMA 2.3.1

Let K g[Fk be a subspace. Then

F( yooxB )= (card K) ) N X8,

gekK geK
PROOF
If y = Z X8 , then vy = ) gf(g'h) If he Kl, then’
gekK gekK
§h = card K and if h ¢ K then
p-1 . ' p-1 ,
- k'-1 N
.= ) ) s Jod =0
520 £(g.h)=j . 520
gekK
because
k'-1
card{g ¢ Klf(g-h) = jt=q

the equation f(g.h)=j defining an affine hyperplane of K,

We shall now reformulate and extend some results of [ 4 1.

THEOREM 2.3.2

Let E'Tk be the column set of a parity check matrix of an
e-error correcting (n, n-k')-code C with e 21 and k' = rank Q. Let
K =1{he Tklh Q= 0}. Then C' admits s' non zero weights implies that
there exists integers Car vovs Cors b with ¢ »0, b0 such that

4
for all h ¢ K

s
(3) Z c. x.. = b.
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PROCF v
Let Wis eees Wy be the non zero weights‘of Cl and by(2) r, =
(1 =1, ..., s') he the corresponding Fourier coefficients of x = ) X8,
' ' gef
Q = F*Q

" Taking the Fourier transform of the product’

(x - r1x°) eee (x = rs.Xo). ‘we obtain

| F((x -_r1x°);..(x - rS,X°)) = F(x - rle)x”.x F(x - rs,Xo)

Taking again

k, ° _
q (x - r, X Yoo (x - rS,X ) = q uy (card K) z L X

by the lemma.

o

(Fo) = 1 FEO)x o (FG = 1 F&)

~ h ~ h
() (x -r)X)xex () (x -1_J)X)
heG h 1 : ~heG b, s

~ ' - h
z (x, - ry) oo (x, - 1 ,{] X
heG h 1 h s

z (n(q—l)—rl) ee. (n(g-1) - rs.)Xh.

heK
]
S' -
= (n(q-1) - fi) ) Xt
i=1 heK
] S' .
= qs wi z Xh

i=1 heK
the Fouricr transform gives

[ s h

“i=1 g "heK™ -

Hence

n(q-1)-qw,



S .
(4) , Y cx =b ¥ L X

: i, ;
where cy is the coefficient of Z in the polynomial

s'-k'
(z - 1r)...(z-r_) and b =gq T w..
. i
i=1
Finally
S'
Joe. Vo, x"=b oy xD
b i . Tib Lt
i=0 heG hekK
_ o
i.e. Z [:z CiX,h Xh = b z Xh
heG L1i=0 1 hek*

and the result follows.

REMARK 2.3.3

If h ¢ Kl, then there does not exist any sequence s cees a,; of

Ly
elements from 2 summing up to h since Kl is the vector space spanned by .

Hince if h ¢ kl, then Xy = 0 for all i ¢ IN.

THECREM 2.3.4

Let @ and K as in the preceeding theorem. If there exists

c b not all zero such that for all’ h « Kl

complex numbers ¢ .

0’ tcce

t
Z ¢ X4 T b
i=0

. L
then . C admits at most t non zero weights.

\'



<

PROOF ' ‘

-
I ~10r
o
0
=
]
=
"
=2
Mm O~
(]
(=N
[ Knd
o
(2]
=
»
=
= J
s
=

t
TR R HREENES
hekK héK™ \ i=0
= b ] X® by remark 2.3.3
heK

Taking the Fourier Transform, we obtain

S [1] h

) c. F(x) =bcard K ] X by Lemma 2.3.1

. i ,

i=0 ~ heK

5 ~i].h k—k ' h

i.e. : Ll I e x |X =bg Yy X

heG | i=0 heK

5

Hence t .

J c.xt=bq“®  forall hek

. ih

i=0 :

t . : :

] c.x_ =0 for all h £ K.

i “h

i=0

Thus' the numbers ;h = n(q-1) - w(c(h)) Dbeing solutions to a degree t

polynomialAequation may take at most. t values and this is the same for
the weights w(c(h)) for h ¢ K. Note that if h < K, then ce(h) =0

.. and the corresponding weight is zero. °
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2.4 A LINEAR RECURRENCE FOR THE NUMBERS

Xih

THEOREM 2.4.1

Q_E,Fk being as in theorem 2.3.2, for all h e Ek‘ and m € N, we

have
s'+l
(5) .X di xi+m,h -
i=0
where s' 1is the number of non zero weights of the projective code Cl associated

to £ and the d'is are such that

s:{l i :
) diz = (z - n(q-1))(z - rl) vee (z = rs,)
i=0

with rj = n(q-1) - q wj the Fourier coefficients of the characteristic

function of & = E*Q.

PROGCF

If 0, Wy, .o w_, are weights of ct and n(q-1), Tys eees Ty
are the corresponding Fourier coefficients of x = Z~ Xg, then we have

gefd «
for all natural number m

x"(x - n(q-l)Xo).(x - rlXO) cee (x - rS,Xo) =0

in the group algebra of G =1Fk. To see this take the Fourier transform

of the left hand member as in the proof of Theorem 2.3.2 and observe that it
is zero. The relation follows then from the fact that the Fourier transform

'

is bijective.
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Expanding the product, we obtain

s'+1
L [ ) d, x., h]Xh =0
heG L i=0 I ™

and the result folloﬁs.

The following lemma is easily verified.

LEMMA 2.4.2

Let
X = X x_ X8
geG
Then
(7 M™M=( 7 =] 7
heG geG 8/ hec
In the case where x = Z~ X8, we have

X ) X" = (card D" Y X8 = (n(g-1N™ ] xB.
heG geG geG

Applying this relation to equation (4 ) (multiplying in by£1) in the particular
L
case K = G (that is rank & = k) we obtain the following non homogeneous

linear recurrence of order s'

(6)

~Tn

(n(q—l))m b

C. X, -
L i+m,h

I
(@}

i

where the c& are as in (4).
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RELATIONS BETWEEN THE DISTANCE MATRIX AND THE COMBINATORIAL MATRIX
In [6] Delsarte consider the distance matrix of mn with . v
respect to C : B = (Bui)’ u € Wn, 0 £1i £n where
B . = B.(u) = card{c ¢ C|d(u, ¢) = i}.
ui i

The u-th row [Bo(u), Bl(u), ceey Bn(u)] of B is then the weights dis-

tribution of the coset C + u. Note that in the linear case the coset

C+u = s—l(h) = Ch where h s(u) = Qu ¢ Ek is the syndrom‘of u and

‘that Bi(v)': Bi(u) for all v € C + u. Denoting Bi(h) the common value

Bi(v) for v eC +u = C,, 1i.e. for the v's having the same syndrom h,

we may consider the qk X n restricted distance matrix B ='(Bi(h))

h ¢ Ek; 0 £ i <n. We note with the same symbol B this restricted distance

» . : . k
matrix . Recal that the combinatorial matrix of F~ with respect

k .
to Q¢ Fk is the matrix A = (Ahi), heTF 0 € i where
&
. i ~ o s
Ay = Xy = card{(al,...,ai)]h = ) ap, a, ¢ Q} with O =F Q .

£=1 |

A relationship between submatrices of A and B has been obtained in

[ 5] by elementary combinatorial argument. The following two theorems giVe

a connection between the matrices A and B or the numbers x-ih and

Bi(h) from which we may deduce, in particular, the Pless identities.

THEOREM 3.1

’

Let { be the columns of a parity check matrix of the (n, n-k)

~ linear e-error-conecting code C over the field @q with e 2 1. If A

is the combinatorial matrix associated to { and B 1is the restricted



distance matrix, then,

n . A=q "B PV

where P is the Krawtchouk matrix [ 6 ] and v o= (Vﬂi)’ Vﬂi = (n(q—l)—qﬂ)ll

is an infinite Vandermonde matrix.

PROOF

We have to prove the formula
(8) Xih T q—n Z [: Z ,B-(h) Pﬂ(j)] (n(q—l)—qﬁ)l .
. 0<f<n L 0<j<n -

for all h ¢ Fk and i = 0.

a). Consider in the group algebra of G = Fk the characteristic function

~

~ b3 i
X = z X3 of J=FQ and x = z X X
. gefd heG .

it's i-th convolution power.

Taking the Fourier transform of- x* twice we obtain by the

inversion formula [2.4 ]

9 CRFGD) = % s ] S wg, xb

heG ih

‘On the other hand, we have by the fact that the Fourier transform

gives an isomorphism of the group algebra of G onto its Hadamard algebra,

il -

F(x) = x = x%..xx (i Hadamard factors)

13
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Then by definition

(10) COF(F(xd)) = ) ) ;ilf(gnh) -
heG \gec B

But by (2) ng: n(q-1) - q w(c(g)), whence by (9) and (10)

(11) quih = ) (a(q-1)-q E)i Y gf(g‘h)
0<€zn w(c(g)) =L

b) Let us show finally that

(12) o = JHEM LTy ey
w(c(g)) =L 0<j=n

We shall use theorem 2.4 of Delsarte [ 6 ] which says in our notations

that if a ¢ F" 4is such that w(a) = j, then

»

where
Y, = {ber |wb) = z.} ' ' .
and PKKX) is the Krawtchouk polynomial of degree £.
Using matricial notation, we may write

c(g) = gTQ and g-h = gTh = gTQu = (gTQ)u = veu

(i.e.Qu = h). Then

’

where v = gTQ e ct and u € Ch

O ML R

w(C(g)?=ﬂ v veCLnYK



R %

with Qu = h. Noting that this sum is independant of u in Ch’ we have

omy =™ ] ] Y
ueC, veC uY

h
But
. Z Z 1 Cf(v-u).:' 2 L | Z Cf(v-(u0+c)) for any ug € Cp
ueC, VEC véC ceC
veYZ veY£
_ z ) Cf(v-uo) X Cf(v-c;) -0
v¢C ceC
veY£
because _ ‘
‘ p-1 : ; k-1 p-1
f(ve
GG D IR SIS A
ceC i=0 f(v.c)=1i i=0" .
ceC
since {clf(v-c) = i} is an affine hyperplane of C and { is a primitive

p-th root of unity.

Hence » '
k- f(ve
oh) =q ] p o fvew
ueCh VeY£
k-n . :
= q z PK(J) by Delsarte theorem 2.4
0<jsn  w(u)=j ' -
ueCh
_k-n .
= q y Bj(u) P,(J).

0<j<n

’

15
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KEMARK 3.2

L . x
1f Q(K) = {g € Wkﬁw(c(g)) = £} and x( ) . ) X% is o
gsﬂw .
C s ) AN ¢ 5 N _ ok
the characteristic function of in the group algebra.of G =, then
. L
by (12) o(h) is the Fourier coefficient xﬁz of x(z). By (2) the weights wﬁ )

£ % ’
of the projective code C( ) = C(Q(ﬂ)<) defined by Q(z) are then given by

the formula.

-1 k- .
(13) wéz) = q {%} -q n Z Bj(h) PE(J{] h e wk

0<j<n

where [Aé, Ai, ey Aé] is the weights distribution of the code ct - c().

COROLLARY .
] - 1 - k
If AZ = 0, then Bﬂ(h) =0 Vhefr™,

The following theorem gives the exponential generating function of

the numbers X in terms of the numbers Bj(h).

il

THEOREM 3.3 ' <

: ¢t _ -n (q—lft ~-t|j (g-1)t -t n-J
i%o Xp IT - @ 0<§<n Bj(h)[; - e e t+(q-1)e

PRCGF

Remark first that
Bj(h) = card{u ¢ F'|%u = b ‘and w(u) = j}

is the number of linear combinations of j clements of € which are cqual to  h.
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Let _(al, ...,.ai) be a sequence of elements of Q= E*Q such
that a; + ... ta; = h. The number of such sequences is by definition
Xipe Define the'core of the sequence (al, e ai) to be: the uniqﬁe,linear

combination u of elements of {1 obtained by collecting the elements of the
sequence by parallel bunches and expressing these in term of the corresponding
L)

unique element of Q.

Consider now a fixed linear combination u of elements of § which

is equal to h and such that w(u) = j. To form a sequence of elements of

~

Q0 whose sum is h and whose core is u, we may replace each of the j

terms '3 appearing in the linear combination u by parallel elements in §
m

that is oy A, «.ou, am a such that z ai = 1, each of the n-j elements b of
i=1 :

 not appearing in u by parallel elements in  that is Blb, ...,'Brb such

r
that 2' Bi = 0 and finally permute all these elements.
i=1 '

This may be expressed more conveniently by using generating

functions [ 3 1. If

e t" u u "
Mo = T AT B = T B g €6 = )G gy
mz0 ) m20 ’ m=0 :
are the exponential generating functions of the numbers
_ m
Am-:-card{(al, ey am)| a ¢ F* and .Z a, = 1}
i=l
_ , n
B, = card{(Bl, RN Bm)l By € I and Z B = 0}
i=1 i
u . m
Cm = card{(al, vees am)|ai e Q, izl a; = h, core (al, cens am) = u}

then we have .Cu(t) = (A(t))j (B(t))n—i. Hence




(14) I x, 57 o= 1 B (@)@
izg Tt tr 0<jsn J

It remains to determine the functions A(t) and B(t). Remark
that

By = lah) A,

Am+1 = (q—2)Am + Bm

so that Am satisfies the difference equation

Am+2 - (a- 2)Amﬂ. - (a - 12Am - p

with the initial conditions AO = 0, Al = 1. In terms of generating functions

this gives the differential equation

T A"(E) - (q - DAN(E) - (q = DA(E) =0 .

with the initial condition A(0) = 0, A'(0) = 1. The solution of this

problem is

e(q—l)t ot

ACt) =
q

on the other hand Bm = (q—l)Am gives

B'(t) = (g=1)A(t)

;and thus < , .
anc, , (LYt e
B(t) = & ;(q—l)e

Since B(O) :B :l_ ‘ o t . ’ vl et . o 1 I)"i“

18
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COROLLARY 3.4

If ' : .
. ?' _ gt e(Qfl)t_é‘t J e(q_l)t+(q—1)e—t> n-j
qjt dti q g : =0
'fhen
- .

X = )y B.(h) a .. i20, hef.
SR i W '

REMARK 3.5

. n : . .
By the proof of the theorem 3.3 the number qui is the cardinality
of i-sequences of elements of { whose sum is h constructed from a. given
j -non zero term linear combination of elements.of 2 which is equal to h.

Hence =0 for all j > i. *This fact may also be verified

Otn
qji

analytically. Furthermore, we have GZii = i! The formula (14) then gives

1 [ n
B, = = B . -
s =g L B gy -y
j=0
which is to be compared to the formulas obtained by Karpovsky [ 7 1.

REMARK 3.6

Using the generating function of the Krawtchouk polynomials in

the form [ 6 ]

(15) -3+ (D™ = Y Y
ben

. ' 0 S

]

we can easily verify the formula (7) given in theorem 3.1, Thus we obtain

the relation aZji = q"n Y Pe(j)(n(q—l) - qﬂ)l and by the preceeding remark,
. 0<fsn ' -
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is a (k X ®) upper triangular matrix.

We may express the above in the following manner to obtain some

identities of Pless type, putting (8) with 3.4.

THEOREM 3.7
If [Bo(h), cees Bn(h)J is the weight distribution of the coset
Ch of the linear e-error-correcting (n,k)-code C over Eq, with e 21

then

B!(h) (n(q-1)-g&) % = ¢" B,(h) o,
g ! Os%Sn ¢ gt

where

[th) = 1 B Pﬁﬂ}o‘sgsn

O0<jisn

is the MacWilliam transform (see [61]) of [Bg(h)] and “221 is as in 3.4.

0<f<n

REMARK 3.8

In the particular case q =2 and h = 0 we obtain the power
moments of the weight distribution of ¢! about the mean (8, p. 132 eq(24)1, 9]

Here

i
n _d L i TR LR
“2ji : dti (sinh (1) cosh (l)”t:O.
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REMARK 3.9
Assmus and Mattson in [ 1] give the following relation

(@D § Bzt =q"" T (qp, - 4D Q0+ (@D -t
0<izn , 0<is<n ' ' , ‘

where B(h) = [Bo(h), ey Bh(h)] is the weight distribu;ion of the translate

C,= C+u of. u, [A)

h 0 teeo Aé] is the weight distribution of ct

and bi' is the number of i-weight elements of ¢t that are orthogonal

to wu.

This result yields in fact a combinatorial interpretafion of the
MacWilliams transform B'(h) of B(h). Putting 2 = L% and introducing

Krawtchouk polynomials using (15), we obtain

5 4 k-n
(g=1) B,(h) = (q b, = A!) P,(1)

® and by the MacWilliams transform

k, -1, ’
B!l(h) = -1 b, - A!
J() q (q-1) ~ (q IR J)
" The formula (13) then gives

w(Z) 2k-n -

h

-1, -1 2k-n+l
= q {(l+q (q¢-1) DA, - q n

which is a relation between some parameters associated with the set. of

projective points . : ’
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4. Weight distribution of translates of the orthogonal of a two-weights code

Let E_Ek be as in theorem 2.3.2 the column set of a parity
check matrix of a (n, n-k')-code C whose orthogonal ct admits s' = 2

non zero weights vy and Wy

To determine B(h) = [Bo(h), cens Bn(h)] we have to solve the linear

recurrence (5)

(16) 4. x. +d

0%mh T ¥ n 92 B n Y93 Fiyan 70

. k
for the possible initial data [xOh’ xlh’ x2h]’ hef and then to solve the

triangular linear system (14) to obtain

1 il \ n
Bi(h) =1 jzo Bj(h)aqji - X, for 1 =0, ..., n.

Here the possible initial data are

(1 0 n(q-1)1 for h =0
[0 1 1] for h e § = [F*Q
[0 O KZJ for héQ h=0
where by (2) and (4)
2k ~
Al = q W v, + 2n(q-1) - q(w1+w2) = Xy for he §
2-k! _ ~
Ay = q WiV, T Ko | for h ¢ Q, h=0.

’

(in this case { is called a partial difference set with the two parameters

Xl and A,, the case A, = A, being the classical (Mann) difference set).



The solution of the recurrence (16) is

v
(o]

_ ~qi i i )
Xy 7 ao(h) n” + al(h)rl + az(h)r2 v i

where n = n(g-1) and the coefficients aj(h) depends of the initial data.

In fact,
r = r 1-1 B n
ao(h) 1 1 1 | *on
al(h) = |n ry rzi X1h
~2 2 2
a, (h) S T *2h
- - L - L -

The numbers Bi(h) may then be calculated by (l4) in terms of the initial

data [XOh X1y x2h].
REMARK 4.1
In general, the recurrence (5) has the solution
v
s' o .
i
X, = ) a.(h)r;
ih 320 3 j
#
where ry = n o= n(q-1) and
ra (h) 1 1 97
a3y ri ... T xOh 7
: ry T :
.s' .q' .
ds,(hu | T o] LXgr
Herice .
1 [lil n s' l
B.(h) = = B.(h) o .. - )  a (h)r]
i i 320 i 420 3 j

#
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