N
N

N

HAL

open science

CEY X,a multiformalism programming environment
J.M. Hullot

» To cite this version:

J.M. Hullot. CEYX,a multiformalism programming environment. RR-0210, INRIA. 1983. inria-

00076348

HAL Id: inria-00076348
https://inria.hal.science/inria-00076348
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00076348
https://hal.archives-ouvertes.fr

herche

210

Rapports de Rec
NO

R A S e

CEYX,
A MULTIFORMALISM
PROGRAMMING ENVIRONMENT

HULLOT

1€

-Mar

Jean

a1 1983

M

bl

CEYX,
A MULTIFORMALISM PROGRAMMING ENVIRONMENT

Jean-Marie HULLOT

This paper wég presented at IFIP 83, 9th World Computer Congress,

Internatipnal Federation for Information Processing (Sept.83),Paris - FRANCE

ABSTRACT
CEYX is a system which provides mechanisms for:

~ defining both the logical structure and the bit-level internal
representation of érbitrary_hierarchies; '

—creating, accessing and modifying such hierarchies through high level
functions; . : '

~.interactively editing such structures.

The system iélénméxtension to LISP, and it allows the mixing of programs,
which macro-generate hierarchies using the full descriptive power of the

languagg,‘with'aCtual data.

The structured editor has facilities to define extensions, which have
been extensively used = to tailor it to various special purpose
applications, including VLSI design aids.

CEYX cﬁ?ieﬁtiy;rups in Le Lisp {1} on 68000 systems, MacLisp {12} and
Franz Ligp_{é}} :

RESUME
CEYX eéivdn systeme qui permet :

- de definir tant la’ structure logique que la représentation interne
jusqu”au niveau des bits de hierarchies arbitraires ;

- de creer, acceder et modifier de telles hierarchies par des fonctions
de haut niveau;

- d’editer interactivement de telles structures.

Ce systeme est une extension au langage LISP, et il autorise le mélange
de programmes. qui macrogénerent des hierarchies en utilisant la pleine
puissance de LISP, avec les donnees courantes. L editeur structure donne
la possibilite de definir des extensions, possibilite qui a eté utilisée
pour l%adapter a de nombreuses applications particulieres, notamment dans
le domaine deé la CAO VLSI. CEYX fonctionne actuellement sur Le Lisp {1}
sur des machines a base de 68000, MacLisp {2} et Franz Lisp {4}.

&%DPAH{H RECUPERE €T RECVCLE -

1. INTRODUCTION

Editing is a major activity in computer software. Typing and modifying’
documents or progranmns is usually achieved via a text editor.. A lot of.
efforts have been focused on writing such systems. The well known EMACS
model {6,7, 8,14} seems to become a culminating point in this area. The
most powerful feature of EMACS is its extensibility: it is written in a
high~level programming language (LISP) and all basic comstructions of the
implementation are made available to the user so that he can extend the
power of the editor by means of LISP programs calling these constructions
as usual LISP functions. Another reason for its success is its user’s
interface based on a full .screen video terminal,

Programming language oriented editors like INTERLISP {16}, MENTOR {2,3}
and The Cornell Program Synthetizer {15} have given a new direction in
researches. Instead of working on the textual representation of a
program they work on its abstract syntax so that the user manipulates the
structure of the program instead of pieces of text.

CEYX has been developped at INRIA és part of our design aids for VLSI

circuits. Although they' are eventually engraved on tiny pieces of
silicon, the most striking - charasteristic of VLSI objects is their
enormous size.. Hierarchical structuring of such objects is the only

known way to master their correct design and efficient processing.

Moreover 'VLSI cirguitS‘ must - be considered from numerous viewpoints:
architectural, functional, logical, geometrical ... All these visions
.must be communicated to the computer and this requires the definition and
use of several formalisms. Most existing CAD systems provide ad hoc
processors, one for each formalism while CEYX deals with all these
formalisms in a uniform manner. :

Within CEYX it is possible to descrlbe interactively any hierarchy and to
produce a computer representation for it. Thus CEYX is not only a VLSI
programming environment but a general system for manipulating
hierarchies. Hierarchies are a central concept in computer”s world:
hierarchical data bases (file system, 1libraries, packages, ...),
documents (chapters, sections, - paragraphs, lines, characters, ...),
programs ... Thus the domain covered by CEYX is quite large. ’

To achieve such a generality, we need a uniform data structure for
representing text, trees, pictures, ..., 1in which the structure
manipulation mechanism is identical for all types. However a text line
and a tree are not dealt with in a same manner. Thus we must be able to
associate to each ‘type some particular semantical properties. Such
ob ject oriented programming style {5,17} is made available in CEYX: CEYX
is a LISP extension which provides theé user with a set of LISP functions
to create and manipulate objects; such objects are the combinaison of a
record like structure with a set of semantical properties. Objects are
arranged by families 1in a hierarchical manner a la SIMULA so that they

L]

S

inherit properties of their ancestors. The kernel of the editor consists
in, .a "basic management system for keeping pointers onto objects,
associated with a screen manager. Printing and displaying properties are
associated to objects either by the system or by the user go that each
instance of an object knows how it must be displayed. Moreover the'basic
actions allowed at each step are recoverable from the type of the pointed
instance: these are the semantical properties of the corresponding
objects. together with the ones it inherits. Saving an object can always
be - achieved by saving the LISP program generating this object. This

allows us to work without parser. ' _ :

Basic families of objects have conducted to the design of specialized
working modes of the editor, the current. mode being the one of the

currently pointed objeci: -

~ LISP mode, for editing LISP. programs. It closely resembles the

INTERLISP editor {16} with a video interface.

~ TEXT mode, which is closely related to EMACS {6,7,8,14}.
~ TREE modg; which focuses on a special structure called treéf

There are a lot of subsystems derived from the tree mode. For instance:

~ DIRECTORY/BUFFER/LIBRARY modes, for editing hierarchical data bases.

= FLIP: mode. FLIP is a small language to deécribe color slides {10},

CEYX is the basis of our VLSI design CAD System, where it can be used to
edit all circuit representations: ’

:f mask level represenﬁation, LUCIFER is the hierarchical language we use
for VLSI mask specification {11}, '

~ electrical connexions 1evel, HELL is the hierarchical language we use
for VLSI electrical design {13}, ‘ : :

Each .time a new family of objects is defined,.CEYX uses’ a basic way to

edit it, which can be refined by adding particular properties to these
objects. This makes the editor fully extensible by the user.

2. THE STRUCTURE GENERATOR

CEYX is divided in two main parts: a structure generator and an editor.

- All instances of structures defined,through’the structure generator can
be edited through the editor. The entire system is written in LISP which

is both 'the implementation ~and the command. language. The structure
generator provides the user with an expressive way to define abstract
machines: they consist of a memory mechanism (record) together with a set

of LISP functions which are the basic actions that can be performed on
suchf Tecords. ~ ' ' ' d

2.1 'Basic Structures

The purpose of the basic comstruction called DEFRECORD is to allow the
definition of PASCAL-like records. A record is an object composed of
named fields which store values. To define a record called RECT with
fields =xorg, yorg, xdim, ydim and color, one just has to evaluate the
expression: ' . ’

(defrecord RECT xorg yorg
xdim ydim
color)

It asgociates to the'symbol RECT a record definition. This information '
is used by the instantiation function rmakeq and the access functions
- rputq and rgetq: ' '

(setq mybox “

(rmakeq RECT xorg O yorg 0))
(rgetq. RECT yorg mybox) => 0
(rputq RECT color mybox “green)
(rgetq RECT color mybox) —> green

Within CEYX it is possible to type record fields, that is to allow only
certain kinds of objects to be the value of a particular field. Defining
types 1is achieved by using the DEFTYPE construction which associates a
boolean function to a symbol. For instance the type color is defined by:

(deftype color
(lambda (x)
(memq x
“(black white blue green red))))

A general discrimination function called IS-INQ is used to determine if a
LISP object is of a particular type; it calls the associated type
function. For instance x is of type color if and only if:

(is-ing colorx) -t
Records fields are then ‘typed in the following way:
(defrecord RECT xorg~integer |
S yorg~integer
xdim~integer>=0

ydim“integer>=0
Acolor”color)

assuming types integer and integer>=0 have been defined.

b

Moreover each time a record is defined a new type is defined having the
name of the record. The discrimination function uses a general pattern
matching algorithm to recognize if a LISP object is isomorphic te
instances of a -‘record. However it is not possible to discriminate
between isomorphic records since record instances do not keep trace of
their type. =~ If one wishes to introduce such self-typed records, he has

to use abstract records instead of records.

Abstracts records are defined by using the DEFABSRECORD construction.

The -only difference between this construction and the DEFRECORD one is
- that the produced instances are tagged with their type, and thus always’

3

gnow”abput»this type.’ If RECT has been defined as an ABSRECORD and mybox
i£ an instance of RECT, we have: {get-type mybox) -> RECT '
2.2 Semantical Properties

As in Smalltalk {5} or when using flavors {17}, we would like now to be
able to bind some functions to the structures. They will be the menu of

‘actions one can apply to a given structure instance. To attach a

display—text: property to the structure RECT, whose action is to display .
text- in the ~middle of the rectangle, we use the DEFSEM construction:

(defsem (RECT . display) (rectangle text)
{function-body>) - '

Activating a given instance of RECT is achieved by using the SEND
construction: (send “display <instanced> <text>) which evaluates
<function-body> in the appropriate environment. Note that in the
presented form, the construction works only for abstract records where
objects are self typed.

A structure can be defined as an extension of another structure. Such a
composite object shares with the initial structure all its fields and
semantical properties together with some new ones. In, this case the
access functions and the send construction will first look for the
required field or semantical property among its personal one and then
among the ones of its father and so on. It implements hierarchical
dependancies. More elaborated ways of combining structures are allowed
by the structure generator, but we will primarily focus on this one which
fits especially well for designing the editor. '

3..BUILDING THE EDITOR

We have presented the basic constructions of our LISP extension. This
new section is devoted to show how we use them to build the different
parts of the edition system. Our purpose in this part is not to describe
specialized ways of editing. As we have said much work has been done in
this area and the main problem is now to design a system powerful enough
to allow the implementation of these ideas in a uniform way. We propose

an editor model, based on our structure generator, which has already -
permitted the implementations of numerous editing schemes.

3.1 Akﬁtract Syntax Trees

One major feature of CEYX is the ability to define elaborated structures
from ' lower level ones, using the LISP macrogeneration mechanism. For
‘instance the record structure presented before is itself implemented as a
particularization of a structure called pattern which allows to describe
precisely the internal LISP representation of the structures. We show on
an example how to introduce the specification of a programming language.
First let us build a tree structure from a record structure. The basis
of this construction consists in an abstract record calied tree defined
by: (defabsrecord tree sons) where the sons field is intended to point to
a list of subtrees. Very often, we need some extra informations about
‘trees. For instance we would like to give a name to a tree or to handle
special fields; they are used for later evaluation of the tree structure.
A special construction called DEFUNIVERSE 1is provided for that. It
creates an extension of the abstract record tree, or of a previously
defined universe of trees, with some extra named fields.

Exémple. LUCIFER 1is the language we use for describing circuits at the
mask level. This 1language 1is based on a juxtaposition of rectangles.
LUCIFER objects -can be:- ' '

(box x y w h layer)

(union <obidl ... <objid>n)
~(Juxtx <obidl ... <obji>n)
(juxty <obi>l ... <obj>n)

To each LUCIFER object 1is associated an origin and a bounding box.
Atomic . objects are colored boxes (box ...). Overlapping of several
objects (union ...) is made by identifying the origins of these objects.
(juxtx ...) means juxtaposition along the x coordinate of the component
objects, thus the origin of the composite object is the one of the first
" component, and juxtaposition 1is achieved by putting aside the bounding

boxes of all components. Similarly juxty is juxtaposition along the y
coordinate. '

Translations, rotations and mirror operations are achieved by:

(transl x y <obj>)
(rot n <obi)
(miroirx <obji>)
(miroiry <obi>)

To Huild LUCIFER under CEYX, we first have to define a universe of trees
called lucifer. We choose to implement the transformations as attributes
of the. objects, thus we need four attributes:

N

(defuniverse lucifer rot sym dx dy)

Any tree instance in this universe will then share all these fields.

Next, we define the operators of this language i.e. special lucifer
trees having types such as box, juxtx, ... This is achieved through the
DEFCONS special form which defines both a new structure of name box,
Juxtx, ... and a LISP function sharing this name. It takes as arguments
a list of trees of some required form. For LUCIFER operators, we define:

(defcons box~lucifer
' (integer integer
integer>=0 integer>=0
layer™layer))

and for variable arity operators:

(defcons juxtx~lucifer (&rest lucifer))

(defcons juxty~lucifer (&rest lucifer))

(defcons union~lucifer (&rest lucifer))

Transformations are then implemented as LISP functions modifying the
attributes fields. It 1is now easy to generate LUCIFER objects by LISP
programs by calling the LISP functions so generated juxtx, juxty, unilon,
box. For instance (box 1 2 3 4 “poly) generates a box instance in the
lucifer universe and (juxtx <luciferdl ... {luciferd>n) is used to
juxtapose lucifer structures instances. . '

3.2 Evaluation

Some aspects of structure evaluation are:
- either modifying by progréms some attributes in the structure,

T or generating a particular representation of this structure (textual
representation, graphical representation, ...),

~ or generating a new structure which represents a particular aspect of
the initial structure. This last kind of evaluation is widely used in
the VLSI area: from an abstract representation of the VLSI circuit under
development, all levels of description (functional, logical, geometrical,
.) are macrogenerated via a- simple tree traversal control over the
structure. ,
Structure evaluation is made by means of LISP programs using access
functions and semantical properties of structures. For instance, textual
and graphical representations will be produced by a general display
algorithm walking through the structure and calling for each substructure
the associated printing property. These properties are attached to

structures as semantical properties which are functions activating
printing virtual machines. .

i
'Moreb specialized wevaluators have to be defined by the designer of a
particular subsystem. '

3.3 Editor Internal Structure

The editor is 1itself an abstract machine implemented as an abstract
record called EDITOR. As any object it maintains pointers on other
objects and has some semantical properties which are the commands of the
editor. It may be defined by:

(defabsrecord EDITOR
_SCreens .curscreen
buffers curbuffer)

At ‘the initialization of the system, an instance of this object is
created. All structures will be attached as descendant of this initial
structure. : :

The screens field points to a list of screens objects which are abstract
‘ representations of concrete screens.. We distinguish between three
families of screens: alphanumeric screens, bitmaps and color bitmaps.
Each type of screen object has some characteristics memorized in named
fields and some semantical properties which define the associated output
virtual machine.. All CEYX outputs are directed through these virtual
machines. Installing a given terminal of one of these three families is
achieved by giving appropriate definitions to the semantical properties.

Buffers are also abstract machines which keep named pointers on- the
structures being currently edited. They manage a pointer, called the
current pointer of the buffer, on subparts of these structures. A list
of buffers instances is kept in the buffers field of the current instance
‘'of EDITOR. The curbuffer field contains a pointer on one of these’
. buffers; it is called the current buffer.

There are two basic semantical properties defined for buffer objects:

- DOWN-BUFFER, which takes. as argument an occurrence. It may be either
the name of a field in the object 1instance pointed by the current -
pointer, or a number when a list is pointed. The associated action is to
move the current pointer on the required substructure.

-~ UP-BUFFER, which conversely moves the current pointer to its structural
 father.

They are the basic functions for moving around structures; they represent
the first part of the editing mechanism. Specialized way of moving, like
moving on LIST or TREE structures, are provided as standard tools.

v

Searching mechanisms have been defined as LISP functions using these
basic properties together with general pattern matching algorithms.

354 The General Display Algorithm

Screens objects point to a hierarchy of windows, which are abstract
Tepresentations of regions on the physical screen. The user manipulates
the windows hierarchies by the standard mechanisms of the editor. (he can
do the same with buffers and screens). To each window instance is
associated a buffer in the current buffer list.

The role of the general display algorithm is to maintain on each active
Screen a . representation of all structures - on vhich the attention is
centered: all windows are displayed together with some accurate
representation of the 'structure pointed in the associated buffer. What a
window looks 1like, depends on its graphical display properties. It may
be pictured with a shape, or a who line or in some color «+., according
to these properties activated by the display algorithm. Structures are
pictured in windows according to their own semantical display properties.
To each buffer 1is associated a visualisation pointer which indicates
which subpart of the structure .is to be displayed. Moreover the
representation is holophrasted in the sense the structure is displayed
only up to some level. '

3.5 User Input -

The attention of the . editor is centered on the current pointer of the
current buffer. Changing the value of the current pointer is primarily
made by using a pointing device. To recover the expression attached to a
given position on the screen we use the general display algorithm in a
special mode .which does not generate any output on the screen: it just
generates the coordinates where objects are pictured and compares them
with the currently pointed coordinates.

‘To each type of structure is associated a set of actions (its semantical -

properties) which can be applied to instances of this structure. These
actions are the basic, menu of the structure. Moreover each structure
inherits of the menus of its ancestors in the type hierarchy. For

‘Instance all LUCIFER structures are TREE - structures, thus all TREE

actions becone automatically LUCIFER actions. The most general way used
by the editor to activate these actions is via quéstion/answering through
the QUERY-SEND construction. It works essentially as SEND but applies
always to the current pointer. The user has then only to give the name
of the required action; if additional arguments are needed the editor
will ask for them by their name in a special window.

This can be facilitated by associating actions to keys. Then when the
user hits a key, the corresponding action is applied to the current
pointer. Still a same action name may have different meanings for
distinct ' types of structure. For instance the forward action will move

the current pointer to its rightmost brother for a TREE, to the rightmost -
character for a text object or follow any previously defined scheme for
other objects. The user can change key bindings interactively. ‘

Another way is to display selected menus in special windows on the
- screen. Since menus are also structures, they are manipulated as any
other objects. One can point on a menu item as it does for any
substructure, using the pointing device.

4., PORTABILITY .

CEYX has first been developped on Multics MacLisp {12}. The first
implementation of the editor has been made on top of Multics Emacs
{6,7,8}. It has then been moved on the Le Lisp system {1} on MOTOROLA
68k based microprocessors and on VAX. It runs also on VAX Franz Lisp
{4}, Moving from one system to another is achieved on a part via the
- LISP macrogeneration mechanism and on another part by giving new
implementations to the basic virtual machines used in system dependant
subparts of CEYX.

5. CONCLUSION

More - than an editor, CEYX is a system which gives all basic capabilities
to implement particular editors together with a general editing scheme.
Each - time new objects are defined through the structure generator, CEYX
gives a basic way to edit them. Moreover the user has the full power of
LISP and CEYX extensions to program new editing schemes.

We wuse it as the basic management system for our LISP based workstation.
A lot of specialized VLSI processors are built on it {11} as well as
special modes of general use like DIRECTORY/BUFFER/LIBRARY modes, LISP
mode, TEXT mode, FLIP mode {10}, ... A very exciting direction of
research, to the author”s point of view, would be to build a CEYX based

management system for operating systems written in LISP as the one
existing on LISP Machines {17}. :

»

10

g

N

ACKNOWLEDGEMENT S : .

'We

are very grateful to Bertrand Serlet and Jegp Vuillemin for their

contributions to this work.

{1}

(2}

{3}

{4}
{5}

{6}

{7}

{8}

- {9}

{10}

{11}

{12}
{13}
{14}

{15}

REFERENCES

Chailloux J., Le Lisp 68k: Le Manuel. INRIA report to appear (1983).

Donzeau-Gouge V., Huet G., Kahn G., Lang B., Levy J-.J., A structure
oriented program editor: a first step toward computer assisted
programming. International Computer Symposium, North Holland
Publishing Co, (1975). ‘ : '

Donzeau-Gouge V., Huet G., Kahn G., Lang B., Programming environments
based on structure editors: the Mentor experience.

INRIA research report 26 (1980).

Foderaro J.K., Slower K.L., The Franz Lisp Manual, (1981).

Goldberg A., Kay A., Swmalltalk—72 Instruction Manual, Xerox
Palo Alto Research Center, SSL 76-6, (March -1976). :

- Greenberg B.S., EMACS Text Editor User”s Guide, Honeywell

Information Systems Inc.,{1979).

-Greenberg B.S., EMACS Extension Writer’s Guide, Honeywell

Information Systems Inc., (January 1980).

Greenberg B.S., Multics EMACS: an experiment in Compute:
Interaction. Proceedings, Fourth Annual Honeywell Software Conference
Honeywell Information Systems, (March 1980).

Hullot J.-M., CEYX Reference Manual. Preliminary Version (May.1982),
INRIA report to appear (1983).

Kahn C., FLIP wuser”s manual. INRIA technical Report (June 1981).

Levy J.-J., On the LUCIFER system. Advanced course on VLSI
architecture, Bristol U., (July 1982).

Moon D., MACLISP Reference Manual, MIT,Cambrige, Mass., (1974).
Serlet B., HELL: Manuel d"Utilisation, INRIA report to appear (1983).

Stallman R.M., EMACS: The extensible, customizable, self-documenting

- display editor, MIT, AI Memo 519, Cambridge, Mass., (June 1979).

Teitelbaum T., Reps ‘T., The Cornell Prbgfam Synthesizer: a syntax
directed programming environment. CACM 24,9 (pp 563-573), (Sept 1981).

11

{16} Teitelman W., INTERLISP Reference Manual, Xerox Palo Alto Reseach
Center, Palo Alto, California (1976).

{17} Weinreb D., Moon-D., LISP Machine Manual, 4th edition, (July 1981).

12

Imprimé en France

par .
I"Institut National de Recherche en Informatique et en Automatique

ey

»

"

N

