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" ABSTRACT o

This paper describes a new method for computing the homogenized

characteristics of composite materials. Several examples  of composite

materials are analysed by using the finite element code MODULEF. These -

computer results -are favorably compared with existing experimenfal results

(SNIAS - - Marignane) and with those obtained by other methods (PUCK,

TSAD. Moreover the accuracy of our results shows the tranverse anisotropy

due to .the spatial arfangement of fibers.

RESUME

On présente dans ce papier une méthode de calcul des caractéristiques

homogénéisées d'un matériau composite. Plusieurs exemples de matériau

composite sont étudiés en utilisant le code d'éléments finis MODULEF. Les

résultats’ numériques sont = globalement en concordance avec les résultats

expérimentaux existants (SNIAS - Marignane) et avec ceux obtenus par

d'autres méthodes (PUCK, TSAI). Cependant, la précision de nos résultats
fait apparaitre I'anisotropie transverse dle a ‘la répartition géométrique des

fibres.
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1." INTRODUCTION

When mvestlgatmg the effective behavior moduli of .composne
rlt“rullb, there are. a few possibilities of experimental - charactenzatxon, but
they do not lead to the entire anjsotropy elastic matrix. Therefore authors
(W1111s, Hashin, Halpm, «.) have developped several theoretical methods to

obtain global or effective constitutive elastic coefficients.

In this paper, we use the so called homogenization method. It consists
of the following : it can be shown that when the dimensions of the period
tend -homothetically to zero, the’ fields of deformations and stresses of the
composite tend- to . those correspondmg to a homogeneous structure (generally
anisotropic). The complete set of the corresponding homogenized moduli can
be computed in term of the’ elastlc moduli of the constituants and the
parameters describing the geometrical layout of a single period. The
homogemzed theory is also useful if the interest is focused -on local
analysis, as for example in the field of stresses at the mterface of the
constituants cf [10]. , o

After presenting the general method of homogenization, emphasing the

significance of the law of homogenized behavior as a relation between mean

values, we apply it to two types of composite materials



i) Material consisting of a unidirectional parallel fibers arranged
periodicaily. The computing results for several distributions and shapes of
fiber are compared with those obtained by PUCK, HALPIN-TSAI and with
experimental observations.

ii) Material consisting of a very large number of monoclinic

layers in which the fiber orientations are given.

(3)
§ §29) ? %g

: —{1) :

Parallel fibers Figure 2 : Multiple layers

Figure 1 :

The numerical results are obtained by using the finite element code
MODULEF and numerical data provided by SNIAS-MARIGNANE.

2. DESCRIPTION OF THE HOMOGENIZATION METHOD (1] ([3] [ 4] [5]
[12] [13]

2.1. Formulation of the problem

Let us consider an elastic body which occupies a region @ related to
a system of orthonormal axes Oxlx2x3. This
body is subjected to a system of voluminal
forces {fi} and surface force {Fi} on a
portion FF of boundary 3Q. To is a clamped
part of the boundary 3Q .

The field of stresses at equilibrium satisfies the equilibrium equations

in Q
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Furthermore, the material is elastic with fine periodic structure, i.e. is
Covered by a set of identical periods of rectangular (fig. 3) or hexagonal
(fig. 4) or more complicated shape such as the example given in figures 5
and 6

Fig. 3.
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Fig. 5. . ' Fig. 6.
All the period forms must be such that opposing faces which correspond in -
a translation can be defined two by two.

In all cases we shall designate as Y a period characteristic of the material

which has been enlarged by homothetics and fixed once for all. The elastic

structure of the material is then fully known if it is given over a single
period, eg. the enlarged period Y related to the orthonormal axis system
Oylyzy3 Then let a, kh(y) be the - coefficients of- elasticity on Y, which
generally alter very quxckly with respect to y, 'but satisfy in all respects
the symmetry relation |

(3) a”kh(y) = ajikh(y) = akhij(“y)'

and positivity relation

(4) Hoco-‘ > 0 such that a. kh(y) T.. T..T..,‘ Vr.. = 1.,

%0 ij ij ij ji

ij Tkh =

The functions y-*a..kh(y) defined on Y are extended by Y- périodicity to the
entire space Oy1y2y3 assumed to be covered by contiguous periods 1dent1cal
to Y. '



2.2. Homogenization method

The homogenization method consist in replacing the point wise

constitutive relation
o = a.. €
ij = %ijkh “kh

by a linear relation between some mean value of the stress tensor and
some mean value of the strain tensor. In fact there are several ways of
doing that. In the present case where the material is assumed periodic, we
choose the mean values over the characteristic period Y. In all methods we
solve an elasticity problem on a representative domain, which in the present
case is the period Y. It means that we look for {Oij} and {eij(w)} inY
such that

_9 0 = 0

® ’ yj 1,9 9
- = 2 Wk Wh

Ty = aijkh(y) ekh(w), skh(w) =5 (.B_yr.1 + a_)Tk).

The various methods used differ in the boundary conditions. Here we
recall two classical methods, which have been used by several authors, and
then indicate the homogenization method :

i) First method : let E = {Eij} be a constant symetric matrix. We
complete the set of relations (5) by the boundary conditions

(6) w, = Eij Y i="1,2 3 on3adY.

The problem (5) (6) has a unique solution which depends linearly on E,
consequently the mean value of {Oij}, that we call <0} » depends linearly

on E. It means that we have constant coefficients Aijkh’ such that

7V <%> = Ajn B
But we check easily that
<z:ij(w.) > = Eij
consequently (7) leads
(8) .<Oij> = Aijkh <€ >
Relation (8) can be considered as a global constitutive relation for the

composite material.



n

ii) Second method : let I be a constant symetric matrix. We

complete the set of relations (5) by the boundary conditions

(9)o]nj= 1]nj,i=l 2, 30h8Y
where {n.} is the outer normal to'3 Y.

The problem (5) (9) has a umque solution as far as the stress and
strain tensors _.are con51dered and the solution depends linearly on I .

Consequently there exist constant. coefficients Bijkh such that :
' A
<ew= By T | | S
But we have also
<0L> =1,
ij ij

- which gives

(10) < Eifj > = Bijkh <Oy >

Relation (10) .is a_ global constitutive relation for the composxte matenal. In

general the relations (%) and (10) are not inverse one another.

111) Homogemzatmn method. we complete the relations (5) by
{e } and {0.} are Y-periodic

(11)

<€i~‘j> is prescribed say .<€‘i‘§> = Eij where E = {Ei.} is a

- constant symetric matrix.

Relations  (5) (11) define a well posed problem, whose solution depends
linearly on E ; consequently there exist constant coefficients qijkh such that

(12) <05 >= Qg <€’

. The global constitutive relation (12) is the homogenized constitutive relation. .

In general the matrix {qijkh} is not identical to {Aijkh} and not inverse
to {Bijkh}" Relations between these matrices are studied in [~5].

We can prove the following properties resulting from (3) (4),
Gijkh = Yjikh T Ykhij
3 >0, %iskh Tvh T_ij-; Ay Ty Ty V T.. =T

Furthermore the homogenized relation (12) is the mathematical " limit

constitutive relation for the elasticity problem (1) (2) when the period tends

‘to zero homothetically. This is proved in [4].



2.3. Computation of the homogenized coefficients qiikh

In the problem (5) (11), using the linearity of the solution with
respect to E, we can make the following change of unknown i

w. = Ei' y. + E Pqi(y)’

i i pq X

where the new unknown vectors qu(y) are solutions of : ‘ )

xPY is Y-periodic
(13) .
3 G T

The homogenized coefficients are then given by

(y) in Y.

| -
= [ .. - .. € Pq] .
- The last formula shows a first term which is only the mean value of

aijkh(y) and a second term which is zero if X is zero.

3. APPLICATION TO AN ELASTIC MATERIAL REINFORCED BY FIBERS
RUNNING IN THE SAME DIRECTION [1] [7]

3.1. Principle

The computations of the previous paragraph are applied to an elastic
material formed from a multitude of resin-impregnated unidirectional .fibers
whose geometric distribution is periodic in a plane perpendicular to their

direction x3.

Fig. 7.

a) Structuration of fibers ;

b) Base period




Calculation of the homogenized coefficients q'lkh/calls for the resolution of
(13). In the present case the coefficients a]kh(y) are .independent of y3
the result is that the fields XJ(y) are also independent of y3i in (13) the
~ various " indices give a zero contribution when they refer to 24— making .

dy
- computation of X J(y) a bidimensional problem. 3

3.2. Numerical results . | )

In all the cases studied, the homogemzed material is orthotroplc, in

other words the law of behavior has numerous zero elements as shown  in
the table below :

IR} (41 Y122 Y133 1
922 %222 Yp233 O ° ° €22
(15) I33{ Yp3 0 0 0 | Jeg
923 Cespe . a3 © ° 1) 2
%3 K33 O 13
12 L ‘ mzj €12

where {GiJ and {Eij} are stress and strain tensors..

The law (15) is inverted conventionally to be written : [6]

mLoJtie Y3 0 o | g
11 E, E, B “_
€32 ?12 - v_% °c o 0 22
A %3 6 ¢ 9 33
(16) &3 e 2‘13—2; o o I,ys
€5 2é—1; 0 %13
12 ' ' _ 2%; %12

bringing out the following &
The Young moduli El’ E2’ E3 in the d1rect10ns of orthotropy

The Poisson coefficient: V53 13, \)12.

The shear moduli 23, G13, G12'

toin



The numerical results which follow have been obtained by using the
MODULEF code [2]. They have been produced for numerous values of the
ratio of impregnation and various forms of the cross section of the fibers,
these choices having been made in collaboration: with the engineers from

SNIAS, Marignane.

We give here a part of the results obtained for impregnations of
36%, 50%, 65% resin and various forms of fiber, and also the curves
showing the change in these coefficients with respect to the ratio of resin

impregnation for fibers of, circular section.
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ALIGNED CIRCULAR FIBER

FIBER
5 4

E1=33 10° MPa Gp;=2.10" MPa
E2-E3=.145 10° G;,=G;3=3.8 10° MPa
Vs 5522 Vyg=25

RESIN
E=3520 MPa
V=38

F2 = E3 {MPal |

14500 |

13050
11600 ]
10150
3700
7250
5800
4350 ]
2900 |

1450

0.25 0.50 0.75 1.00
[ RESIN S RATIO |

S

i NLURL AL MODULEF

Fig. 9.

0.38805 _EL (MPo) ]
0.34E06 ;
0.30E06 |
0.27E06 ]
0.23605 |
0.19€06
0. 15606
0.11E06
0. ?6E05
0.38E05
0. 0.25 0.350 0.75 1.00
[__RESIN S RATIO |
i.N.R.i_A. MODULEF
Fig.8.
5000 |___SHEAR MODULUS (MPa; |
5400 ;
4800 ]
4200 i
3500 |
3000
2400
1800
1200 |
600 ]
0 e
0. 0.25 0.5 0.75 1.00
| _RESIN S RATIO |
— 523
G612 = 613
i.N.R. 1. A, MODULEF

Fig. 10.



~ 3.3. Anisotropy curves (fig. 11, 12, 13)

It is important to note that the homogenized media obtained are

generally not transversally isotropic. This comment is clearly ‘demonstrated

if the Young modulus is calculated in a transverse direction with polar

angle 9. By applying the Young modulus on vector radius we obtain the
curves given in Figures 11, 12, 13. For the material to be transversally

isotropic, the curves plotted should be arcs of ‘a circle centered at the

origin.
Note :
The Young modulus in direction 6 is given by :
1 1 4 | 4
—— = —— cos 0 + __ sin'®
E(6) E2 E3
+ sin?0 cos?o(- 2V23 | LI
E2 G23

This relation enabled the anisotropy curves in Figures 11, 12, 13 to be
plotted.

_10_

1 %



' RESIN IMPREGNATION RATIO BY VOLUME 36% (FIBERS /] TO Xl1)

: E = 4000 MPa

: FIBER : E = 84000 MPa V = .22 ; RESIN V= .34
£l 12 E3 . L vzl vi2 | vi3 23 Gl 2 613
: ’ f : ’ , \
(a) 55190 { 15400 | 15300 § .42 | .25 | .25 } 7230 | 7307 | 6000
(b) 54930 | 15290} 15140 -} .42 | .25 .25 | 7200 ) 7226 | 5939 |
(e) 54790 {13390 | 13390 | .48 | .25 | .25 8181 | 6304 | 6304 |

¥

&

18009

A

15200

13300

11400

9500

7600

5700

300

1900

l E3 {MPoi :

ISOTROPIC KiDNEY ia)
1SOTROPIC KiDNEY .{b)
ISOTROPIC CiRCLE (i

13000

~

Fig. 11.

PN.RLIA. MODILEE

TRANSVERSE ANISOTROPY FOR 3 CROSS

SECTIONS: OF FIBER.
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RESIN IMPREGNATION RATIO BY VOLUME 50% (FIBERS // TO Xl).
FIBER RESIN

E1=380000 MPa ; G23 = 20000 MPa ; V23 = .25 ; £ = 3520 MPa
E2= 14500 MPa ; Gl3 = 38000 MPa ; v 13 = .22 ; '
E3=E2 : Gl2 = GI3 s V12 = VI3 v o= .38

k1 £2 E3 v23 L vi2 | w3 23 cl2 €13
(a) (f/ 192000 | 9730 | 9070 } .33 4 .28 | .30 | 2452 | 5597 | 3334
(b) 191500 | 8290 | 8100 b a0 ) .29 | 30 ) 2623 ) 4315 | 3347
(c) 191500 | 7620 | 7620 } .44 | .29 | .29 | 2755 | 3662 | 3662

o
1000 l F3 (MPai
0
QUL S——
7000 T
500
5000 4
4000
30 N
E 1
. ,
. L}
2000 3 \
. A}
o 1
. 1
o0 5
: H
H
I S— S S S
0 2500 5000 7500 1000
[ f2. % |
ot t— ORTHOTRORIN YiONEY {u
ORTHOTROPIC WIONEY (b
...... v ORTHOTRﬂPiCI CIRCLE i
IN.R 1A, MODWEF
Fig. 12,

TRANSVERSE ANISOTROPY FOR 3 CROSS
SECTIONS OF FIBER

-12-
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- RESIN IMPREGNATION RATIO BY VOLUME' 65% (FIBERS // TO Xli

) FIBER : : RESIN
E1=380000 MPa ; G23 = 20000 MPa ; v23

; = .25 ; E = 3520 MPa
E2= 14500 MPa ; Gl3 = 38000 MPa ; v13 = .22 ;
E3=E2 .3 Gl2 = GI3 svI12 =22 5y = .38 .
’ rl £2 £3 v23 | viz | vi3 23 Gl2 Gl13
(a) 135400 | 7950 | 7114 | .42 § .29 | .34 i 1941 | 5037 | 2357
CYE N A 4 o1ssoon | e870 ) 6580 | a7 ] L300 ] L33 2035 | 3311 | 2331
(c) 133000 | 6210 | 6210 | .50 | .32 | .32 | 2130 | 2526 | 2526
9000 | E3 (M.PuJ I
3100
7200
6300
5400
4500
3600
2700
1800
900
0 """""" [ T L L l."""“\‘
0 s © 4500 6750 9000
- ‘ F2 MPal -
soe—— ORTHOTROPIC KiDNET {ui . - . .
ORTHOTROPIC XiONEY () . ~
camnen ORTHOTROPIC CIRfLE i)
! iINJR. 1 A, MODULEE

‘ Fig. 13. . A
'TRANSVERSE ANISOTROPY FOR 3 CROSS '
SECTIONS OF FIBER. ‘
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3.4. Stagger

If the fibers are staggered, i.e. if a périod characterizing the material
has the form shown in figure 14, we obtain diverse characteristics in
accordance with the relative values of the sides of lengths of the

rectangular cell.

i) if 2= 1 (square cell) : the characteristics of dlirections Oy2 and
Oy3 are identical, and have the same Young modulus in particular.

ii) If 2 = V'3, l.e. if the fibers are located at the apexes of an
equilateral triangle (fig. 14) it can be shown that the material is
transversally isotropic. This property is true for any saturation level of the

resin.

iii) The bisecting directions 0';/2 and 'O'§'3 play the same roles
irrespective of the values of £ and the saturation. In particular, the Young

moduli E1 and Ez in these directions are always equal.

iv) In figure 15 are plotted the Young and shear moduli corresponding
to the various values of & varying from 1 to 2 and for the same resin
saturation "level by volume. For £ = 1, the cell is square and naturally
E, = E,. We then find E

1 2 1
the apexes of an equilateral triangle and the material is then transversally

= E, for £ = V3 since then the fibers are at

isotropic, which implies El = Ez. In the same figure are plotted the values
E, = Ez of the Young modulus in the bisector directions O'§'l and 0'~yz.

For £ = V3 we find a triple point since naturally the transverse isotropy

then implies

14

»
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CHARACTERISTICS
FIBER : E = 84000 MPa
' = .22
RESIN : E = 4000 MPa
= .34
RESIN RATIO 36%
FIBERS//Y1 -
REF.1 : °_Y1 1(2,1(3
"REF.2: 0 Y, ¥, Y,
4,
4
9000 |___SHEAR gpuutus (MPe
Q5010
3000
FSOQ
2000
G500 .
GOO0
55G0
" S000
b 4500
4000 L S — e
1,00 1.25  1.50  1.75  2.00
— 523 REF., i ‘
vervss GI3REF.
o eemes 612 REF. |
DL o= 623 REF. 2 _
———s 612 = G13 REF, 2
t.NLR. (AL MODULER

VARIATION' OF YOUNG AND SHEAR MODULL

e
p N <
A
L
- ___\\\\\\\
} T v
Fig. 1%

'EQUIDISTANT STAGGER. (L=1.73)

AR VR
21000 | YOUNG MODULUS iMPai ]
Lao000 | N |
£9000 \\\
18000 . '
117000 1
16000
15000 . -
14000 4 :
13000 . i
12000 |
000 b
1,00 1.25 1.50 175 2.00
— E2 = E3 REF, .
oo F2OREF, |
D me e " F3 REF, |
“1.NLR. (LA, MODULEF

Fig. 15




3.5. Comparison: with exlieriments

The development of this previsional method is aimed at obtaining
complete sets of characteristics for @ three-dimensional computations of
.composite structures through the finite elements method.

The possibilities of experimental characterization are indeed very
reduced. Few tests are reliable, each one being specific to a characteristic,
not permitting to reach them all. The results of measurements being very
scattered in relation to production batches, mean values have to. be used.

The extreme variety of resins give a very wide range of products to
be wused in production. Each fiber-resin pair can be ‘associated within
variable proportions. It is unthinkable to be able to experiment all
configurations.

Each material is therefore characterized in an incomplete, dissimilar
and inaccurate manner.

Tables presented hereafter explain application of the homogenization
theory to the two materials : glass R - Resin Ciba 920 (36% - Resin in
volume) ‘and carbon CTS - Resin Ciba 920 (50 % resin in volume). We have
considered several distributions and shapes of fiber.

Taking these values into account, average measured values were
assigned to glass-resin composites while values obtained by transposition of
tesfs results and proporti'on computation were assigned to carbon-resin
composite. As a reminder, characteristics obtained with two bidimensional
previsional methods = PUCK [11] and HALPIN-TSAI [ 14] were also given.
For reasons indicated formerly, comparisons must be cautiously made.
Results obtained for glass-resin composite with staggered fibers layout at
the apexes of an equilateral triangle (ensuring transverse isotropy) are
nearest of measured values.

As far as carbon based composite is concerned, it is less clear but,
in thls case, the real shape of the fiber is not observed. On the other
hand, when the shape is more accurate ("Kidney" shaped), the direction of
the fiber does not vary and is therefore as little realistic. Of course, a
configuration taking into consxderat‘on random direction will probably be
nearer to the truth, ‘

For the two éonsidered materials, estimates based on the
homogenization theory are nearer to those based on the widely used
HALPIN-TSAI method.

The homogenization theory seems effzcxent to compute the mechanical
characteristics of composite materials.

~16=
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Validity of the results is evidently subjected to- the aséumptions made
on shapes and lay-out of .fibers. However, the undeniable advantage of this

* method aims at supplying complete ‘and- consistent sets of values, mutually.

coherent.
COMPARATIVE TABLE FOR CARBON CTS
RESIN CIBA 920 (50% -RESIN .I.N VOLUME) COMPQSITE
Reference : Homogénization theory Other pr.évisionél methods
values .
Aligned Staggered |"Kidney"- :
circular. circular |shaped fibers PUCK HALPIN-TSAI
| fibers fibers (mean -values)| ° 3
E, 120 000 119 299 119 293 119 290 119 260 . 119 260
(MPa) : ' '
E, 6 000 6 28k 6 035 8000 | 11620 5 620
(MPa) ' |
B, 6 000 6 28l 6 035 7 950 11 620 5 620
- (MPa) ' h
Yoo 0.28 ©0.299 0.299 0.31 1 0.3 0.3
Y13 0.28 0.299 0.299 0.29 0.3 C.3
Yoy - 0.20 0.435 0.457 | o.21 - .
G,s 3800 | 3Wsk | 3391 | k4 so00 L2so | 3350
‘ (MPa) ' e '
Gy -3 800° 3454 | 3391 3200 L2so | 3 350
(MPa) : ' ‘
Goy . | 2500 | 263 | 326 | 210 | - | -
(MPa) ‘ '




COMPARATIVE TABLE FOR GLASS R-RESIN
CIBA 920 (36% RESIN IN VOLUME) COMPOSITE

Homogenization theory

Other previsional methods

Measured
values |41 iened Staggered
circular circular PUCK HALPIN-TSAI
fibers fibers
E1 55 000 55 226 55 215 54 450 5k Ls50
(MPa.) '
, 20 275
E2 17 000 L 16 016 18 800 18 570
(MPa,) (E2 = 13496)
20 275
E3 17 000 16 016 18 800 18 570
(MPa) (Eg = 13496)
Yoo 0.26 0.253 0.256 0.264 0.26k
Y13 0.26 0.253 0.256 0.264 0.264
0.229 :
Y23 - 0.357 - —
(Y23 = 0.487)
6y 5 600 6 383 5 887 6 990 5 560
(MPa)
013 5 600 6 383 5 887 6 990 5 560
(MPa)
L 539
Gpy ~ 5 882 - -
(MPa) (623 = 8250)

-]18-
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4. APPLICATION TO‘ A PERIODIC STACK OF HOMOGENEOUS LAYERS

41 73]

4.1, Principle '

We shall consxder a penodlc stack of a multitude of homogenized
layers. Each layer is charactenzed by a direction of the fibers. In the
stack these directions vary penodlcally whilst remammg orthogonal to axis

OX'B. ‘

/ /I"—' Xo —, interface
.» x - _ p
: ! . Cijkh("z)/layer(p)fcijkh (C°"St?‘"t?

| o
.Ej‘f?ﬁg//

47\‘ { Fig. 16 Multiple layer. Each layer possesses a

; }— ' _ plane of elastic symetry normal to
,. the x; axis (monoclinic symetry).

In  this situation the homogenization formulae are 'conéiderably
'simplitied since the problem (13) is then reduced to a system of differential
equations wh1ch may be solved exphc1tly. For the details, refer to D. Begis,

G. Duvaut, A. Hass1m (1] and to the references in this publication.

4.2. Numerical application
As an illustration we consider two cases : ‘ ,
1) a laminate consisting of 3 identical layers disposed perlodocally The

layers’ have equal thickness and theu' fibers- or1entat10ns are respectively

-60°, 0° and 60° with respect to the Xy - axis. The homogenized material
then presents a transverse isotropy which complies with the general results
on isotropy\cf [81. ' '

2) a laminate consisting of 18 layers identical to- the above and laid up at
successive angles of 10° to eachother. It is to be checked that the same

result is obtamed as 1n the previous case.

c=19-



We give in the table presented hereafter the moduli of each layer
and the moduli of the composite which are identical for the two cases 3

layers and 18 layers).

Homogenized moduli Homogenized moduli
of each layer of composite

El 120 000 MPa 45 128 MPa
E2 6 000 MPa 45 128 MPé
E3 6 000 MPa 6 198 MPa
v23 0.20 0.188

v13 ~0.28 0.188

v1i2 0.28 0.30

G23 2 500 MPa 3 015 MPa
G13 3 800 MPa 3 015 MPa
Gl2 3 800 MPa 17 290 MPa

Conclusion

We have presented several applications of the homogenization
techniques for computing the coefficients of elasticity of composite
materials. Other applications are in view with respect to fine analysis of
the field of stresses using asymptotic expansions, the effect of defects in
the .composites [9] and more generally, damage to the materials of
composite structure containing inclusions or precipitates.

Strictly speaking, these techniques apply only to absolutely periodic
structures, but with the backing of statistical analyses it is possible to
identify the fluctuations likely to be produced by periodicity defects. It is
noted -generally that strict periodicity reinforces the anisotf:opy of the

computed homogenized material with respect to the industriel model.
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