N

N

Graphtheoretical classification and generation of JD’S
by means of MVD-structures

Y. Hanatani

» To cite this version:

Y. Hanatani. Graphtheoretical classification and generation of JD’S by means of MVD-structures.
RR-0170, INRIA. 1982. inria-00076388

HAL Id: inria-00076388
https://inria.hal.science/inria-00076388
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00076388
https://hal.archives-ouvertes.fr

2

O
N

AR

Ll

RT

TS

Rapports de Recherche

LT

¥

BV T TN

ey

=L

Toran P

GRAPHTHEORETICAL
CLASSIFICATION |
AND GENERATION OF JD’S |
BY MEANS OF BASES |
FOR MVD-STRUCTURES

2G M 0*

Yoshito HANATANI

~\

Novembre 1982




)

1

o

GRAPHTHEORETICAL CLASSIFICATION AND

" GENERATION OF JD'S BY MEANS OF

BASES FOR MVD-STRUCTURES

Yoshito HANATANI

ABSTRACT

Starting from characterizations of a set of MVD's implied by a single JD,
we propose a graph-theoretical approach for classifying and generating JD's.
The basic ingredient of our approach is the concept of basis for MVD-struc-

tures, presented in an earlier paper.

RESUME

Partant des caractérisations d'un ensemble de dépendances multi-valudes

impliqué par une seule dépendance de jointure, on propose une méthode utili-

-sant la théorie des graphes pour classifier et générer des dépendances de

‘jointure. L'outil principal de notre méthode est la représentation en termes

de base d'un ensemble de dépendances multi-valuées, que nous avons introdui-

te dans um®papier précédent.
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INTRODUCTION

Let U be a finite set of attributes. Let MVD(U) and JD(U) be the set of
all the MVD's (multi-valued dependencies) and that of all the JD's (join‘
dependencies) on U, respectively. Formally they are sets of expressions as

follows : Co

M) =, {X =Y | XYcu}
D) =4 BX | X € PW- {8},U X = U},

[BFMY] studied several characterizations of subsets M of MVD(U)

for which there exists a JD j e JD(U) such that M =MVD{j} ; the MDV-
equality '=MVD' is an equivalence relation between sets CI’CZ of inte-
arity constraints of any sort, defined by :

C, =wp <2 <:—¢def ¥ d € MVD(U) (c] E d&=¢, E ).

In this definition, 'E' is the semantical implication in the usual sense,.i.e.

C £ d<= 'for any relation R on U, if R jv C (R satisfies C) then R b d'.
For every M ¢ MVD(U), let us define a subset of JD(U) as follows :
jds (M) =def {j e ad@ | {j} =MVDb1}

Then the above mentioned characterizations are those of subsets M < MVD(U)

such that jds(M)# @&.

There is a notion of basis for every subset M of MVD(U) (see [H]). A

basis B is a family of subsets of U and it characterizes an equivalence

ciass of subsets of MVD(U) with respect to '=MVD"

"In the present- paper we look for conditions so that jds(M) # @, in terms

. of a basis of M. Also, for ways to generate all the elements of jds(M) via a

basis B of M. That is, we want to know the graphtheoretical relation between
the elements of jds(M) and a basis B of M. We want to know even, when a JD
j is given, how to obtain the other elements of jds(M) which contains j, and

how to obtain B which is a basis of M such that {j} =MVDM'



The notion of basis relies on the notion of agreement relation. The

agreement relation 'Bagreeswith d' is a relation between a subset B of U

and an element d of MVD(U) and it is defined as‘follows :

Bov XY &>, X cB=>YcBv(U-7Y) cB).

It is extended .to the set'levels by the universal quantification as fol-

lows :

Bov d ¢=§def ¥BeB (B>vd)),
B>~ M (:yderdeM(Bamd),
Bov M ¢=;def ¥VBeBV¥deM (Boa>>4d).:

Using this relation, we define a pair of set functions as fol-

lows :

BASE < U, MVD' >
PMVD(U)) ¢ P(P(U))

BASE 1’ < U,MVD > g

BASE <U,MVD > (M) =lef {B e P(U) | B>~ M},

1.

BASE = <U,MVD" > (B) =lef 1d € MYD() | B=v dl.

1

We abbreviate them as BASE (M) and BASE (B). They are order-inverting

functions w.r. to inclusion, satisfying the following relations

(B1)

(82)

1

M c BASE o BASE (M) for any M ¢ MVD(U)

n

B 1

n

BASE e BASE = (B) for any B

n

P(U)

It is proved in [H] that
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(B3) BASEM)DVv d &> MEd

for any M c MVD(U) and for any d ¢ MVD(U).

This allows us to define the following notion :

B is a basis of M
@def ¥ d e MVUD(U) (Bo~ d &> BASE (M) > 4d),
where B is any subset of P(U) and M is any subset of MVD(U).

It should be noted that :

B is a basis of M
&> ¥ B e P(U) (B >VBASE | (B) &> B>~ M),

and that BASE(M) is the unique maximal basis of M.

In what follows, we present two results :
A. characterizations of subsets B of P(@) such that
. 3M < MVD(U) (B is a basis of M A jdsM) # @) »

B. a graphtheoretical approach to the relation between jds(M) and some sub-
set B of P(U) wich is a basis of M, and to the relation between

the elements of jds(M).

PART A. CHARACTERIZATIONS

Our aim here is'to characterize those subsets B of P(U), that are a ba-

sis of some subset M of MVD(U), such that jds(M) # 0.

The condition jds(M) # @ is shown in [BFMY] to be equivalent to the
intersection property and also to the orthogonality property on M. These

properties can be stated as follows.



Int (M)

VXY, Zc U (ZcU-XUYAMEX>>ZAMEY » 2

in

=MEXnY > 2),

Orth (M)

VXYcU XnY=@0AVxeX¥yeY METU- {x,y} > {x})

=MEU X4y > X).
For any subset B of P(U), let us consider the following condition.
Int (B)

¥ X,Y,Z c U (Z U-XUYAB> X2 ABS™ Y 2

in

=2 B> XnY»—2),.
Then we see immediately that
jds(M) # 9 <> Int(BASE(M)),

because Int(M)<&=> Int(BASE(M)) , by the equivalence

(B3) : ¥ Mc¢ MVD(U) ¥de MVD(U) (BASE(M)D>v de= M E d).
Now let B be a basis of M, i.e.

¥ d e MID(U) (Bo>v d<& BASE(M)ov d).
Then :

jds(M) # # <> Int (B),

because we then triviélly have : Int (BASE(M))&=> Int (B). Thus we have

shown that :



(1) B is a basis of M =>(jds(M) # @ <= 1Int(B)).
We want to'show that the condition Int (B) characterizes B such that
M c MVD(U) (B is a basis of M A jds(M) # @).

The following two conditions are equivalent.

1) M c MVD(U) (B is a basis of M A jds(M) # @)
2) ¥M c MVD(U) (B is a basis of M.=» jds(M) # @).
Proof

1) =>2) : this is a consequeﬁce of the fact :

B is a basis of M and also a basis of M'=> M =MVDM"

for any M,M' c MVD(U), by the equivalence (B3).

1

2) =»1) : this is immediate because B is a basis of BASE  (B).

Theorem ! (a characterization)

For any B gvP(U), the condition Int(B) is equivalent to the condition :

M < MVD(U) (B is a basis of M A jds(M) # @).

Immediate by (1) and Lemma 1.

Now let us consider the following condition on any subset B of P(U), that

we shall call the minus-two-completeness of B ;




Min 2 (B)

Vx,YgU(X.nY=¢A‘X#¢AY#¢’AU—XUYeB
-’-‘-¢3xeX3yéY (U~{x,y} € B)).

Then we can state that
(2) jds(M) # @ &= Min 2( BASE(M)),

for any M c MVD(U),
because Orth(M)&>Min2(BASE(M)), as we see it easily. When B is a basis of M,

1

BASE(M) = BASE e BASE ' (B) .

So we have the following :

(2') B is a basis of M => (jds(M) # @ > Min 2(BASEs BASE | ().

Thus we have got another characterization :

For any B ¢ P(U), the condition Min2(BASE ¢ BASE_](B)) is equivalent to the
condition

AM < MVD(U) (B is a basis of M A jds (M) # @).
Proof

Immediate by (2') and Lemma 1.

We shall introduce one more characterization. Let B be any subset of
P(U). The minus two compénent of B, denoted by B—Z’ is the subset of B,

defined as follows :

B {Be B| card B = card U ~ 2}.

-2 def

Let B and B' be any subsets of P(U). Then :

5
<



BASE ' (B) < BASE ' (B)) =B’ < B

2 -2 "

. Let {x,y} = U - B". Then B’ +» {x} ¢ (BasE 1 (8 ).

1

Let B’ be any element of B{;z

So by the hypothesis , B’ +» {x} ¢ BASE ' (B). This means that there is so-

me B in B such that B’ ¢ B, {x} ¢ B and {y} ¢ B. But such a B must be equal to

B’ . That is, B’ is in B, therefore in B_2. O
Corollary 1
For any subset B of P(U),
(BASE‘oBASE_l(B))_Z < B, .
Proof ,
Because BASE_I(B) c BASE—lo BASE»OBASE—I(B), by the property (B2). . gd
Corolly 2 (Uniqueness)
For any subsets B and B' of P(U)_z,
dM c MVD(U) (B is a basis of M and B' is a base of M)« B = B' 0

Theorem 3 (a characterization)

For any subset B of P(U), the condition Min 2 Rep(B) (the minus-two-repre-

1

sentability) : BASE = (B c BASE_I(B), is equivalent to the condition :

»

3IM < MVD(U) (B is a basis of M A jds(M) # @).

It suffices to show the following two implications :



1) Min 2 (BASE ° BASE ! (B)) = Min 2 Rep(B),

2) Min 2 Rep(B) = Int (B).

Proof of 1) Let d be any element of MVD(U) such that d ¢ BASE—l(B). We
want to show that d ¢ BASEF-I(B_Z). The assumption d ¢ BASE—I(B) implies
BASE © BASE | (B) >0 d. So by Min 2 (BASE ¢ BASE ' (B)), we have (BASE BASE_I(B))_Z

1

> 4. It follows that B_, > d by corollaryl.That is, d ¢ BASE ' (B_,).

Proof of 2) Assume that BoA X 0 Y > Z with Z ¢ U - XU Y. Then, by

Min 2 Rep(B), we have B_éafl XnyY->>Z, Let B be any element of B_2 such
that B>y X n Y +> Z. We shall show that B satisfies either Bap X »» 2
or B="/J Y - Z, which is sufficient to conclude that either B2 X o 2
orBD’f/Y%Z. Let {x,y} =U ~-Bwithxe Zand ye U-2 - X n Y. Then
x § XUY by Z ¢ U - XUY., Thus we have shown that either B>} X -+ Z or

BofY > Z. ‘ D.

__________ (Principal application)

For any subset M of MVD(U),

jds(M) # 0 <> 3B ¢ P(U)_, (B is a basis of M).

=) Assume jds(M) # @. Let B' = BASE(M). Then B' is a basis of M. So, by
Theorem 3, |

¥d e'MVD(U) (B's>n.d @B'_z >as d).
But the fact that B' is a basis of M, means that

¥ d € MVD(U) (B'">ad e=> BASE(M)>vd).



We have therefore :

¥de MVD(U) (B',>n de=> BASEQM) > d),

'

that is, B' , is a basis. of M. Naturally, B', ¢ P(U)_z.

2 2 -

&=) Let B ¢ P(U)_,. Then B_, = B, therefore we have Min 2 Rep (B). But

2
this is equivalent to ¥ M(B is a basis of M => jds(M) # @)

by Theorem 3 and Lemma 1. Now, what we wanted to prove has become clear.

The above results, in particular Corollaries 2 and 3, show that there is

a bijective correspondence between the quotient set JD(U) / “MVD and

P(P(U)_Z), the power set of P(U)_z. In fact, any equivalence class [j]MVD

which is an element of JD(U) / =M can be represented as jds(M) with

VD’
some subset M of MVD(U). So, by Corollary 3, it can be represented as

jds(BASE_l(B)) with B ¢ P(U) because jds(M) = jds(BASE—lo,BASE(M)) by

_2’

(B3) and the definition of jds(M). On the other hand, it is clear that any

jds(BASE_l(B)) is an element of JD(U) / W It remains to show the fol-

VD"
lowing :

Theorem

B = B'e=> jds (BASE™ 1 (B)) = jds(BASE™ ! (3")),

for any B, B' ¢ P(U)_z.

=>) Trivial.

¢=— ) Assume that jds(BASE—l(B)) and jds(BASE—l(B)) have a common element.

Then, by transitivity, 'BASE_—I(B) = BASE ™!

= ! { . ] 3 A
MVD (B'). It remalés only to show

that :
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(30 BASE™'(®) =, BaSET! (B') =>asE™!(®) = masE!3"),

because it then follows that B = B', by Corollary 2.

Proof of (<) : we must show that for any B ¢ P(U),

{d ¢ MVD | BASE_'I(B) E d} = BASE™!

(B).
It suffices to show that BASE-I(B) Ed = Bo~ d.

The premise is equivalent to BASE o BASE_I(B)QAJ d, by (B3).
And BASE . BASE-l (B >~ d => Bov d, is evident, when we note the property
(B2), i.e. B € BASE oBASE—l(B). This completes the proof of (¥).

[FMU] shows how to get from a given JD j, the set MVD(j) of

all the MVD's implied by j. Here, we want to study how to generate the set
jds(M) from a given subset M c MVD(U). ,

We have seen in Part A(Corollaries 2and 3), that we can uniquely deter-
mine a subset B of P(U)_2 as a basis of M, when jds(M) must have at least
one element. And for any subset B of P(U)_z, there 1s some subsets

M ¢ MVD(U), of which B is a basis and for which jds(M) = jds(BASE—l(B)) # 0.

So we shall give an algorithm to generate from a given B ¢ P(U)-Z’ all

the elements of jds(BASE_l(B)).

Let B be any subset of P(U)_z. We associate to B a covering of U, which
we shall call the inverse set of B, denoted by I(B). The definition is as

follows.

\I(B) =3 {U~B| BeBU {{x}| x e n B}.

ef
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We shall show that the JD P}X I(B) should be an element of jds(BASE-l(B)).

Theorem 5

Let B be any subset of P(U)_z. Then :

¥de MVD(U) (DXIT(B) F d < B on 4d).

Eroof -

<=) Let B>v X +> Y. Then, by the fact that B c P(U)_z, any element B' of

I(B) satisfies B' n (Y- X) =@ or B' n (U - Y - X) = ¢. And asI(B) is a covering
of U, Y must be the unionof some connected eémponents of the hypergraph (U,I(B)) with

the setof nodes X deleted. It follows by Theorem 3 of FMU that »aI(B) F X » Y.

=) Let Ba,(z X >> Y. Then there exists B ¢ B such that B:,(: X »> Y. Let

R be a relation on U, consisting of two tuples f and g such that f[B! = gl'B]
and for any x ¢ U - B, f(x) # g(x). Then it is ‘clear t;hat Rhl' X Y. It
suffices to show that R hv [><]I(B), in order to conclude that D><I1(B) KX Y.
In fact, R D< 1(B) holds, because any tuple h such that hlB'] ¢ R(B'] for

every B' ¢ I(B), cannot be other than f or g. ' ~ 0

Corollary 4
Let B ¢ P(U)_2 and let M ¢ MVD(U). Then :

B is a basis of M&D> DI I(B) ¢ jds(M).

Proof It follows from the fact that :

'B is a basis of M' is equivalent to
¥ d e MVD(U) (Bov de M E ),

by definition and by (B3). : a

&,
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For any j € JD(U), there is a unique element of JID(U) of the formD<] I(B) with

B ¢ P(U)_, such that j =MVDt>ﬂ 1(B)

By Corollaries 2 and 4. ' .0
To know all the algments of jds(BASE_l(B)) is to know the relation '=MVD'
between the elementslof JD(U). Note that JD(U) is the set of all the ex-
pressions of the form P< X such that X is a covering of U. éo, our aim is .

to characterize the relatioht*ﬂ_g =MVDDXQ Y, by means of a relation bet-

ween two coverings X and Y.
Let C(U) be the set of all the coverings of U; i.e.

CU) =;.¢ X1 XcP@ - {8} AU x=ul

ef
We want to introduce a reduction relation ':=' between elements of C(U), so

that the relation DKjZJ:MVDDKq Y would be equivalent to the relation :

dzec@® (X:=2and Y:

.

Definition

A\

The relation ':=' is a binary relation on C(U). It is defined by unit reductions

denoted b& ':=1'.

Let X, Y € C(U). We say that X: =Y holds, if . X can be reduced to Y by a

finite number of successive applications of the unit reductions 3 that

is, when there is a chain of elements of C(U), say Zb R Xl s eee En such
that §O:=] ~§I’ §1 : = 52""’§n-1 = zn and X =_§o s Y =-§n’ ansequently,
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this relation ':=' is reflexive, X := X, and transitive,

Xi=YAY:=2Z=>X:=2Z,

The following three kinds of unit reductions are allowed, where,

Clique (Y) =ief {z| z¢ Y A card(z) = 2}.
(rl) Clique (¥) ¢ X =5 X : = X U {¥}.

(r2) X e Xand 3.X' € X (X g X') => X :=, X ~ {X}.

1
(r3) 3Ix e X (Y § X) =>X:= XU({¥}
On the basis of this reduction relation, we define the equality (equivalence

relation) as follows.

.=.V Py . . = . =
Xi=: ¥ & . Jdzec®) X:=2aY:=2).

For any X, X, Z e C(D),

X:=Y AX:=2=>dW e COE:=WAZ:=W

It is a consequence of the following parallelogram property :
Let X : = Y by (ri) and X: = Z by (rj), then there exists W such that
Y t= W by (rj) and Z: = W by (ri), where (ri) and (rj) stand for any of

the three rules of unit reduction.

gorol lary 6

The equality :=: is reflexive, symmetric and transitive.

For any X, Y e C(U),
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[3

Every unit reduction is a reduction which does not disturb the connectivity
in the corresponding hypergraphs. So, if X = Y, then the hypergraphs
(U,X) , (U,Y) have the same set of connected components. It follows by

Theorem 3 of [FMUJ that DQAX Ede D<]Z_F d for any d ¢ MVD(U). - 0

For any X , Y ¢ C(U),

Xi=: Y= XX 5 DAY 0
It remains to show the inverse. But, since the equality ':=:! is
transitive , (Corollary 6), it suffices to find an intermediate element from

the conditionl>@_§ =MVD[>4 Y. And we know that we may take as an intermediate

element a-covering of the form I(B) with B ¢ P(U)-Z' That is :

o

For any X e C(U), we can effectively find an element of C(U) of the form 1(B)

with B ¢ P(U)-Z’ for which I(B) := X holds (B may be empty).

Proof

By successive application of (r2) on X, we can obtain Y ¢ C(U) which is irre-
ducible with respect to (r2). We next replace all Y e Y such that card (Y) > 3,
by the elements of Clique (Y) and we obtain Z « C(U), satisfying the following

two conditions

(1) v 2 €

|

(card(zZ) < 2).

(2) ¥zez sz'eg(z'gz).

E
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Zis then of the form I(B) with B ¢ P(U)—Z'

It is easy to sﬁow that Z := X. In fact, if Z # Y, ve can obtain Y from Z

by repeated applications of (rl) followed by those of (r2), and._)_(_ from Y

by repeated applications of (r3). | 0
Theorem 6

For any X, Y ¢ C(U),

&) By Corollary 7.
—>) By Lemma 5, there exist B and B' < P(U)_2 such that I(B) : = X and

I(B') : = X; As I(B) := X and I(B') := Y imply I(B) :=: X and I(B') :=: Y,

' : = ! = ’
It follows by Corollary 7, that D<II(B) MVDNE and DAI(B') MVD B>y,
Now assume that[Dx<] X =l X

ThenDd 1(B) =MVD[><| I(B'). Therefore by Corollary 5, B = B'. Now the equality

X = : Y follows from ( X :=: I(B) and I(B) :=: Y ) by transitivity

(Corollary 6). ' . 0

Because of the uniqueness of B c P(U)_2 such that j =MVD DA 1(B)

(Corollary 5), we can summarizingly state as fodlows.

1. Every equivalent class [X] which is an element of the quotient set (Lemma 5).

C(U)/ :=:, can be uniquely represented. by [I(B) Jwith B'c P(U)_z.
2.SuchaB is effectively computable from-any element X of the class ( emma 5).
3. Moreover, ¥ Y ¢ C(U) (Y ¢ [I(B)] <> I(B) : = Y).

4. The subset of JD(U) defined by [P I(B)] = {M§| X e [I(B)1}
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is an equivalence class of JD(U), which is an element of the quotient set

Jp() / “MVD'

AN

5. Let M be a subset of MVD(U) and let B be a subset of P(U)_2

[P<II(B)] = jds(M) &> B is a basis of M. o B

The correlations are shown in the following figure. '

(V) /= e cy/ i=:

!
i
I
|
l
n
!
|
i

P®)_,)

P(P(U))/BASE”!

\

Figure |
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N EYAMPLES

Throughout the following examples, we consider the universe of attributes
U = {x,y,2z,v,w}. Let us denote the elements of P@U) by x, Xy etc. instead of
{x}, {x,y} etc.

1. Consider the set of MVD's M = {z ++ v, v - w}. Clearly,

BASEM) = {8} U {x,y,w} U {xy,xw, yw, vw} U {xvw, yvw, zvw,xyw} U P(U)_, U{u},

where P(U) , = {X| Xe PU) and card X = card U - 1}.
-1 def .

BASE(M) is naturally a basis of M. But BASE(M)_2 is not a basis of M, because :
. BASE(M)_, D~ x > w,

BASEQM) 9 x > w.

That is, BASE-I(BASE(M)_Z) # BASE | (BASE(M)). So by Theorem 3, we can conclude

that there is no JD on U such that j =wwp M-

2. Let B = BASEM)_, \UJ {xy}, with BASE(M) ., as above. For this B we can verify
-2 -2 .

9 " that BASE ! (B) = BASE ! (BASE®M)). That is to say, B is a basis of M, by defini-

tion. Naturally, BASE-I(B_Z) ¢ BASE™ (B).

3. Now, take M' = {z »»> v, @ w}». Then BASE(M') = {¢} U {w} U'{xw,yw,vw} U
{X\Irw, yvw, zv;;w, xyw} U P(U)_, U {u}.
This time, we can prove that
BASE | (BASE ') _,) < BASE ™! (BASE(M")).

As BASE_] is an order-inverting function, the inverse inclusion holds. That is

‘to say, BASE(M')__2 is a basis of M'. So, by Theorem 7,

jdsM') = [NII(B')]
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"~ with B' = {xvw, yww, zvw, xyw}(=BASE(M');2).
By definition,

1(5') = {yz, xz, xy, zv, w}.

The set I(B') is shown pictorially in Figure 2.

W

I(B'")

I(B') contains the set Clique (xyz) = {yz, xz, xy}. So, by the reduction rule (1),
I(B") = 1(8") U {xyz}.

Now, I(B')\J {xyz} allows us to apply the reduction rule (r2) on it. Thus we have :

1(B') := {xyz, zv, w}.

The only deduction rule applicable to {xyz, zv, w}, is the rule.(r3). The only
elements of [I(B')] are I(B;), {xyz, zv, w} and those obtainable from.these two
by successive application of the deduction rule (r3). The elements of jds(M') are
of the form P X with X € [I(B')].
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¥ 4. Let X = {xyz, yzv, xzv, vw, xw} and let Y = {xyz, yzv, xyv, xvw}. Then

: Clique X = Clique Y = {xy, xz, yz, yv, zv, xv, vw, xw}. Here Clique B, with
B c P(U), is a subset of P(U), defined as follows :

Clique B =def (UJ {Clique (B) | B ¢ B and card B = 3}) U
{B| Be B and card B < 2}.

So by Lemma 3, we can conclude that X :=: Y. In fact, let Z-= {xyz, yzv, xzv, xyv,

xvw}. Then X :=: Z and Y :=: Z,

Let us denote by W the set which is equel to Clique X (and therefore to
Clique Y). The graph of W is shown in Figure 3, and we see that '

W = Clique(xvw) U Clique(xyzv).

We can therefore conclude that

X v
W := {xvw, xyzv}. -
f
y z
4
Figure 3
~We can also verify that Z := {xvw, xyzv}, with intermediate steps, Z U Clique

1]

(xyzv) and Z lJ Clique (xyzv) U {xyzv}.
Now let us note that W = Clique(xyzvw) - {yw, zw}.
So the subset B of P(U)_2 with the property : I(B) = W, is the following :
B = P(U)_, - {xzv, xyv}.

"
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Clearly M = {xv - w} is a subset of MVD(U) such that B is a basis of M. So,

DX, DY, DIZ, P W are all MVD~equivalent to a single MVD xv +> w.

5. Suppose that an MVD d = X - Y is given and that we want to know the sub-
set B of P(U)__2 which is a basis of d. To do this, we consider the covering
{xUY, X J@-Y)}, from which we compute W =Clique XUY)U Clique (X U
(U~Y)). Then W must be of the form I1(B), from which we can compute B ¢ P(U)_2

that we are looking for.
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