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RESUME : Nous étudions ici la correction des transformations par pliage/dépliage

T des programﬁes récursifs. En gardant un point de vue pratique, nous
donnons des conditions assurant cette correction. Puis nous montrons
comment utiliser les transformations de programme comme un outil de

preuve.

ABSTRACT:

Here we study the correctness of unfold/fold transformations of recursive
programs. With a practical mind, we give conditions ensuring this cor-

rectness. Then we 'show how to use program transformations as a proof tool.
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1. INTRODUCTION

It iswell-known that programming is difficult bécause the aBility
of conceiving algorithms is limited by the amount of superfluous complexity
introduced in order to expreés algorithms as programs. For two decades the
advantages of fonctionnal style of programming have been appfeciated to .
fight against this situation. Here functionnal programming means program
schemes as well as functionnal ‘programming languages (LISP, APL, EP,...).
However the lack of clarity, the consumption of time and space limit the
accepténce of functionnal sfyle.

To increase efficiency, several authors have suggested high level
program transformations. But this approach raises a big problem : how
ensure that any transformation apblied to a program preservesvité meaning.
A transformation system which cannot certify its transformations is dan-
gerous and must be rejected. Then, there are two basic approaches to solve the
correctness problem. One way is to provide a catalogue of program schemes
and transformations. This approach was followed by J. Arsac , S. Gerhard,

G. Huet and B. Lang, D. Loveman.. [1,10,13,19].

The catalogue must specify conditions under which particular trans--

formation may be performed and certified correct.

The other way is to design a system with a small set of transforma-
tions rules wich discovers the transformations on the fiy. Such a system
was described by R. Burstall and J. Darlington [4} and based on the

so-called "unfold/fold" technique (also mentionned by Z. Manna and

R. Waldinger [20]).

In this fight Catalogue versus Discovery a lot of arguments have beeﬁ

developped ; let us mention three of them :

- the tatalogue may become so large than it cannot be used without

a large consumption of time and space
- the discovery system perform many times the same transformation ;

- the discovery system implies the correctness proof of each trans-

formation or a general proof that it perform only correct transformations.
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This last point is the origin of our work. Of course, we do not
give a proof of the general problem -it is a second order problem- yet we

provide conditions, found by the system itself, under which the transfor-

mation is correct.
0 : u
This work has two parts : in the first one (séctions 3 and 4) we
study the unfold/fold transformations rules and give conditions ensuring
the corrections. In the second part (section 5), we show how a transfor-
mation system may be used as an equivalence proof system. Finally, the
section 6 is devoted to some further researchs and concluding remarks.
Before we recall briefly definitions and results of the algebraic theory

of recursive program schemes.
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2. ALGEBRAIC FRAMEWORK

In this section, we briefly recall formalism and main results of

the algebraic semantics of recursive programs. For more details the reader

should refer to [6,7,11,12,22].

2.1. Notations

We shall use the following notations

N is the set of positive integers ;

for any k of N greater than 0 [k] denotes the set {i€ N|1gigk} ;

[O] may denote the empty set ;

. ‘ . *
for any no empty set the free monoid generated by X is X , the

empty word A, and the integer |u| is the length of the word u

* * *
for any subset L of X and any word W in X L/w ={u[uGX and W.u€L}

2.2. C.p.o. set

Definition 1

(D,g,1) is a complete partially order (abbreviated in c.p.o.)
iff 1 is the least element of the partially ordered set (D,g)
and each directed subset A of D has a least upper bound

denoted WA

Let us recall that A is a directed subset of D iff for any

pair (d,d') of elements of Athere existsd"in A such.that d ¢ d" and d'gd".

Remark

Definition 2

Let be (D,£) a partijally ordered set, the set Dk(k in W,
k>0) will be always ordered component wise and we shall use'

. . k
the same notation g for the order relation over D .

Let (D,g) and (D',cg!) be partially ordered sets. A mapping
f from Dk to D' is increasing iff (d1,..;,dk),(e1,..,,ek)GDk
(d1""’dk)5(e1’"'ek)=>f(d1""’dk)s'f(ei""’ek)' Further
more f is continuous iff for any directed subsets of D, say
freeesb
is directed (with respect to &') and admits f(UA1,...,uAk)

A1,...;Ak, having least upper bound, then the set f(4A )

k

as least upper bound.



2.3. F-magma

In order to built recursive program schemes which are systems of
equations on terms, we need a set of functions symbols, say F, whose elements
are symbols with arity (a non negative integer). We call F, the set of ele-

k
ments of F with the same arity k.

Well formed terms (with respect to arities) are obtained by composi-
tion of these symbols, applied to variables, and may be viewed as particular
cases of finite trees and the set of ireees —finite i infinite~ is a special

case of F-magma (or F-algebra).

Definition 1 An ordered F-magma is a structure M=<D ;i 1 {f |feF|>
A M T M

‘ 3 . ’ 3 -
where (DM,_M) is a partial ordered set with lM as least ele
ment and, for any f of Fk’ fM is an increasing mapping from

k _

DM to DM' M is said complete if <DM"ﬁ’LM> is a c.p.o. set

and each fM is continuous.

A morphism h between two complete ordered F-magma, M and M',
.1s a continuous mapping from D_ to D1

' wich preserves their structure.

M

Y

Definition 2 A complete ordered F-magma (abbreviated in coF-M) M is free

over V if and only if V is included in D, (up to a canonical

M
injection) and, for any other coF-M M' and any mapping h- from
V to DM" there exists a unique morphism h;, from M to M'

whose the restriction to V is identical to h.

2.4. Trees

We note V a set of variable disjoint from F and described by {xn,ne W}

Definition 1 A wellformed F-tree on V (abbreviated in a. F-tree on V) is a

mapping t from a subset of W*, called dom(t), to FU V.
such that Yw 6 N*, Vf € Fk’ Vie N w. i € dom(t) implies :
(i) w € dom(t)

(i1) t(w)=f=>dom(t)/wn N =[k]

A F-tree on V is said finite iff its domain is finite, other-
. . . . . . . oo . ! . hd
wise 1t is said infinite. We note M (F;V) the set of all F-trees -finite

and infinite~- on V. We note M(F,V) the set of finite F-trees on V.
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By adding a new symbol @, with a null arity, we obtain the set
M (Fu{Q} , V) of F U {Q}-trees on V. We shall write M;(F,V) and define

on this set the syntactic order by :

t,t'GM;(F,V) tgt' iff (i) dom(t)'s dom(t")
’ (ii) w € dom(t) t(w)#a=>t(w)=t'(w)

Obviously Q is the least element of MS(F,V)

Proposition 1 The structure H = < Mg(F,V),S,Q,{fH|fGF}> is the free coF-M

over V. .

K fH is an application from M;(F,V)k to
-9 hed k
MQ(F,V) s.t. for any (t1""’tk) of-MQ(F,V) fH(t1,..,tk)

For any f of F

is the tree t defined by

dom(t)={A}\)L__) i.dom(t.)
ie[k] *

t(A)=f ; t(iﬁw)=ti(w) for any i in [k] and w in dom(ti).

To achieve this result it suffices to check (and checking is

rather tedious) the conditiomns of the definition 2 of § 2.3.

(o]

For any mapping v from V to M;(F,V), we note v*(instead of vy as
writtenin def. 2 of § 2.3.) the unique endomorphism of H whom the restric-
tion to V is v. We call it a substitution. Sometimes we write
t[t1/xi1,...,tp/xip] instead of v*(t), where {xijfje[p]} is the set of ele-
ments of V occuring at least once in t and, for any j in [p], v(xij)=tj.

2.5. Congruences on H

We shall use the concept of congruences F-magmas and, more precisely,
congruences on H stable by substitution (see [14]). To define this restricted

notion we need the concept of subtree and subtree replacement.

Definition 1 For any w in dom(t) the subtree of t at node w, denoted by

t/w, is defined as follows :

(i) dom (t/w)=dom(t)/w
(ii) Yu€ dom(t/w) t/w(u)=t(w.u)

For any t' in M;(F1V), the tree t[t'/vﬂ obtained by the replacement of t/w

by t' in t is defined as follows :



(i) dom(t|t'/w|)=(dom(t)-w. N*) U w.dom(t")
(1) Yu € dom(t)-w. N t[t'/u] (W)=t (w)
(iii) Yu € dom(t") t[t"/v] Gru) =t ' (u)

Definition 2 A precongruence on M;(F,V)‘is a preorder (a reflexive and

transitive relation) R or M;(F,V) such that, for any t in
M;(F,V), any w in dom(t), any mapping v from V to M;(F,V)
and any pair (s,s') of trees, (s,s') belongs to R implies

that the pair (t[v*(s)/w],t[v*(s‘)/wa) belongs to R too.

o 3
A congruence on MQ(F,V) is a symetric precongruence.

Proposition 1  For any subset R of the cartesian product M;(F,V)XM;(F,V)

the precongruence generated by R (i.e. the least precon-
gruence including R) is the reflexive and transitive closure of

the rewriting relation —§? defined by :

£ z>t' iff 3(s,s')€R,3we dom(t) Iv:V —>Mo(F, V)
: * * -
t/w=v (s) and t'=t[ v (s')/vd
The congruence generated by R is the reflexive and transi-

tive closure of the relation §—>U§;T>

* *
As usual we shall note —§>(resp.<—§—>) the precongruence (resp.congruence)
generated by R. ‘ ‘

2.6. Recursive program schemes

A Recursive Program Schemes (RPS) is a triple )=(A,%,R) where

- A is the base fungtions symbols'alphabet and is some finite subset

of L__J A ;A ?{anl p € O and the arity of a" is p} ;
ney o o P P

' /

- ¢ is the procedure symbols'alphabet and is equal to{¢1,...,¢ s

N
each ¢i has an arity equal to n. ;

- R is a functionnal binary relation over M(AV®,V) such that if
(s,t) belongs to R there exists an integer i (in [N]) such that

s is equal to 9, x

1"fxn- and t belongs to M(A L’¢’{X1""’xni})'

1

For sake of clarity, we shall write —> instead of = and use the alterna-

" tive presentation for RPSs



v m .V
D, to DM by tM(v) equals to Yy (t) for any v in D

ceeX = Lo, € M(A.ul@,{x1,...,xni})

Computations of a term s in a RPS z,(A,Q,R), are needed to define the
semantics (see below) and are sequences of terms rewriten from s in z. The
direct or immediate information contained in a term s is all what we can
know about this term without making any computation, that is to éay by
ignoring the value of procedure symbols occuring in s. Whence the defini-

tion of immediate information m(s) of a term s :

7n(x) = x for any x in V
n(ft,...t )=fn(t, )...n(t ) for £ in A -
SN ICONRI( .

ﬂ(¢it1...tni)=9

Thus 1w is a mapping from M(Aud,V) to MQ(A,V).,

2.7. Semantics of RPSs

Let z, (A,9,R) be a RPS, an interpretation of Z is a complete ordered
\Y .
A-magma M = <DM,;M,LM, {fM|f€A}>. We call DM thet set of "data mappings"
naturally order by the following relation, also denoted €

v
Yv,v'e Dx veg v <= Vx € v v(x)QM v'(x).
M -

Since M;(A,V) is the free coA-M over V, for each t belonginé to M;(A,V) and

each interpretation M, we are able to define a continuous function ty from

M M

Theorem 1 (M. NIVAT [21])

For any RPS z, (A,%,R), any s of M(Au¢®,V) and any interpretation

* .. .
of ) the set {ﬂ(t)M‘S —>t} 1is directed with respect to Sy

' %*
From now on, we note L(Z,S) the set {m(t)|s —>t}. We define the
function computed by any term s of M(A U &,V) for a given RPS ) and an in-

terpretation M,
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Let z, (A,%,R), be a RPS, M be an interpretation of z
and s be a term of M(A W ¢,V), the function computed by s

is noted s and is the least upperbound of the set

<), m
{e,|teL(],s)}

When M is the free interpretation H, <M;(A,V),E,Q,{3H|a€A}> (c£.82.4.), we

write sX or T(z,s).instead of s

Proposition 1

<, B

Let Z,(A,Q,R) be a RPS, M be an interpretation of 2 and s
be a term of M(Aud,V), SE is an element of M;(A,V) so
we can define the function (Sz)M which satisfies the fol-

lowing equality (SZ)M = s<2 >
N ’

Now we rely computed function and rule of computation.

Definition 2

We note LP(},s)

Definition 3

A computation rule p associates to each RPS z, (A,@,R); an

application from M(Au$,V) to itself such that, for any s
%

of M(Auo,V), s —> pz(s)

the subset {vp%(s)/n& N} of MQ(A,V).
We define two rules of computation : ¢ the full substitution.

rule and o the parallel outermost rule. For any RPS Z ,

(A,9,R), we define aE and 02 as follows :

- (1) az(x)=oz(x), Vxev

(ii) o (ft1...tn)=fuz(c1)...a2(tn)

(iii) Oi(ft1"'tn)=fcz(t1)°"cz(tn)’ \IfGA,n

Proposition 2

In others words

(iv) az(¢it1...tni)=Ti[t1/>;1...tni/xni]
oz(¢it1...tni)=‘ri Iaz(t1)/x1,...,oZ(tni)/xni],
V¢ie ¢, (¢;x,...x_ ,7.)€ER.
1

Let z,(A,Q,R), be a RPS, M be an interpretation of X and s
be a term of M(AvVo,V), S<Z,M>
{tM]tGLa(Z,s)} and {tM|tGL°(Z,s)}

is the least upperbound of

'

o et o are (universally) correct computation rules [8,24].



2.8. Equivalence and 1nequa11ty‘modu1o a class of interpretations

One of the main advantages of the algebraic semantics is related
to the equivalence of RPSs ; so we introduce a preorder and an equivalence

over M(Aud,V).

Definition 1 Let Z,(A,(I),R), be a RPS and C be a class of interpretations,

we define the preorder relation -<<Z > over M(Au?,V) by
" ) ’
: | L [
Ys,s?eM(a vo,V) s<$¢y,c>' 1EE WMEC 5T 5 <J,m>

We note ;<Z‘ > the associated equivalence relation
’

A class C of interpretations is said equationnal if there exists a binary
relation S over }%Z{A,V) such that, for any interpretation M, M belongs to C

iff sy~ty for each pair (s,t) of S.

Given a relation S, we note CS the equationnal class associated to S and

write <

3,85 (resp. =<z,s>) instead of 5<Z’CS> (resp. =<X’CS>).

Now we state a fruitful theorem used very often in the sequel.

Theorem 2 (I. GUESSARIAN [11])

Let z,(A,Q,R), be a RPS, (s,s') be a pair of terms of M(AuU?®,V)
and S be a subset of g{(A,V)xIS;I(A,V) then :

SS<Z,S>S'<=> VtGL(Z,S) at'eL(z,s') t% t!

. * )
where S is the precongruence (& U<—§>) over PIQ (A,V)

Corollary Let Z,(A,@,R), be a RPS, (s,s') be a pair of terms of
M(Av¢,V) and S be a subset of MQ(A,V)XMQ(A,V) then

s'<=> VtGLa(z,s)3t'GLa(2,s') s.t. t&.t' in other

57,85 S

words

| 1 ' n n' '
SS<Z,S>S <=> Y¥ne N In'e N MZ(S) QS TTOLZ (s")

Definition 2 We define over M;(A,V) the preorder relation <o given a
class C of interpretations, as follows : for any s, s' of
MQ(A,V)
| I '
s £, 8 <>VM€C SMSMSM

C

We note =c the associated equivalence relation
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Proposition 1 Let ), (A,%,R) be a RPS, C be a class of interpretations,

(s,s') a pair of terms of M(A,2,V), then

SS<2,C> s' <=> SX SC si

Proposition 2 Let s,s' be terms of M;(A,V) and S be a subset of
M, (A, V)xM,(A,V) then
s'<=>VteI\%2('A,V):t5 s‘at'GMQ(A,V):t'g s’ s.t. ¢t _C_St'

s_<_S

This proposition is analogous to the theorem of GUESSARIAN.

Let us recall if E,(A,@,R), is a RPS {<1>ix1...xn =ti/ie|N|}, and C is a

class of interpretations Z may be viewed as a system of equations in

MQ(A,V)/,EC whom the least golution i's <[T(z,¢1x1..an1)]gc,..., [T(z,q)le...xn )J____C>
Further more we have_ the equivalence : ¢ix1...xni =<2,C>¢jx1"'xn 1ff
T(§:1,<1>ix‘1...xni)=C T(E,¢jx1...xnj);~

We give now a technical result
Proposition 3  Let Z, (A,%,R), be a RPS, s,s' be terms of M(A ¢,V), and S

be a subset of MQ<A,V)X MQ(A,V) then
1]
sgss'=> VnG}NBn'G}N ﬂari(s)-r_:_s nali(s') and n<n'’
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3, UF-TRANSFORMATIONS. FIRST RESULTS

Let us fecall the transformation method of BURSTALL and DURLINGTON
[4] using the so-called "unfold/fold" technique (also mentionned by MANNA

and WALDINGER [20]).

.

In this section, we use freely the following notations :
V is a set of variables

A is a set of base functions

S is a subset of MQ(A,V)XMQ(A,V) which expresses properties of base

functions

® is a set of procedure symbols.

Definition 1 Let ) and )' be two RPSs, ) is transformed into )' by

UF-transformation if and only if

(1) 2 is  F.x,...x_ = t,
. i1 nj i
1<i<N
sy T I
(ii) }' is FiX1"°Xni ti
1<i<N

» s . » *
(iii) Vie [N] £ 78 Y
. ¥ . — '
We denote this transformétlon by ZUF(g) 2

To rely this definition to transformation rules of [4,9] ; let us

detail the point (iii). .

. ki ' 1
. >t
For some i of [N], t. Ros L means.there exists a sequence of

terms of M(AV @,V) {sj |0<j<p} such that

1

- s, = ti and sp =ty
-Yje (p] sj_1'—§f> 5 "unfolding"
sj = Sj—1 "folding"
Sj—1 s> 8 "laws about primitives"

Definition 2 Let ) and ' be two RPSs such that Zﬁ§f§7>2" the performed

transformation is correct if, and only if, for any s of

M(AyY9d,V) and any M of CS’ S<Z9M> is equal to S<2',M>'
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That means that the transformation preservesthe function computed by any
program under any interpretation of CS' A straightforward application of

the results of the section 2 leads us to the following result.

Proposition 1 Let ) and )' be two RPSg, {F, x1...xn.-t |[i€[N|} and
‘{le1.. ‘Xp, =t} |i€[N]},such that 2~———->Z', then the
i
performed transformation is correct if, and only if ;

Vie[N] VtGL(z F.x, el X )3t eL()',F, x1...x ) s.t. ¢ CS

Yeren (v, (¥q-¥ny )3ceL(Z FiXqoooXp ) sut. t' gt

1 1 =S
i

We say that Z and Z' are S-equivalent (Z ;S Z')

' The main problem of this article is to study the correctness of UF-trans—

formations. We give now a first result.

Proposition 2 Let ) and )' be two RPSg such that ) TF (S >)'; in general

the performed transformation is not correct.

Proof It is sufficient to give an example.

Let z be a RPS, {Fix1...xni=t. iG[N] t. (A)GA} (in Greibach form)
and let )' be the RPS {Fix1...xn.=Fix1...xn [1€IN]} it is clear that
i
Z z and, for any interpretation M, F. ;X XHl(Z' Mo is the constant
functlon Ly Obviously it is not the case for F. x1...xnl<z M S thus the

transformation is mnot correct.

Proposition 3  Let ) and'}' be two RPSg such that J——rc UF(S)>Z then
Yie[N] Ye'en(J,F. i%1-+-¥ng) ILEL(L,Fox ... xpg) t'C
We note this property z <S Z

St

We omit the proof in this draft and recall this result is mentionned in
[4,5] also.

Intuitively the result means that UF- transformations preserve partlal cor-

rectness of programs butnot termination.

Our goal is to give conditions ensuring the property z < X' which implies
the equivalence 2 Z with the converse inequality of the proposition 3

above.

Here we would mention a result of Courcélle-[SJ.
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Definition 3 Let z be a RPS and S be a subset of MQ(A,V)XMQ(A,V) ;

X is S-univocal if, and only if, all its solutions (as.a

system of equations over M;(A,V)) are S-equivalent .

Proposition 4 [5] Let } and }' be two RPSs such that ZW@»Z' s if ) is

S-univocgl then the transformation is correct.

Proof Proposition 3 implies that <T(Z,F1x1...xni),...,T(Z,FNX1..an)>
is a solution of }' and by definition of S-univocality, we
have the equivalences T(Z,Fix1...xni)ECT(Z',F1x1...xni),ie[N]

and, ) = ¥

In his article, B. Courcelle gives sufficient conditions over § .
such that any RPS z is S-univocal. This approach is very interesting since
it gives sufficient conditions emsuring the correctness of any UF(S)-trans-
formation but it deals with complex properties of terms rewriting systems

(confluence, finite termination,...) which are difficult to check.

Our aim is less global and more pragmatic : we want give conditions
for each UF-transformation and, if possible, find out these conditions au-

tomatically.

To reach this goal, we are going to make some assumptions on the
performed transformations and define the WUF-transformations (W stands for

weak).

Definition 4 Let ) and )' be two RPSs, {Fox,...x =t |ie[N]} and

n
{Fix1...xn'=t£ |i€[N]}, such that Zi;ﬁ?T§7>Z': this trans-

formation 1s a WUF-transformation if, and only if, the fol-

lowing conditions are fulfilled

(i) Yie[N] i22 => t =t}

.. * * y %
(ii) 351,52€M(A\)¢?V) s.t. t1~§—>s1,s1——~»sz and t1 >52
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Notations : We precise our notations (used in the sequel). If 2 and 2'
5 ; 1 ' I3 .
are two RPSs such that 2ﬁﬁ§f§7> Z then thls transformation
is fully defined by the 4-tuple <s1,s2,s3,Fj> where 8158958
belong to M(A &,V) and Fj to ¢ and

3

(1) t1 X >s1 (unfolding)

(2) s, % 5s (laws)

S 2
(3) amedom(sz) s /m

3752
n-
&) 3¢, .. "5emcan o, V) t;=s2[FJ.t1..t 3/m)

1 n: * ] *

(5) th P i X——> §3, thus t >52 (folding)

)
(6) If j=1 then F1t1..tn1 ——3%933 and there is exactly one

rewriting related to F1. Sometimes we shall use a graphical representation -

In the next section, we are going to study the correctness of

WUF-transformations.

»
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4, WUF-TRANSFORMATIONS

First of all, we must mention that the propositions2 and 3 hold
for the WUF-transformation. So, our goal is to give some conditions ensu-

ring this correction

' We distinguish two cases : Let } and }' be two RPSs and

<s,s Fj> a WUF-transformation from ) to )' then

253>

(1) either j is equal to 1

(2) or j is not.

4.1. Study of a WUF-transformation <51i§2i§315j>’jf1

That is the easy case and we have the following property.

Proposition 1 Let ) and Z' be two RPSs such that zﬁﬁf7§7>z' s 1f the

transformation is given by <S1’52’53’Fj> with j#1 then the
inequality ZSS Z' holds.

Proof : It is omitted in this vérsion. Let us precise it is sufficient to

prove the following inequalities

T(J,s,) <5 T(Q'ss,)

T(},t)<g T(Q't,),  i€[N], i#tf

As a corrolary of this proposition and the proposition 3 of section 3, we

get
' . NSV __
Theorem 1 Let ) and )' be two RPSs such that )WUF(S)>Z ; if the trans
formation is defined by <s1,32,s3,Fj> with j#1, then the
equivalence ) = ) holds and the transformation is correct.
Example 1 Let ) be the RPS

{ G(x)= R(X1f(g(x),G(k(x))))
H(x,y)=£f(y,G(x))

We perform the folding |
h(x, £(g(x),G(k(x)))) <— h(x,H(k(x),g(x)))
and the RPS )'obtained is
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G(x)=h(x,H(k(x),g(x)))

G, y)=£(y,6(x))

and ) and )' are equivalent (S is the empty set)

4.2, Study of a WUF-transformation <51;§23§3:fq>

It is the interesting case where the proposition 2 of section 3
holds. Let us recall the assumption made in the end of section 3 : in the
folding operations from s, to t; there is exactly one folding related to

F1 and this is the last one.

In this case we know that a WUF-transformation does not preserve
termination of programs. The basic idea is to find out a new rule added to

the set S and to show the equivalence of programs modulo a subclass of CS'

Algorithm Let <s1,sz,s3,F1> be a WUF-transformation and let V' be the
set of variables occurring in Z: we know that s, and Sq
belong to L(Z,F1x1...xn1) (up to a substitution) and we

define a term s, of MQ(A,V) in the following way
- dom(34)=d0m(s1)f\dom(s3) |
—\fwedom(sa) either 33(w)€V' then 34(w)=53(w)

or s3(w)€A if s1(w)=s3(w) then s4(w)=33(w)
if s1(w)GV' then sé(w)=s1(w)
if s1(w)€¢ then sé(w)=9

_or s3(w)€ o if s1(w)#s3(w) then 84(W)=Q
else 84(w)=y

where y is a new variable of V/V'

Example 2 Let ) be the RPS

F(x)=£f(G(x),H(x))
G(x)=g(x ,G(x))
H(x)=h(H (x))

(1) if s1=f(G(x),H(x)) and s3=f(G(x),H(x)) then s4=f(y1,y2)
(2) if s1=f(g(x,G(x)), H(x)) and 33=f(G(x),H(x)) then s4=f(Q,y)
(3) if s1=f(g(x,G(x)),h(H(x))) and 53=f(G(x),H(x)) then s4=f(Q,Q) .

We are able to define the rule associated to a WUF-transformation.
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Definition 1 Let be <s1,sz,53,F1> a WUF(S)-transformation from 2 to Z' 5
let us note 5, the term defined by the above algorithm, we
shall call "extra-rule' the pair (34,9) and S_ the new set

of rules SU{(SA,Q)}

We need a technical lemma

Lemma 1 Let be <s,,5,,84,F> a WUF(S)-transformation from 2 to )’
and Sy be the term constructed by the algorithms above ; for

any integer n there exists p, p<n-1, such that
n
WOLE(S?’) §{<s4’9>} TTOLE(S")

Proof omitted in this version

With this lemma we reach the crucial proposition.

Proposition 1 Let be <s1,sz,s3,F1> a WUF(S)-transformation from 2 to 2'

and Sy be the term constructed by the algorithm above ;

then the followiﬁg inequality holds

L g, L

Proof For sake of brievity we do not give this very technical proof.

But, in the example 2 below, we detail a sketch of this proof.

That means by adding an extra-rule we obtain the desired ine-

quality.
As a corrolary, with the proposition 3 of section 3, we have
Theorem 1 Let be <s1,sz,s3,F1> a WUF(S)-transformation from z to Z'
and s, be the term of MQ(A,V) constructed by the algorithm ;
then the following equivalence holds ) ESs 3. ‘
Example 2 Let ) be the RPS

F (0=£(F,(x),F,(x))
FZ(X)=g(x,F2(X))
Fq(x)=h(F,(x))

and S be the set of rules {<f(g(x,y),y'),g(x,f(y,y'))>} ; we perform the
following WUF(S)-transformation

U
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- g'(x,f(Fz(x),F3(x))) - law

<= g(x,FI(x)) folding

and obtain the RPS Z'

F1(x)=g(x,F1(X))
Fz(x)=g(x,F2(X))
F3(x)=h(H3(x))

With our notations s1=f(g(x,F2(x)),F3(x))
. 32=g(x,f(F2(x),F3(x)))
53=f(F2(X),F3(X))

Using the algorithm we find out s,=£(2,x) and SS={<f(g(x,y),y'),

g(x, £(y,y"))>,<£(Q,x),05} . We are goingbto prove the inequality z <g 2'.
The proof of this particular inequality may be viewed as a sketch of “the

proof of proposition 1.

The inequality Z g Z' means that
s

Vi e {1,2,3} T(Z,Fi(x)) <q T(z',Fi(x))'
S

In this example, it is obvious that both equivalences

T(Z,Fz(x))Es T(Z',Fz(x)) and T(},F (x)) =g T(Z',F3(x)) hold. Morover, we
: 3
know T(Z,F1(x))ES T(z,sz) holds too ; whence it is sufficient to prove the

following inequality T(Z,sz) SS T(Z',E(x)) ; in other words
' s

: . n n'
Yne N 3n €IN 'rraz(sz) ESS_ Trqz,(F1(X‘))

This proof is made by induction over n

=S
s

. ﬂ=0 '. SZ = g(X1,f(.Q,Q)) -—=> g(X’Q)
: <S4,s'2>
& .
Thus s, &, ma_  (F (x))
!

Assume that the result holds for any integer less than n+1.

. 0+l na§+1(sz)=g(x,ﬁ&§1(s3))

By lemma 1, we know there exists an integer p such that
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ﬂa§+1(s3) c wag(s1) and p<n.
'{<34,Q>}

\

But the proposition 3 (cf. § 2.8.) ensures us there exists an integer q

such that wag(s1) Es na%(sz) and q < p < n.

By induction hypothesis, there exists r of N such that_na%(sz) g ﬂa§|(F1(x))
. ‘ s

1f we sum up all these inequalities, we obtain

n+l, - .
ﬂdz (sB)Q 9>}

b (s,) C rad(s,) & ﬂar,(F (x))
(<ss, Y2 =g TTYR27 =8 Y

s
and gq<p<n.

So we reach the two following inequalities

m§+1(S3)Es

. ﬂui,(F1(x))

and g(x, ﬂa§+1(s3)) Cq g(x, ﬂui,(F1(x)))

S
We have just proved there exists some integer n' such that
+ ]
ﬂa? 1(52) ES . WGE,(F1(X))
s

Then the inequality ) <g )' holds and the equivalence Y ;S Z' holds too.
s s

Let us remark the equivalence z ES 2' does not hold.’

Example 3 Let ) be the RPS {G(x)=£(G(x))} and S be the set
{<f(x),g(£(x))>} ; we perform the following WUF(S)-transfor-
mation ' ' .

s1=f(c(x)),sz=g’(f<c(x))), s,=£(G(x)) and reach the RPS YU {e(x)=g(G(x))}.

Here s, is equal to f(x) and Sg to {<f(x),g(f(x))>, <£(x),2>} . Again the

4
equivalences) =, @ =, )' hold too.
s

Sg S
Obviously, the extra rule ensures the correctness of WUF(S)-transformation

(modulo Sg) but, sometimes, this involves the "trivialisation" of RPSs.

Definition 2 Let <5,585583,F > be a WUF(S)-transformation from ) to )' ;
we say the extra—rqle <s4,Q> gets trivial the RPS Z iff

there is no occurrence of £ in Sy
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With this definition we state.

Proposition 2 Let <s1,52,s3,F1> be a WUF(S)-transformation from z to Z' ;

if the rule <s4,Q> gets trivial the RPS 2 then the equiva-

lence T(X,F1x1..xn1). Q holds.

{<s4,Q>}

Now we give a very simple condition which involves a "bad" extra-rule.

*Proposition 3 With the usual notations the rule <s,,0> gets trivial the
RPS Z\if, and only if, the number of folding is greater

‘than the number of unfolding.
This proposition is very important if we consider strict interpretations.

Definition 3 Let S be a set of rules, we note ST(S) the set of interpre-

tations which satisfy S and are strict.

Theorem 2 Let <s1,sz,s3,F1> be a WUF(S)-transformation from z to z' ;
[10]‘ if the number of unfolding is greater or equal to the number
- of folding then the equivalence Z EST(S) E' holds.

This result is of practical interest if we think about programs written in

Lisp for instance ([18]).

Now, we propose another extra-rule which is necessary under some assumptions.

Definition 4 Let <5458 F,> be a WUF(S)-transformation from ) to )'

s
227371
and s, be the term defined by our algorithm ; we note 1(34),

' AN ’
the term Wsz[s4/s3] and for some t' of L (Z,F1x1...xn1) we
consider the rule 41(54),t'>. The set SkJ{<&(s4),t'>} 1s
denoted by St"

This definition leads to a proposition which generalizes the proposition i

above.

Proposition 4 Let <s1,s F,> be a WUF(S)transformation from z to Z' the

225374
inequality Z S5, Z' (St. is defined as above) holds
¢ _

Definition 5 Let <s1,sz,s3;F1> be a WUF(S)-transformation from ) to Z' 3

this transformation is said safe iff in the construction of
S, by our algorithm there is no need of auxiliary variables

i.e.variables occuring in 5, already occured in 54 and Sy
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With the above definitions and notations we can state.

Theorem 3 Let <s1,sz,s3,F1> be a safe WUF(S)-transformation from'x to
Z' : the equivalence y = 2' holds if, and only-if, there
. o .
exists t' of L (Z',F1x1...xn1) such that 1(54) ES t'.

In the case of a safe WUF(S)-transformation add an extra-rule is a
necessary and sufficient condition which ensures us the correctness of

this safe WUF(S)-transformation.

Here we stop the study of WUF-transformations and UF-transformations.
It is possible to give some results about UF-transformation with some
assumptions weaker than the assumptions made for WUF-transformations.

However it is clear there is no general result in the general case.
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5. UF-TRANSFORMATIONS AND EQUIVALENCE PROOFS

In section 3, we said a UF(S)—transforﬁation from 2 to 2'
correct if, and only if, Z and z' are S—equivalent. Conversely it sounds
good to prove the S-equivalence between two RPSs by exhibiting a correct

'UF(S)—transfdrmatiOn from one to the other. Then any UF-transformation

system become a system for proving equivalence of recursive programs.

In this section, we present two proof methods [17] without any

recursion induction principle (see also [2,5,13]).

5.1. The Mc Carthy method

Proposition 1 Let 21 and 22 be two RPSs, {F.x ..xp =t1|i€[N]} and

{Fix1..xn.=t%ii€[N1}, if there exists a RPS 23 and two
l -

UF(S)-transformation from to and from to which
1 3 2 3

are correct then 21 and 22 are S-equivalent.

Proof : Obvious (definition of correctness and transitivity of

S-equivalence).

Example 1 Let ), and }, be the RPSs
F () =g(F (%)) ' F (x)=g(F, (x))
{ z {
1 Fz(x)=g(F1(x)) 2 .F2(X)=f(F1(X))

and S be the set of rules {<f(g(x)),g(g(f(x)))>,<£(Q),g(Q)>}, let us con-
sider thg RPS 23

F, (0= (F, ()
3%F, (=g (e (7, x)))
We have 21 TOM 22 because

g(F (x))z >g (g (F (X)))X >g(g (g (F, (x))) < glg(F,(x)))

I
and 22 ﬁ§7§3 23 becausg

£(F (x))z >£(g(F, (x))) >g(g(f(F (x))))<§—g(g(F (x)))
2
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The results of the section 4 ensure us the correctness of the

performed transformations, whence the equivalence 21 ES 22 holds.

Example 2 shows us the usefulness of this method.

Example 2 Let 2 '‘be the RPS {F(x,y)=h(x,y,f(F(g(x),y)))} and S be the
set of rules {<f(h(x,y,z)),h(x,£(y),£(2))>,<£(Q),2>}

Assume we want to prove the equivalence f(F(x,y)E<z S5 F(x,f(y)), we may
. , _

use the Mc Carthy method in the following way :

1. Introduction a new procedure symboi of arity 2, say G

2. Define two RPSs Z and 22

1

y {6 (x,y)=£(F(x,y))
1 F(x,y)=h(x,y,f(F(g(x),y)))

z {G(Xsy)‘_‘F(X’f(y))
2 F(x,y)=h(x,y,f(F(g(x),y)))

3. Apply the Mc Carthy method to 21 and 22
Let us consider the RPS 23

6 (x,y)=h(x, £(y), £(G(g(x),¥)))
y.{
3" F(x,y)=h(x,y,£(F(g(x),y)))

We have 22 ﬁ??%) X3 since

F(x,f(y))z—>h(x,f(y),f(F(g(x),f(y))))<§r-h(x,f(y),f(G(g(x),y)))
2 : 2
and we have 21 ﬁf?s) 23 since

f(F(x,y))—E—>f(h(X,y,f(F(g(X),y)))—§>h(x,f(Y),f(f(F(g(X),y))))
1

<—— h(x, f(y),f(G(g(x),y)))
1

Again the results of section 4 guarantee the correctness of
UF(S)~transformations, so the equivalence 21 ES 22 holds and, as a corol-

lary, we get the equivalence f(F(x,y))5<2 s> F(x,f(y))

This quite elegant method (nothing else than an implementation of
the Mc Carthy induction principle [18]) is incomplete of course. But, in

some sense, it is "too incomplete" [3]. That means that very simple equiva-
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lence cannot be proved with this method. For instance if 2 is the RPS of

Example 2 and Z' the RPS F(x,y)=h(x,y),F(g(x),f(y))), it is impossible to
frove the S-equivalence of z and Z' by the Mac Carthy method. In order to
deal with this problem, we introduce a new type of transformation rule

which generalizes the UF-transformation rules.

5.2. Second order replacement method

Definition 1 Let z be RPS and C be a class of interpretations, the pair

(t,t') of elements of M(AU®,V) is a <Z,C>—sécond order .
replacement (abbreviated in <),C>-SOR) iff t and t' are
<Z,C>-équivalent.

Definition 2 Let z be a RPS, {Fix1...xni=ti|i€[N]} and {(sj,si)fjefN]}
be a set of <Z,C>—SORS ;3 if, for any i in INI, there exist

%

v, a substitution and ji in [NJ such that Vi(Sji) is a
; - LT LY '
subterm of t;, we can define t: ti[vi(sji)/vi(sji)] ané the

RPS J' {F.x ...xp.~t! [i€[N]}.

We shall say that )} is transformed into )' by a SOR(C)-trans-

formation and write 2§6§?E3 1.

Obvisously, the SOR transformation is a generalization of UF-transformations

and raises the same problems about its correctness.

Proposition 1 Let ) and )' be two RPSs and C be a class of interpretations

if there exists a SOR(C)-transformation from } to }' which

is correct then the equivalence ) ;C Y'holds.

Of course, proofs of correctness of SOR-transformations are rather diffi-
cult to manage but if we restrain to classes of interpretations which are

strict and equationnal it is possible to have some general results (see

[18]).

Example 1 Let ) be again the RPS F(x,y)=h(x,y,f(F(g(x),y))) and S be
the set {<f(h(x,y,z)),h(x,£(y),£(z))>, <£(Q,x),2>} ; the
pair <£(F(x,y)), F(x,f(y))> is a <z,cs>—50R as shown in the
Example 2 of § 5.1. Whence, by the SOR method, we reach the
RPS J' F(x,y)=h(x,y,F(g(x),£(y)). '
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To conclude this section, we describe a method combining the

twopreceeding methods.

5.3. A "sys'tem" for proving equiva]e'nce of RPSs

Let z and Zf be two RPSs and S be a set of laws ; assume we want

prove the equivalence z =g Z' holds then

(1) Find some pairs of terms which transform ) into X by SOR(S)

transformations ; go to (3)

(2) If they do not exist, then ) and Z' are not S—equivalent and
the "system" halts

(3) (3.1.) Try to prove these pairs are <Z,S>—SORs by the
Mac Carthy method
(3.2.) or goto (1)
(3.3.) If (3.1.) and (3.2.) fail then the "system" fails.

Obviously, the "system" is not automatic (even more or less) but
rather human. Nevertheless we believe these guidelines are usefull for

proving by hand equivalences and may provide automatic systems in particu=-

lar cases. : “
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6. CONCLUDING REMARKS

First of all, we mention there are many people who developp pro-
grams by using the UF-transformation implemented by M. Burstall and .
J.Darlington in Edinburgh [4], among them M. Feather [9]. We think there

are two axes of futur research.

1. In the same vein, program transformations may be used for
developping programs written in an applicative style as in [15,25]. In the former
paper, the authors use a catalogue of transformations schemes (dirgctly
inspired of [14]) s in the latter. P. Wadler gives a complete set of
transformation rules for a given applicative languageé (over lists). It
would be worthwhile to design a UF-transformation system which transforms
FP-programs into FP—progfams using parallel operators (as the o or tree
operators) as many as possible. The outcome of such transformations will be

the design of a highly parallel architecture.

2. Following the idea of [18,25] ; it seems very fruitful to con-
sider a transformation systém for developping programs written in a given
programming language ; whence an increasing efficiency. Moreover this
system could contain a catalogue of the most current transformations ;
whence another gain of efficiency and, maybe, the end of the catalogue

versus discovery fight. , <
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