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CONTINUATION-CONJUGATE GRADIENT METHODS FOR THE

LEAST SQUARES SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEMS

Roland GLOWINSKI®, Herbert KELLER™™, Lawre REINHART™**

"

RESUME
On étudie dans cet article une méthode de résolution de problémes aux
limites non linéaires dépendant d'un paramétre. Cette méthode de type conti-

-~

nuation fait appel de fagon essentielle 3 une formulation par moindres carrés
associée 34 un algorithme de gradient conjugué avec préconditionnement et & une
approximation par é€léments finis. .

On peut ainsi calculer des branches de solutions avec points limites,
points de bifurcation, etc... .

De nombreux essais numériques illustrent les possibilités de la méthode

étudiée dans cet article.

ABSTRACT

We discuss in this paper a new method for solving nonlinear boundary

- value problems containing a parameter. This method ef the continuation type

combines also a least squares formulation, a precenditioned conjugate gra—
dient algorithm and finite element approximations. '

We can .compute then branches of solutions with limit points, bifurca-
tion points, etc...

Several numerical tests illustrate the possibilities of the methods

discussed in the present paper.
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1. - INTRODUCTION. .
We present in this paper a powerful combination of techniques that are
used to solve a variety of nonlinear boundary value problems containing a
parameter. Indeed the resulting method can be employed to study a large class
of nonlinear eigenvalue problems. The individual techniques include : arclength
or}pseudo-arcléngth continuation, least squares formulation in an appropriate
Hilbert space setting, a conjugate gradient iterative method for solving the
least squares problem and finite element approximations to yield a finite dimen-

sional problem for computation.

In Sec. 2 the solution techniques are described in some details. Specifi-
cally in Sec. 2.1 the least squares formulation of a broad class of nonlinear

problems, say in the form
(1.1) AU = T(U),

‘are formulated in an appropriate Hilbert space setting. Then in Sec. 2.2 a
conjugate gradient iterative solution technique for solving such least squares
problems is presented. In Sec. 2.3 a pseudo-arc length continuation method for

nonlinear eigenvalue problems in the form
(1.2) ~ Lu = G()\,u)

is discussed. This involves adjoining a scalar linear constraint, say

(1.3) 2(u,),s) =0,

and with U = {u,)\} the previous least squares and conjugate gradient techniques
can be applied to the system (1.2), (1.3). One big advantage of our specific
continuation method is that simple limit points of the original problem (1.2)
are just regular points for our reformulation in. the form (1.1). The entire
procedure thus enables us to determine large arcs or branches of solutions

of (1.2) with no special precautions or change of methods near limit points.

. These techniques, as described in Section 2, apply to the analytical
problem. However they go over extremely well when various discrete approxima-
. tions are applied to yield computational methods of great power and practicality.
>We illustrate th1s by considering several nonlinear boundary value problems of

some difficulty and current 1nterest. In each of these problems the dlscretlzatxon



is obtalned by some finite element formulation. The well-known Bratu problem
on a square domain is treated in Section 3. Several ordlnary differential

equation examples displaying bifurcation and the effects of perturbed bxfur—‘
cation are treated in Section 4. Finally in Section 5 the Nav1er-Stokes equa-

. tions are solved for the driven cavity problem.

2. - SOLUTION TECHNIQUES..

We introduce in this section the methods that we shall apply in Secs. 3,

-~

4, 5, to the solution of nonlinear boundafy value problems. We shall consider
thus the solution of a monlinear problem, given in a quite general form, by

least squares, conjugate gradient and arc length continuation methods.

Let V be an Hilbert space (real for simplicity) equipped with the scalar
product (+,) and the corresponding norm l|+]] 3 we denote by V' the dual space
of V, by <e,+> the duality pairing between V' and V, and by “-ll* the corres-

ponding dual norm, i.e.

2.1 . |If|l, = Suw. l<—lT-?‘I’—>-L VEeV'.
. veV=-{0} v|| '

The problem that we consider is to find ueV such that
(2.2) S(u) =
where S is a nonlinear operator from V to V'.

2.1. Least squares formulation of problem (2.2).

A least squares formulation of (2.2) is obtained by observing that any
solution of (2.2) is also a .global minimizer over V of the functional J : V + R
defined by - \

PPN
(2-3) q(V) =7 HS(V)H*
(for which J should vanish) ; hence a leastsquares formulation of (2.2) is
{ Find ue V such that

(2.4)
' J) £J(V) W¥veV.
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In practice we should proceed as follows :

Let A be the duality isomorphism corresponding to (*,*) and <+,*> , i.e. obeying

(2.5) <Av,w> = (v,w) Vv,w'e v,

(2.6) vl ={lav]l, VeV (or equivalently el = [lA-lfH VEeV')

*
«

we have then

5 <ag,6> (=3 [lEllD),

2.7) J(v)

.

where £ is a (nonlinear) function of v obtained via the solution of the well-

posed linear problem

(2.8) AE = S(v).

Hence, (2.4) has the structure of an Optimal Control problem, where

(i) v is the control vector,
-(ii) & is the state vector,
(iii) (2.8) is the state equation,

(iv) J is the cost function.

As a final remark we observe that any solution of the minimization problem (2.4)

for which J vanishes is also a solution of the original problem (2.2).

2.2 Solution of the least squares probleﬁ (2.4) by a conjugate gradient algorithm.

We suppose from now on that S is differentiable implying in turn the diffe-
rentiability of J over V ; we denote by S' and J' the differentials of S and J,

respectively.

From the differentiability of J it is quite natuf51 to solve the minimiza-
tion problem (2.4) by a conjugate gradient algorithm ; among the possible conju-
gate gradient algorithms we have selected the Polak-Ribiére variant (cf. POLAK
[1]) whose very good performances (in general) have been discussed by POWELL [ 2].
The Polak-Ribiére method applied to the solution of (2.4) provides the following

algorithm \



Step 0 : Initialization

~

(2.9) . W eV, given,

compute then g° eV as the solution of

(2.10) Agl = J'(u%) .
and set
(2.11) 2° = g%

Then, for nz0, asswmlng that un, gn, 2" are known, compute u

-

Step | : Descent

(2.12) Compute p, = Arg Min J(un-pzn),
peR

set then )

(2.13) un+1 =" - pnzn.

Step 2 : Construction of the new descent direction

Define gnﬂe V as the solution of

2.14)  ag™! = ™Y

compute Yq by

1 ntl n n+l

@as) y. = <a@™!-g") "> Ol e B

2
<Ag",g"™> Bl

and set

(2.16) zn+| = gn+] + ynzn.

Do then n = n+l and go to (2.12).

n+l n+l zn'l-l

'8

7

by



The two nontrivial steps of algorithm (2.9)-(2.16) are :

(i) The solution of the one-dimensional minimization problem (2.12) to obtain
by 3 e have done the corresponding line search by dichotomy and quadratic
interpolation, using Pp-1 as starting value (see [3] for more details).

We observe that each evaluation of J(v), for a given argument v, requires
the solution of the linear prbblem (2.8) to obtain the corresponding £.

(ii) The calculation of gn+l from up+l which requires the solution of two

linear problems associated to A (namely (2.8) with v = un+1 and (2.14)).

Calculation of J(u") and gn : Owing to the importance of Step (ii), let us

detail the calculation of J'(un) and gn :

Let veV, then J'(v) may be defined by

J(v+tw)=J(V) | wyeV.
t

(2.17) <J'(v),w> = lim
t>0
t#0

We obtain from (2.7), (2.8), (2.17) that
(2.18) ;J'(v) ,W> = <AE . n>

where £ and n are the solutions of (2.8) and
(2.19) An = S'(v)ew,

respectively. Since A is self-adjoint (from (2.5)) we also have from (2.18),

(2.19) that

(2.20) <J'"(V),w> = <A;,n> = <An,E> = <S'(v)ew,E> .
Therefore J'(v) e V' ﬁ@y be identified with the Ilinear functional
k2.21)' w><S'(v)-w,E> .

It follows then from (2.14), (2.20), (2.21) that gn is the solution of the fol-

lowing linear variational problem

Find g" eV such that ¥weV
(2.22)

<Agn,w> = <8'(uM) ew, £ ¥weV,



"where En is the solution of (2.8) corresponding to v=u®.

Remark 2.1 : It is clear from the above observations that an efficient solver
for linear problems related to operator A (in fact to a finite dimenstonal ap-
proximation of A) will be a fundamental tool for the solution of problem (2.2)

by the conjugate gradient algorithm (2.9)-(2.16).

Remark 2.2 : The fact that J'(v) is Imown through (2.20) is not at all a draw-
back if a Galerkin or a finite element method is used to approximate (2.2).
Indeed we only need to know the value of <J'(v),w> for w belonging to a basis
of the finite dimensional subspace of V corresponding to the Galerkin or finite

element approximation under consideration. ®

Convergex{ce of algorithm (2.9)-(2.16) :

We introduce the concept of‘regular solution of problem (2.2) by

Definition 2.1 : A solution u of (2.2) is said to be regular if the operator
S'(u) (e(V,V'))is an isomorphism from V onto V'. '

Using a modification of the finite dimensional techniques of POLAK [ 1],
it has been proved' in REINHART [ 3] thatl if problem (2.2) has a finite number of
.solutions and if these solutions are regular, then the conjugate gradient algo-
rithm (2.9)-(2.16) converges to a solution of (2.2) depending upon the initial
solution v in (2.9) (this convergence result suﬁposes that u® is well chosen,

like in Newton's method).

2.3. Arc length ‘continuation methods.

Consider now the solution of nonlinear problems depending upon a real

parameter X ; we would like to follow in the space VXR branches of solutions
{u()),)\} when A belongs to a compact interval of R. '

These nonlinear eigenvalue problems can be written as follows
- (2.23) S(A,u) =0, A e R, ueV.

Equatidn (2.23) reduces quite often to

(2.24) Lu = G(A;u), AeR, ueV, »



where L : V> V' is a linear elliptic operator, and where G is a nonlinear

Fredholm operator (see e.g. BERGER [ 4] for the definition of Fredholm operators).

A classical approach is to use )\ as the parameter defining arcs of solu-
tions ; if_for A= Ao problem (2.23) has a unique solution u=u and if that

solution is Zsolated, that is

(2.25) Si = 15-§-(>‘ ,u) 28 an isomorphism from V onto V',
. 4 du o’ o :

“and if {A,u} > S(\,u) is ¢! in some ball around {Ao,qo}, then the Zmplicit func-
tion theorem implies the existence of a smooth arc of regular solutions u=u(})
for |A—xo|~<p . Therefore, for \ given sufficiently close to A, We may solve

problem (2.23) just as problem (2.2).

These procedures, however, may fail or encounter difficulties (slow con-

vergence for .example) close to a non isolated solution.

To overcome these difficulties we replace problem (2.23) by the following

system
(2.26) S(A,u) = 0,
(2.27) 2(u,X,s) = O,

where £ : VXRxR is chosen such that s is some arc length (or a convenient
approximation of it) on the solution branch. We look then for a solution {u(s),
A(s)}, s being given (bpt not A). If in addition to {uo,Ao} we know exactly or
approximately, {ﬁ (so),i (so)} (where v denotes the derivative of v with respect
to s) satisfying

. 2 . 2
(2.28) ||u(so)|| +|A(so)| =1 at s=s_,
then we can use
£

(2.29) 2(ud,8) = (A(s ) uls)-uls,)) + A(s ) (A(8)-A(s ))=(s-s ) = O,

“for |é—so|’sufficient1y small.
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Let us define Ue¢ VxR by U = {u,\} ; then problem (2.26), (2.27) can be

written as

(2.30) T (V) = O,
vhere
(2.31) T_(U) = (i‘szz;) a
2s¢
with
2:32) T, (0) = SO, T, (1) = L(u,),9).

The main interest of this new formulation is that the ordinary limit points of
(2.26) become regular solutions of (2.30) (see H.B. KELLER [5],[6] for more

details).

Using the notation of Sec. 2.1 a least squares formulation of (2.30)

(generalizing (2.4)) is given by

Find U(s) = {u(s),A(s)} such that

(2.33) A .
J (U(s)) < I (W) ¥W = {w,u} e VxR,
with
(2.34) I (W) = L o<amu> + -‘-'|"'|2
. s 2 ’ 7 M

where, in (2.34), w and {i are (nonlinear) functions of {w,u} via the solution

of the linear problems ,
(2.35). Av = Tls(w,p),
(2.36) U= TZS(W’U)’

respectively.
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We consider now a conjugate gradient algorithm (in fact, a variation of
algorithm (2.9)-(2.16)) to solve the least squares problem (2.33) ; _this algorithm

is defined as follows

Step 0 : Initialization

(2.37) - y° =A{u°,)\°} is given ;

compute then G° {gz,g;’\-} e VxR as the solution of

o aJs o
(2.38) Ag, = 35 (U),

o BJS o
(2.39) & T 5% U,
and set
(2.40) 2°=¢°. =

: . n .0 N n+l _n+l _n+l
Then for n=0, assuming that U ,G ,Z are known, compute U  ,G  ,Z by
Step 1 : Descent
(2.41) Py = Arg Min J (U -pZ ),

peR

(2.42) vl = v 2®
. n+tl _ n _ n ,n+l _ . n__ n
(i.e. _ u = u PnZy? A A pnzx).

Step 2 : Calculat1on of the new descent d1rect1on
n+1 n+1

Define ™! = {g - } e VxR by
BJ
n+l _ n+l
(2.43) Agu = _Bu " ),
oJ
n+l _ S n+l
(2.44) g5 Y U ),

compute
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n+l n n+l n+l n, n+l
. - <Alg, -g)l,g, >+ (g -8)g )
n 2
<Agl,gp> * |8 |
(2.45) n+1 .
n n+l n+!l n, n+l
B n, 2 n, 2 ! ‘
e ll™+ 1&gl
and set
’ © 0l n+l n
= . a
(2.46) z G + YnZ .

‘Do then n=n+1 and go to (2.41).

‘The various comments done in Sec. 2.2, concerning algorithm (2.9)-(2.16),
still hold for algorithm (2.37)-(2.46) ; we pointed out in Remark 2.1 the impor-
tance of efficient methods for solving linear problems related to operator A ;
tﬁis last remark still holds, indeed, since in the context of Sec. 2.3, A is

replaced by the block-diagonal isomorphism & : VXR + V' xR defined by
0J 0J

A o\’
g = .
0 |
We do not go into the details of the -calculation of 5:?—, > since it is juét

a trivial modification of the calculation done in Sec. 2.2 to obtain J'.

A most important step of the continuation method is a '"good!" initialization

choice in (2.37). The nafural choice
(2.47) {u®,2% = {u(s ) A (s )}

is usually too naive and a better choice is provided by the following simple

extrapolation technique

(o]
u

u(s ) + (s-s du(s))
(2.48) o © o o
A

N

A(s )+ (s=s DA(s ),

. resulting in a much faster convergence, close to the limit points particularly.

We shall return to this initialization problem in Sec. 2.4.
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Convergence of algorithm (2.37)-(2.46) :

The fundamental advantage of the continuation approach is that it provides
an efficient solution method in the neighborhood of the so-called 1imit (or
turning) points solutions of problem (2.23). Let us precise that concept of

limit point ; we have the following

Definition 2.2 : Let {uo,xo} e VxR be a solution of problem (2.23). We say that

{u ,A } Zs a normal limit point i{f ~

3S . 3S s
(2.49) 3u (Ugarg)euy + 95 (w2 )a, = 0,
. 35S _ ) 38 ~
(2.50) dim N (Eﬁ (uo,)\o)) = Codim R(a—u (uo,xo)) =1,
98 - 38
(2.51) TN (uo,xo) ¢ R(% (qo,.ko))

(we recall that if Ne £(X,Y), then R(\) = range of A, N(A) = null space of
A = Ker (A), respectively).

We have shown on Figure 2.1, below, an example of such limit point

(located on a curve of equation S(u,)\) = 0).

A

Figure 2.1

The main justification of arc length continuation methods follows from

Proposition 2.1 : Any normal limit point solution of problem (2.23) is a regular

solution of problem (2.30).

For a proof, see KELLER [5]. ®
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From a practical point of view, Proposition 2.1 is of fundamental importance >

for the following reasons :

(i) Since normal limit points for problem (2.23) are regular points for pro-
blem (2.30), the conjugate gradient algorithm can be used to compute 'these
limit points via the léaét squares formulation (2.33). This property is a
direct consequence of the convergence properties of the conjugate gradient
algbrithm mentioned in Sec. 2;} and discussed in details in [3].

(ii) Using convenient perturbation technique, genuine bifurcation points can be
approximated by normal limit points for which the solution methods descri-
bed in the present Sec. 2 can be applied ; several examples of such situa-

tions will be discussed in Sec. 4.

2.4. On the practical implementation of the arc length continuation method.

To help potential users of those continuation methods discussed in Sec. 2.3, ..
we summarize here what we consider as the essential of these methods :
- To solve the nonlinear problem (2.23), i.e. S(u,A) = O,we associate to it

the "continuation" equation (other choices are possible)

L ] 2 L ]
@2.52)  [|§)|% + *% -1
where u = %Ey i = E%-, we have i
(2.53) §s = ASA + (4,8u),

or equivaléntly
2 2.,
(2.54) (8s)” = (SA)" + (Su,8u).

As discusse§ in Séc. 2.3 we solve the nonlinear problem (2.23) via the
solution of the family (barametrized by s) of nonlinear systems (2.23),(2.52).
In practice‘we approximaté (2:23),(2,52) by tﬁg discrete family of nonlinear
systems déscribed below, where As is an arc length step, positive or negative
(possibly yérying with n) and where ot = u(nds), A" = A(nhs) :

-

Initialization : We suppose that we know a solution {uo,Ao} of (2.23) ; we

take it as origine of the arc of solutions, i.e. W = u(0), A° = A (0).
We ‘suppose. also that we know A(O),;(O)'(or at least an approximation of it ;

see Remark 2.3).



- 15 -

. . . n.,n n-1 .n
Continuation : Then for n2 0, assuming u ,) known and also u A (resp.

\'1'(0),).\(0)) if n>1 (resp. n=0),we obtain {un+l’>\n+l} ¢ VXR as the solution of
(2.55) sl =0
and
1 0 1 .o 27 ep-
(2.56) (u=-u,u(0)) + A -A)A(0) = As Zf n=0,
‘ n n-1 n yn-l
(2.57) O DI e S SO L DL 7. eSS P WA
As As

Remark 2.3 : It may occur that obtaining d(0), A(0) is by itself a complicated

problem ; however obtaining a second solution of (2.23), close to {uo,Ao}l may
be easy (using the nonlinear least squares-conjugate gradient methods of Secs.

2.1, 2.2, for example) ; this supposes that we are sufficiently far from a sin-

~ gular point). Let us denote this second solution by {u-],l-l} ; to approximate

{G(O),X(O)} we compute first As® by
(2.58) 85?2 = [-u"1 2+ [207H 2,

and approximate ﬁ(O),X(O) by

o -1 0 4 -1
(2.59) u-u AR
Aso 'Aso

respectively. The sign of As® is depending upon the orientation chosen for the

arc of solutions and of the relative positions of {u®,A\°} and {u—],l_]} on it.

Remark 2.4 : Relations (2.55)-(2.57) look like clearly a discretization scheme

for solving the Cauchy problem for first order Ordinary Differential Equations ;

from that analogy we can derive many other discretization schemes for the appro-

ximation of (2.23),(2.52) (Runge-Kutta, Multisteps, etc...) and also methods for

the automatic adjustment of As. ®

A least squareé—conjugate gradient method for solving in VXR systems very
close to (2.55)-(2.57) has been discussed previously in Sec. 2.3 s a fundamental
(and practical) observation is the following.: ' ‘
To initialize the conjugate gradient algorithm solving (2.55)-(2.57), we have

n+l,xn+l}

used {2un-un—l,2ln-ln-l} as initial guess to compute {u 3 with such a

L. . . n e e
choice we obtain a much faster convergence than by taking {u ,Xn} as initial guess.



(3.4) vl ='(JQ 1992 dx)

2 -

3. - APPLICATION TO THE SOLUTION OF THE BRATU PROBLEM.

3.1. Formulation of the problem, properties of its solutions.

As a first test problem for the solution techniques discussed in Sec. 2
we consider the numerical solution of the so-called Bratu problem, i.e. find

a function u solution of the following nonlinear boundary value problem

~Au = xe¥ + £ in Q,

A(3.1)

u=0 on 39,

where Q is a bounded domain of'RN and 3 its boundary. We denote by x = {Xi}§=]

‘the generic pdiﬁt of 'RN and define dx by dx = dxl...de. The (quite classical)

Sobolev-Hilbert space

oV

5% eLz(Q) ¥i=1,...N, v=0 on 39},
i

; . 1 2
(3.2) H (@) = {v|lveL (),
equipped with the scalar product

(3.3) (u,v) ;= J Vueyv dx
HO(Q) Q

and the corresponding norm

1/2

H (@)

provides a functional framework well-suited to the solution of (3.1) by varia-

tional methods, and most particularly by those discussed in Sec. 2.

For simplicity we consider only situations for which f is a nonnegative
constant. We suppose also that A> 0, since problem (3.1) has a unique solution
in HL(Q) if A <0 ; such a result can be proved using monotonicity methods, like

those discussed in e.g. LIONS [7], and based on ‘the fact that the operator

v > -Av - \e' - £

.is monotone ovér.Hé(Q) if A< 0. If A>0, problem (3.1) (or closely related non-—

linear problems) has been considered by many authors ; with regard to recent
publications let us mention among others CRANDALL-RABINOWITZ [8],[ 91, AMANN [10],
MIGNOT-PUEL t]l], MIGNOT-MURAT-PUEL [12] ; 'in particular -we may find in [12] an

-
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interesting discussion éhowing the relationships between (3.1) and combustion
phenomena :

About the existence of solutions for‘(B.P), the following has been proved
ifA>0:

There exists a critical value of A , say )\*, such that

() If A>A" s then problem (3.1) has no solution.

(22) If X e ]0,)\*] (resp. Ae ]O,Af[ ), then problem (3.1)has at least one solu-
‘tion (resp. two solutions) belonging to H:)(Q) hwz’p(Q) ¥p2 1 (where

v 3%y

v 9V P . .
Vs 3x.? Ox,0x. GL(Q)»VIS:L,JSN})..
1 1 1

WPy = {v

(722) If A = A" there exists a unique e HL(Q)rmwz’p(Q), ¥p 2 1, moreover {u*,l*}

18 a normal limit point for the equation

[}
o

S(u,A)
where the operator § is defined over Hl(Q) xR by

~Ay - e’ - £, ®

S(v,1)

In the above theoretical references it is also provéd that these solutions which
are not limit points are regular solutions. It follows from all these properfies
that the solution techniques discussed in Sec. 2 can be applied to the solution
of (3.1) if A>0 ; their application to the computer solution of (3.1) requires

" however a finite dimensional approximation of this last problem ; such an appro-
ximation - by finite element methods - is considered in the following sections.
Actually problem (3.1) has been investigated numerically by, among others, ‘
KIKUCHI [ 13], SIMPSON [14], MOORE-SPENCE [ 15], CHAN-KELLER [16] (by arc length
continuation and miltigrid finite difference methods), REINHART [3], for which

we refer for more details and further references.

3.2, Finite element approximation of the Bratu problem.

3.2.1, Variational formulation of the Bratu problem. Triangulation of Q.

Fundamental discrete spaces.

A variational formulation of the Bratu problem (3.1), well-suited to finite

element approximations and to the solution techniques of Sec. 2, is given by
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Find {u,\} € i () xR such that
(3.5) °

J VueVv dx = J (A +£) vdx VveH:)(Q).
Q Q : .

We describe only the approximation of problem (3;1) if N=2 (the one dimensional
case N=1 is much simpler) ; we suppose also for simplicity that  is a polygonal’
domain of'R?. We consider now a standard family of finite element triangulation§
ff;}h of , i.e. for a given h, t% i% a finite collection of (closed) subtriangles
of 2, such that

@ U r=7,
TEC;I i'o

(ii) VT,T' €t§1’ T # T', we have either

(*) TnT' =6,
(xx) or T,T' have only.one vertexr in common,

(x*x) Oor T ,T' have only a whole edge in common,

(iii) h is the maximal length of the edges of the Te‘C;;

An example of such a triangulation is shown on Figure 3.1, for
Q= 10,1[x]0,I1[.

We approximate then HL(Q) by the following finite dimensional space -

)

BNAN

i S
.

N\
NN

'”':\K"" -
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(3.6) Vo = (Valvpe c’@, v,|pe By ¥TeTy, v, = 0on a0},

where P, is the space of the polynomials in X%y of degree <1 ; we have

1
dim Voh = Noh - where Noh is the pumber of vertices of t’.h interior to 2 -

: 1
and Voh c Ho .

3.2.2. Formulation of the approximate problems.

As approximate problem it is quite natural to take

Find {uh, A} € Vohx]R such that
(3.7)
uh .
JQ Vuh-Vvh dx = JQ()\e +i:')vh dx Vvhe Voh'

Problem (3.7) is equivalent, actually, to a system of nonlinear equations in

; to obtain such a system we suppose that the set zoh of the vertices

of i"h has been ordered, so that
oh
(3'8) ZOh - {Pi}i=l ’
and then that to each Pi of Zop Ve have associated the function W, satisfying

(P.) = 8.. ¥ 1<i,j<N

(3.9) wieVoh s Wy f ij oh*

N
4 oh . . '
The set Boh = {wi}i=l 1s_ a basis of the vector space voh and we clearly
have the important following relation

N
oh .
(3.10) Vvhe Voh’ vy = izl vh(Pi)wi'

Back to (3.%) we observe that this last problem is equivalent to the nonlinear

system in R oh xR, below,

N , N
§h<Jv ax)u_(P,) J(x P @aw) + D, d
w.eVW. dX ) = exp JwW.) + w. 4Xx,
4'(3.l]) j=1 Ja 1 J u# ] 0 j=l uh J ] 1
1<sisN

N
where the unknown vector is {{uh(Pi)}io?,)\}-
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Since Vwi,ij are plecewise constant functions, the calculation of the

-1left hand sides in (3.11) is an easy task. The integrals occuring in the right

hand sides of (3.11) can Be calculated exactly ; however in order to reduce the
computational work we suggest the following possibilities to calculate the

above integrals approximately :

. u
(i) Calculate J e w, dx using the two-dimensional Simpson rule on each Te C;,
i.e. & ‘ T
. 1 * 3
(3.12) ¢(x) dx = = meas.(T) .z ¢(m.,.),
T 3 =1 AT

where 0 s By ps My aTe the mid-points of the three edges of T. Formula (3.&2) is

exact if ¢« P, (P2 = space of polynomials of degree <2). To calculate er v, dx

we should apply Simpson rule, only on those triangles offﬁh with Pi as a common
i S

vertex.
upy o .
(ii) Apply to J e w, dx the two dimenstonal trapezoidal rule, i.e.
Q
: 1 3
(3.13) JT¢(x)dx =~ §-meas.(T) jzl ¢(?jT),

~where PjT’ j=1,2,3 are the vertices of T ; (3.13) is exact if ¢e¢ P]. If C% is a

regular triangulation, like the one of Figure 3.1, using (3.13) to calculate
the right hand sides of.(3.11) we recover classical finite difference schemes for

the discretization of (3.1). =

Other numerical integration techniques are available for the approximate
u
e B
Q

calculation of J LA dx.

3.3. Numerical solution of the discrete Bratu problem by arc length continuation

methods. ‘

We apply now the continuation methods of Secs. 2.3, 2;4 to the solution of
the discrete Bratu problem (3.7) (we have considered problem (3.7) only, for its
formalism isisimpler, but the following methods can be (and have been) applied
to the solution of approximations of (3.1) obtained using numerical integration).

In the particular case of problem (3:7); the continuation techniques of

Secs. 2.3, 2.4 lead to the following algorithm :
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(a) Initialization.

(3.14) Take A° = 0 ;

the corresponding uﬁ is the unique solution of the following discrete linear

Dirichlet problem (given in variational form)

~

3 o
Find w eV, such that
(3.15)
o - .
J Vuh-Vvh dx = J fvh dx Vvhe VOh ;
Q Q
(3.15) is equivalent to a linear system (obtained by taking A=0 in (3.11)) whose

matrix is symmetric and positive definite.

We take {uﬁ,O} as the origin of the arc of solutions passing through it and

we define the arclength s by

2 2 2
Gae) o’ = ey |® e @0
Q
Denote %% by i 3 then by differentiation of (3.7), with respect to s, we obtain
at s=0
.0
g, (0)eVv, dx = R(O) éﬂl v, dx Wv_eV
Qvuh( h 0 h h€ Voh’
3.17) '
ﬁh(O)e Voh 3
we also have by definition of s
( . 2 2 :
(3.18) J |vw, (0) % dx + A7(0) = 1.
Q .
Define ﬁh as the solution of
YUn € Voh’
(3.19) .
0 v, +Vv, dx = JQe Vo dx Vv e Von 3

we clearly have from (3.17)-(3.19) that
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(3.20) 3 (0) = (0,

*2 ~ 12 -1
@2y 32 = s jug)” e
S-z 1
Since we are mostiy interested by solving the Bratu problem for >0, we
shall suppoée that the arc of solutions is oriented in the neighborhood of s=0
in such a way that ——-(—' A) =20 ; from that choice, and from (3.21), we have

(3.22) %(0) = (1+f v, | % a y“ 12,
g B

(d) Continuation.
With As(> 0) an elementary arc length, we define for n >0 an approximation
{u§+l,ln+l} (e V;,, XR) of {uh(n+))As),l((n+i)AS)} as the solution of the following

nonlinear variational system :

Find {uh“” Aty Ly o ¥R such that
, L
(3.23), JQ “*’-vVh dx = J O e ™ ap) v odx Wy eV,
(3.23)2 J V(uh uh)'Vuh(O) dx + (A -2\° )X(O) As 2f n=0,
. & n n-l n .ol
(3.23), J V(ug”-uh) V(uh Dy (A“”—A“)(—)‘;L——) = A if nz1. ®

To solve the nonlinear system (3.23) we may use the nonlinear least squares
conjugate gradient techniques of Sec. 2.3. Since the solution of the discrete
Bratu pfoblem (3.7) is, in this paper, thevfirst appLication of the above methods,
we shall give a detailed description of the operations involved in the solution
process :

" We suppose that VthIR is equibped with the inner product corresponding to

the euclidian norm

T e A L R 212,
Y/

A convenient nonlinear least squares formulation of (3.23) is then

Find {uhn+] R oy e V <R such that

(3.25) _ : :
. ,.n+l +1
NI G LAYy <g +1'(wh,u) v {wh,u}evohxn,.
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where in (3.25) the functional Jn+](-,o) is defined by

(3.26) Iy (o) = J IthI dx + %‘lﬁlz

in (3.26), %h and {i are nonlinear functions of {w ,u} , obtained as the solutions

of the linear problems

%he Voh’
(3.27)
) W, :
J Vi‘ah-Vvh dx = J th-Vvh dx - I(ue h+f)vh dx Vvhe Voh’
Q Q 194
) “E uﬁ"' | ARAR"!
(3.28) = J uh) Y (———)dx + (u—kn)(———————o - As,
respectlvely

In that particular case the conjugate gradlent algorlthm (2.37)=-(2.46)

reduces to :

Step 0 : Initialization ’ -

(3.29) ,' {uﬁ,ko} eV, *R is given.

Compute then {gﬁ;gg‘:} eV, ¥R as the solution of

9J

o 0 _ n+l 0,0
- JQ Ve Vv dx = < 3uy (A7) ,v> Vo e Vg,

(3.30) 4

gze Voh’

o aJn+1 0 40
(3.31) g, = —gx——'(uh,x ),
and set
(3.32) {20,20} = {g0.8)) - ™

Then for m >0, assuming that {u‘n A™ {gm, & {zm,zﬁ} are knobn, compute
(I amly ! (=] m+1} by v A
9’ ’ ’ ? ’
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Step ! : Descent

Find pm'ER such that, ¥pe R
- (3.33) . ' '
m m_m.m _m
n+1 u'h_pm u’ -pmzk)SJnH(uh-pzu’)‘ —pz)\) ’

and set 4 ' .

mt1 n m Aﬁ#l

(3.34) .Uy =y - pmzu , = Am—psz . n

Step 2 : Calculation of the new descent direction

Define {gzﬂ,g;m} as the solution of

3J
m+1 . n+l m+l ,mtl] .
JQ Vgu Vvh dx = < Buh (uh SA ),vh> Vvhe'Voh,
(3.35)
m+]
8y EVoh’
' 3J
+] 1
(3.36) g = —— (" AT,
compute
S J v(e™ gD g ax + (&) -gDey
Q u
(3.37) Y. =
m m 2
Jngl ax + |g|
and set
m+l _  mtl m mtl - m+l m
(3.38) zu =8, *tYpZ, ZH T8 +Y 2y -

Do then m=m+! and go to (3.33). ®

According to Sec. 2.4 we should use {Zuh u.h ],ZAn-)\n_]} in (3.29), to com
pute {u:: * n+l} by the conjugate gradlent glgonthm (3.29)-(3.38).
About the partxal derivatives 8?1;‘ ’ 3;‘”] (occuring in (3.35),(3.36),

respectively) we should easily prove (using the derivative calculation technique

of Sec. 2.2) that at {w ,lJ} we have :
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aJ-n+1- “h ~ -
< 8Uh (wh,p),vh> = ngwh.vvh dx - pjge w v dx
' ﬁJQV( As )V 9x ¥oe Vo
aJ n _n-1 w
Gao e i - oM
Q

where, in (3.39),(3.40), {ﬁh,ﬁ} is obtained from {wh,u},through the solution of
(3.27),(3.28).

3.4, Numerical experiments.

3.4.1. Formulation of the test problems.

We consider the numerical solution of the particular Bratu problems below

(i) First test problém :

d2u u
-——2=)\e in 10,10,
(3.41) dx

u(0) = u(l) = 0.

(ii) Second test problem

¥ N
- ——% = e + 1 27 10,1(
(3.42) dx
' u(0) = u(l) = 0.

(iii) Third test problem :

{ —Au = xe" 7n 30,1[x10,1(,
(3.43)

u=0 on 3N. ®

Problems (3.41),(3.42) have been discretized by one dimensional finite elements.
using a space discretization steph=0.1. Problem (3.43) has been approximated by the
finite element method discussed in Sec. 3.2, using the triangulation t% shown
on Figure 3.1 and consisting of 512 triangles ; the unknowns are then, the
values taken by -the approximate solution'uh at the interior nodes of ti ; we
have 225 such nodes. The continuation algorithm described in Sec. 3.3 has

been applied with As = 0.1.
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3.4.2. Numerical results. Further comments. ' .

With v, the approximate solution of (3.41)(resp. (3.42)) we have shown on
Figure 3.2 (resp. 3.3) the variation of uh(O.S) (maximal value of uh) as a func-~

tion of ). .

.For f=0 (problem (3.41)) the critical value of A (i.e. the value Ac corres—
ponding to the limit point) is known explicitely and we have A = 3.51 3830... ;
with h=0.1 we obtain 3.53... . '

Let u be the approximate solution of (3.43)‘; we have shown on Figure 3.4
the variation of uh(0.5,0.5) (maximal value of uh) as a function of A. The nume-
rical results agree quite very well with those of, e.g., KIKUCHI [13], obtained
by quite different methods. '

With As = 0.1, the solutioﬁ of the above three test problems never required
more than 3 to 4 iterations of the conjugate gradient algorithm (3.29)-(3.38) to

obtain {u§+],kn+l

},from\{uz,ln}, {uﬁ-l,kn-l} via the solution of the least squares
problem (3.25) ; such an efficiency is partly due to the good initialization of
algo;ifhm (3.29)-(3.38) provided by {ZuE-u;-l,an-ln-l}. Using the above methods
there was no particular difficulties, close to and at the limit point.

To conclude Sec. 3 (but a similar conclusion holds also for the test problems
of the following sections) we would like to poinﬁ out that each iteration of the
conjugate gradient algdrithm (3.29)-(2.28), requires the solution of several
discrete linear problems, equivalent to linear systems, with the same matrix
independent of n and m.- Since this matrix is symmetric and positive definite
‘we should use a Cholesky factorization done once and for all (taking into account
the sparsity of the matrix) ; thus solving the above discrete Dirichlet problems

requires only the solution of sparse triangular linear systems, which is a rather

cheap operation.
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4. - APPLICATION TO THE SOLUTION OF BIFURCATION AND PERTURBED BIFURCATION
PROBLEMS.

4.1. Synopsis. Generalities.

In this section we shall discuss the numerical treatment of nonlinear
second order boundary value problems whose branches of solutions exhibit genuine
bifurcation points. To be more precise we shall approximate the original problem
by a new one whose branches of solutions have limit points only (in the sense
of Sec. 2.3) ; they can be computed therefore by the continuation methods of
Sec. 2.3. The approximation process is founded on the use of a convenient per-

turbation method related to the concept of perturbed bifurcation.
The problems to be considered in this section have as general formulation
(4.1) , (PG) Au = G(u,),8)

where (with the notation of Sec. 2) :

V is a real Hilbert space, {u,X} ¢ VxR, A is an elliptic operator from V to its
dual space V', § is the perturBation parameter, and the range of G is contained
in V',

From (Pg) we define the non perturbed problem (P ) by
(4.2) (PO) Au = G(u,r,0),
and the linearized problem by
(4.3) Av = Gu(u,x,ﬁ)v,

where Gu denotes the Frechet derivative of G with respect to u.

We recall that bifurcation phenomena occur in the case of singular solution

only (i.e: when A-Gu(u,k,é) is a singular operator).

4.2.'First example : a nonlinear Dirichlet problem.

4.,2.1, Formulation of the problem.

With Q a bounded domain of'RN (N> 1), we consider as first example the solu-

tion in V = H;(Q), of the nonlinear Dirichlet problem
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-Au = Auz +§1in Q,
(4.4) |
u=0on 30,

with § R in (4.4).

The non perturbed problem (=0 in (4.4)) has two solution branches for X 2 0 :

(i) The trivial branch {0,A}, A eR_,
(ii) A non trivial branch which never crosses the trivial one (see Figure 4.1

below).

non trivial
branch

trivial branch (u=0) A
Figure 4.1

Branches of solgtions for the non perturbed problem.

By symmetry with respect to {0,0} we should obtain the solutions of (4.4)

corresponding to A< 0. ' ' . ' /

Concerning the perturbed problem it follows from MIGNOT-PUEL [ 11] that ome
has a branch of solutions whose points are all regﬁlar and one with a normal .
limit point (Figure 4.2, below, shows - for §>0 - the behavior of the solutions
of (4.4)).



- 32 -

limit point

Figure 4.2

Branches of solutions for the perturbed

problem_(6v> 0.

Suppose that A20 ; a possible strategy to compute the nontrivial branch

of solutions of the non perturbed problem (4.4) is the following :

Take §>0 suff1c1ent1y small", and solve (4.4) by a contlnuatlon method
- like those described in Sec. 2. 3, using {u ,0} as starting point, where udeli(Q)
is the solution of
-bug = 8 in @,

(4.5) A
’ = 0 on 9.

o°
)
For 6> 0 and sufficiently small, that part Cg of the branch of solutions of the
perturbed problem, beyond the limit point'{udc,xéc} (the upper part in fact), is
a good approximation of the nontrivial branch of solutions of the non perturbed
e s . - +
problem ; -take then two distinct points of CG’ say {“51’*51} and {uéz,kéz}, and
compute the non tr1v1a1 solutions of the non perturbed problem correspondlng to
A= Aél and A = AGZ (these solutions can be obtained using 51mp1y the least

squares-conjugate gradient method of Secs. 2.1, 2.2 (i.e. without continuation),
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taking Usy and Ugy @s starting points ; if necessary continuation with respect

‘to 6 can be used to reach the value 8=0).

Once two distinct points (sufficiently close one to each other) of the non
tr1v1a1 branch of solutions of the non perturbed problem have been obtalned we
can use continuation, again, to describe the whole branch

~

Figure 4.3, below, illustrates the above process.

[o el
>

, A
|]'»|‘|A||||

I--.nunn.-l.a-nnnna-lnn.-.....l-u-n-n.

Figure 4.3
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The above technique has been applied to compute the non trivial solutions
-of nonline#r boundary value problems more coﬁmlicated than (4.4), like those
considered in Secs. 4.3, 4.4, for example, and also the Von Karman equations
for nonlinear plates, for which we refer to REINHART [3], [17] for a numerical

treatment by the methods of this paper.

We shall discuss in Secs. 4.2. 2 4.2.3 the numer1ca1 solution of (4.4).
for the perturbed and non perturbed problems and take also (4 4) as a test
problem to study the influence of several parameters (such as As, the approxi-

mation of {u,\}, ...) -on the behavior of the continuation process.

4.2.2, Finite element approximation of problem (4.4).

Problem (4.4) has clearly the following variational formulation
Find {u,\} ¢ . () xR such that
(4.6) |

[ YueVv dx = I OuZ+§)v dx ¥ve H:’(m.
Q Jq

With the Ffinite element space Vo still defined by (3.6) we should approxi-
~mate (4.4),(4.6) by

Find {q‘h,)\} eVoth such that

4.7
, _ 2 .\ : .
J VuhvVvh dx = J ()\uh+6)vh dx Vvhe.Voh :
9] ) Q
. Noh+] -
problem (4.7) is equivalent to a nonlinear system of equations in R (we
‘recall that Noh = dim Voh)' Since the nonlinearity is a polynomial one, the

various integrals occuring in (4.7) can be calculated exactly ; however, like
in Sec. 3.3.2, the computational work can be reduced substantially if one uses

rnumerical integration to calculate the contribution of the nonlinear term.

4.2.3. Numerical solution of test problems. Comparisbns.

As test problems, for the numerical methods described previously, we
have considered ‘
~u" = aut+s on 10,1C,
(4.8)
u(0) = u(1) = 0,

N
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for 6§ = 0,2,3,4,5 ; the non trivial branch of solutions corresponding to §=0

is obtained by the method summarized on Fig. 4.3. We have chosen h = 1/10 and-

“As ='1/10 for the space discretization and for the continuation algorithm, res-

pectively. The numerical results are shown on Figs. 4.4 (for 8=0,2) and 4.5
(for 6=3,4,5), where we have plotted max uh(x) = uh(.S) versus A. The compu-
ted results agree with those obtainedxéigé&%ere by other methods.

3

‘Taking (4.8) with 6=5 as test pfoblem we have indicated on Fig. 4.6 the
number of conjugate gradient iterations necessary to solve the least squares
problem encdunteréd at each step.of the continuation process ; we observe the
very good behavior of our methods at regular points and close to the limit

point (for As=1/10, at least).

Ls

15 4 02
) 3

e3
LI Y

. 2
13 ¢ ' YA
®,
1.2 ¢ 3
3

11 4 *2

%

b4 45 4B

Figure 4.6

If oné takes yn=0 in algoriﬁhm (2.37)—(é.46) (instead of Yo given by
(2.45)) we recover a steepest descent algorithm for solving the least squares
problem (2.33). In the particulgr case of (4.8) with 8=4 we have done a compa-
rison between the perfqrmances‘of'the steepest descent and conjugate gradient
algorithms when applied to-the continuation solution of (4.8). The computed
results are summarized on Figs. 4.7 (steepest descent) and 4.8 (conjugate
gradient) ; they show clearly the superiority of the conjugate gradient variant

in the neighborhood of the limit point.



- 38 -

), s,
2 1
12 4 12 4+
® 7 ..4
E o i 'Y
3 3
- ¢ ®
1.1 - 1‘ . 1.1 “ 3
'y .
- s - ‘
. .
L 21 U 4
[ ] ®
4 8 d 3
. ™
0.9 T ® 10 09 - PY ‘
o 7 o 2
0.7 T
80 v — 8.0 - Y - v >
1] 6 57 s5 56 57
Figure 4.7 Figure 4.8
" Steepest descent Conjugate gradient

To conclude Sec. 4.2, we shall discuss the effect of the size of As upon

the convergence of our continuation method, particularly in the neighborhood

of the limit point ; the test problem is (4.8) with §=5, again. We observed

the following phenomena :

(a)

(b)

(c)

If As is too large, the algorithm does not converge close to the limit
point. We can explain this behavior by the fact that the initial solution
provided by {2u£ "ua-l, ZAn-An_]} (or {uﬁ,kn}) is too far from the branch

of solutions.

The smaller is Aé, the smaller. is the number of iterations close to the limit
points ; however if we are sufficiently far from the limit point the number
of iterations is quite small and practically independent of As

The smaller is As, better is the approximation of the location of the limit

point . . )
In conclusion we should use large As if we are sufficiently far from the

limit point, and decrease As if we are close to the limit point (further details

concerning the choice of As may be found in [3]).
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4.3. Bifurcation from the trivial branch of solutions.

4.3.1. Synopsis. Generalities.

The purpose of this section is to study simple nonlinear eigenvalue problems,
with genuine bifurcations, whose solutions behave like those of the Von Karman

equations for nonlinear plates.
Using the formalism of Sec. 4.1 we consider problems (4.1) such that

(4.9) G(0,1,0) =0 ¥ AcR.
It follows from (4.9) that {0,\} is a (trivial) solution of the non perturbed

problem (4.2). The particular class of problems (4.1) satisfying (4.9) that we
consider here is defined by
Find ueH () (=> u=0 on 3) such that
(4.10) :

-Au = Ju + f(u,\) + §

with f obeying

4.11) £(0,A) = 0 ¥ A€eR (from (4.9))
and

{
(4.12) fL(O,k) =0 ¥ )eR ;-

we suppose ) bounded, again. .
From (4.3), (4.10),(4.12) the linearized problem at u=0, reduces to

-Aw = Aw in Q,
(4.13)
w =0 on 30.

It follows, from CRANDALL-RABINOWITZ [18], that if >‘i is an eigenvalue of multi-
plicity one 'in (4.13), then the pair {O,Ai} is a bifurcation point for the solu-

tions of the non perturbed problem
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~-pu = ju + £(),u) in Q,
(4.14)
u =‘Q onT.

We recall that if Q = 10,1[ (resp. 10,1[x]J0,1[) the eigenvalues in (4.13) are
Ai = iznz, i=1,2,... (reSp. A ‘o= (m?+n2)n2, m,nelN, myn2 1), with the corres-
pondlng eigenfunctions proport10na1 to sin imx (resp. sin X, sin nﬂxz) We
observe that A s, ¥ i=1,2,.., and All are of mu1t1p11c1ty one. Since Q) is
bounded -A is an isomorphism form HI(Q) onto H (Q) (H (Q) : dual space of
H Q) ; we denote by L the znverse zsomorphzsm of -A (i.e = (-A) ) and
we define S : H Q) xR xR » H () by

(4.15) . S(u,),8) = u - LQu+f(u,))+8),
implying for (4.10) the equivalent formulation §(u,A,8) = 0. We have as first

derivatives of S

Sl'l(u,k,(S) I-L(AI*'f:l(u’)\))’

(4.16)

S)'\(U,AQG) "L(u"'fx'(u,)\)),

and then as second derivatives
S"Z(U,A,G)°(V,W) = -L(f"z(u,)\)vw), - : -
T u ) u
(4.17) S" (u,A,8)ev = =L(v+f! (u,A)Vv),
. _ Au , Au
S" (U,)\,(S) = .L(f" (u)}\))'
\2 A2

Suppose that Ai is an eigenvalue of multiplicity one in (4.13) ; using
(4.11), (4.12) we obtain from (4.16),(4.17) that

S;(O,Ai,O) i8 a singular operator,
(4.18) '

' $4(0,2;,0) =0,

and
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S:z(O,Ai,0)~(v,w) = -L(f:2(0,ki)vw),

(4.19) {8 (0,1,,0) v = -Lv ,
SKZ(O,Ai,O) - —L(fKZ(O,Ai)).

Suppose that SHZ(O‘Ai’O) =‘0 ;,it follows from BREZZI-RAPPAZ-RAVIART [19]
that, Zocally (i.e. in the neighborhood of {O,Ai}) the solutions of the non
perturbed problem (4.14) consist of two branches ‘(one of them being the trivial
one) crossing at {O,Ai}. To Ai we associate now oy defihed by

. " : .
(4.20) o; = (wi,S 2(O,Ai,O)'(wi,wi)) 1
: u HO(Q)

where v, (# 0) is an eigenfunction corresponding to Ai in (4.13) ; it follows
from [19] that if o; = 0 (resp. o # 0) then the non trivial branch behaves
(locally) as indicated on Fig. 4.9 , (symmetric bifurcation), (resp. Fig. 4.10,

(asymmetric bifurcation)).

A | ‘\\\\\»

'Figure 4.9 ' Figure 4.10 .
Symmetric bifurcation Asymmetric bifurcation

If 6 # 0 we have the local behavior indicated on Figures 4.11, 4.12 (for
8§ >0) for the solutions of the perturbed problem (4.10).
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u
) )
u
Figure 4.11 Figure 4.12
Perturbed symmetric bifurcation (§>0) Perturbed asymmetric bifurcation ($§>0),

4%.3.2. Applications.

We apply now the general results of Sec. 4.3.1 to the two functions £(oye)

defined by

(4.21) £(u)) = 3o,
and

' 3
(4.22) f(u,k) = -u”,

For both of them we have S;Z 0 ; let us evaluate the oy

(i) I1f Q = 10,1[,we have Ai = iznz , i=1,2,..., as eigenvalues in (4.13), and
we can take w, = sin imx as correspondiﬁg'eigenfunction 3 all these eigen-
values are of multiplicity one. If f is defined by (4.22), we clearly have

£',(0,)) = 0, ¥ A, implying f '

u

(4.23) a; =0 Wi=l1,2,...

It follows then from (4.23) that the pairs {O,xi} are symmetric bifurcation .

points for the solution branches of the non perturbed problem (4.14). If f is



g

defined by (4.21) we have

1
. 2.
= -Ai J sin . imx dx,
0

‘ implying

0 2f i=2,4,... ,

Q
it

(4.24)
a, # 02f i=1,3,... 3

thus the {O,Ai}'s are symmetric (resp. asymmetric) bifurcation points if i is

even (resp. odd).

(ii) If & = 10,1[xJ0,1[ the first (i.e. the smallest) eigenvalue in (4.13) is
All = 2ﬂ2 3 it is of multiplicity one and we can take wl](xl,xz) = sin ﬂxlx
sin TX, as corresponding eigenfunction. If f is defined by (4.22) we have
o = 0, implying that {O,X]]} is a symmetric bifurcation point for the
solutions of the non perturbed problem. If f is defined by (4.21) we have

% # 0 corresponding to an asymmetric bifurcation at {O,Xl]}.

Using finite element approximations and continuation methods like those
discussed in Sec. 4.2 we obtain approximate solutions of the non perturbed and
perturbed problems, whose behavior at the first eigenvalue of the linearized
- approximate problem (the discrete analogue of (4.13)) is like the one predicted

for the continuous problems.

2
Figure 4.13 is concerned with € = 10,1l and f(u,A) = A %r-; it shows pertur-

bed and non perturbed asymmetric bifurcation phenomena at the first eigenvalue

of the linearized approximate problem.

For £(u,A) =.ru3 we have a.symmetric bifurcation phenomenon at the first
eigenvalue of the linearized approximate problem as shown on Figure 4.14 (for

= J0,1[) and Figure 4.15 (for @ = 10,10x]0,10).

For more details about the numerical procedure we refer to [3]. We refer
also to [17] where it is shown (theorgtically and computationally) that the
solutions of the Von Karman equations for ﬂonlinear-plates, have the same quali-
tative behavior than the one observed for f(u) = -u3 (for the first eigenvalue

of the linearized problem, at least).
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4.4. An example of bifurcation from a non trivial branch of solutions..

4.4.1. Formulation of the problem. Properties of the solutions.

We discuss in this section the solution of the following nonlinear boundary

value problem (of Newmann type)

Find {u,)\}e H] (0,1) xR such that

(4.25) " + u = re" on 10,10, .

u'(0) = u'(1)

0.

Problem (4.25) has the following equivalent variational formulation

Pind {u,\} € H'(0,1) xR such that

(4.26) " | |

J u'v' dx + J uv dx = AJ evdx Wwe HI(O,I).
0 0 0 .

Problem (4.25),(4.26) has a branch of solutions {u,A\} with u = const. on J]O,I[

and therefore solution of
(4.27) u=2xe (.. A =ue .

More precisely, if A€ ]~w,0]L}{e—l} (resp. ke:]O,e_][),vequation (4.27) has a

unique’solufion (resp. two distincet solutions) as indicated on Figure 4.16.

u

Figure 4.16 : Constant solutions of u = re.
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Let us discuss now the existence of bifurcated solutions from the above
(almost trivial) branch of solutions of (4.25),(4.26). From the simplicity of
the problem under consideration, the discussion caﬁ be done directly, using
(4.25). However, in view of more complicated problems (Q c RN with N22 instead
of Q = 70,1[, for example) we shall use the variational formulation (4.26) for
its greater flexibility, and also because it allows the application of the solu-
tion methods described in Sec. 2. .

A pair {v,\}e Hl(0,1)>CR being given, we associate to it the continuous

linear functional defined over HI(O,I) by

1 1
vw dx - AJ evw dx.

0

(4.28) w > jl viw' dx + f
-0 0
For simplicity we use the notation V = Hl(O,l), V' = (H](O,l))' where
(Hl(O,l))' is the dual space of Hl(O,l) ; by (4.28) we have defined actually a-
mapping, denoted by S, from VXR to V'. Let {u,\} be a solution of (4.25),(4.26)
with u = const. on ]0,1[ (i.e. satisfying (4.27)) ; the linearized problem of

(4.26) at u is defined by

Find w eV such that,

(4.29) i 1
w'v' dx + J wv dx = re’ J wv dx W¥veV,
0 0

1

0

or equivalently

weV,
(4.30)

. L <S'"(u,\)ew,v> = 0 ¥velV,
u

where <s,+> denotes the duality pairing between V' and V. The linearized operator
S; (u,)\) is singular if and only if (4.29),(4.30) has non trivial solutions w,
implying that xe" is an eigenvalue of v + -v"+v for the (Neumann) boundary condi-

tions v'(0) = v'(1) = 0 ; in that case there exists a function we V-{0} such that

n

—w"+w = xe'w Zn 10,10,
(4.31) ‘

w'(0)

]

w'(1) = 0.

a
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' u .
From standard results we know that Ae has to satisfy

(4.32) re® = 14k%n%, k=0,1,... 3
since the relation u = Ae" holds we obtaln, eventually,that the set of s1ngu1ar

palrs {u,A} is the discrete set defined by

{ Ty M Igso 3 with for k=0,1,
(4.33)

u = 1+k2ﬂ2 , k - (l+k ) (l+k il )

we can take as eigenfunction v in (4.31) the function defined by
(4.34) w (X) = cos kmx, k=0,1,... .

The first 51ngu1ar palr (obtalned by taklng k=0 in (4. 33)) is {1, e } Let us
verify that {l,e } is a normal 1imit point for problem (4.25),(4.26) (1n the
sense of Sec. 2.3, Definition 2.2). Since conditions (2.49),(2.50) are obviously-
satisfiéd, let us.concentrate on the verification of (2.51) ; proving (2.51).is

equivalent to prove that the following problem

Find weV (= B (0,1)) such that
(4.35) '
' -1 -1
S&(l,e )fwv= Si(l,e )
has no solution. An equivalent (and more practical) variational formulation of

(4.35) is given by

Find weV such that
(4.36) (1 [l
J w'v' dx = ~e J vdx ¥veV.
0 0" ' o : '
Suppose the existence of w solution of (4.36) ;since the function v defined by
v(x)=1 ¥x ]0 1[, belongs to V we have from (4.36) that O=-¢, which is an absurdity.

Hence {1,e } 15 a normal limit point for problem (4.25),(4.26).

, . 2 2. -
On the contrary {u],xl} (= {1477, (A1) e (]fn )}) is a genuine bifurcation

point and it can be proved (using, e.g., BREZZI-RAPPAZ-RAVIART [19]) that the
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bifurcation at {ul,kl} is a symmetric one.

4.4.2. Approximation methods. Numerical experiments.

Instead of solving (4.25),(4.26) we have chosen for simplicity the following *

problem

"
- 2-2-+ u = re' on 10,10,

(4.37) i

u'(0) = u'(1) = 0,

whose solutions behave, qualitatively, exactly like those of (4.25),(4.26), but
which is much easier to handle numerically, since the singular pairs of (4.37)

are given by

{“k’)‘k}kao ; with for k=0,1,...,
(4.38) :
4

2
u, = 1+k2, A = (1+k%) e %k ),

We note ‘that for this new problem we have {ul,ll} = {2,e-2} instead of

-(1+Tr2) 11

2
{1, (1) e * )} for (4.25) (with (1+7)e s ixe 2 5x107%).

Computing the branch of the constant solutions of (4.37) 1is quite easy since

. . ‘e . 2 . . -
it can be identified with that curve of R™ whose equation is A = ue Y.

To compute the non constant solutions of (4.37) wé use that combination of
finite element approximation and continuation techniques already used in the
previous sections. To avoid troubles close to the bifurcation points, during the
continuation process, we introduce a perturbation of problem (4.37), defined as
follows (with € as perturbation ﬁarameter, instead of § in the above sections)

11]
- 5+ u =2 on 10,17,

=

(4.39) _
-u'(0) =u'(l) =€,

whose variational formulation is given (with V = Hl(O,l)) by

Find {u,\} ¢ VXR such that
(4.40) i ! .
-L-J u'v' dx + [ wv dx = AJ ev dx + ev(0) + ev(l) WveV,

72 Jo o 1o
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(ma.king €=0 in (4.40) we recover a variational formulation of problem (4.37)).

Remark 4.1 : We observe that if {u,\} is solution of (4.39) and if u* is defined
from u by u*(x) = u(1-x) , then {u*,\} is solution of (4.39) with ¢ replaced by
-€ ; this property still holds if €=0 (it holds also for the approximate problems

described below).

Ay

_ Finite element approximations of problem (4.39),(4.40) :

With N a positive integer and h = l[N, we define X, and e; by

x. = ih , i=0,...N,

'an'd

(1]
|

: -[xi~—i’xi} s, 1=l,... N,

respectively. We approximate V = Hl(O,l) by

a ¥i=1,... N},

v _ L
. (4.41) vy = {vh]vhec (0,11 , v Ieie Pl
where P1 = space of the polynomials in one variable, of degree <1.

Since th V, it is quite natural to approximate (4.40) (and therefore

(4.39)) by

| Find {uh,x} € thll such that

(4.42) | - . 0 ) 1 u

;7 fo u vy dx -+ JO w vy dx = )\JO e v Qx + evh(O) + &:vh('l) Vvhe v

'The various inteérals occuring in (4.42) can be computed exactly. However,
in'practicé, we should use the trapezoidal rule to compute the second and the

third integral in (4.42) ; doing so we obtain as approximate problem

Find {uh,)\} €V, xR such that

1 1 N - N uh(xj)
- Ty, t - .
(4-43) ) 2 J uhvh dx + h .Z wjuh(xj)vh(xj) Ah.z wje Vh(xj)+evh(0)+€vh(l)
m o « j=0 j=0 . '
¥v, € Vh,‘

h

with w, = wy =g and @, = 1 ¥ i=l,... N-1.
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Both problems (4.42),(4.43) are in fact equivalent to a nonlinear system .
inIRN+2 with {{uh(xj)}§=o,x} as unknown vector. To obtain such system we should

take v, = w, in (4.42) or (4.43), for i=0,1,...N, and use the following expansion -

of u
N
(4.44) W = jZO uh(xj)wj,

A

N . . .
where Eh = {wi}i=0 is that basis of Vh defined by

w €V, ¥is0,... N,
< (4.45)

Wi(xj) =0 if i # j, wi(xi) = l’ ¥ OSi’jSN.

Using (4.43) we recover in fact a standard finite difference approximation of

the nonlinear Neumann problem (4.39).

Continuation solution of the approximate problems : with Vh>CR equipped with the

following norm

S| i 1/2
1 ( 2 2 2
{v» 1} +-[—§- JO |vﬁ| dx + Jo |vh| dx + ] ,
m .

(and the corresponding scalar product) the solution of (4.43) or (4.44) by
the continuation methods of Sec. 2.3 yields an algorithm which is a trivial
modification of the one described in Sec. 3.3 for the solution of the Bratu

problem.

Numerical results : Using again the continuation strategy summarized on Figure

4.3 we have computed branches of solutions of the perturbed problem (4.39) -and
also the first branch of non constant solutions of the non perturbed problem
(4.37) ; the following results have been obtained using N=20 (i.e. h= 0.05) for

the approximate problems, and €=0.0l as perturbation parameter.

The variations of uhkO)‘and w (0.5) as functions of A have been described
on Figure 4.17 and 4.18, respectively, for the perturbed (g¢#0) and non perturbed.,
(e=0) problems(from Remark 4.1, the behavior of uh(l) is described by Figure
4.17, also). Since the first bifurcation is symmetric, the tangent at the branch
of non constant solutions, at this first bifurcation point, has to be vertical ;

it is so with a good precision. Actually, using smaller As and amplifying the
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vertical variations, we have shown on Fig. 4.19 the variations of uh(O) ; the

above property of vertical tangent appears even more clearly on Fig. 4.19.
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5. - APPLICATION TO THE NAVIER-STOKES EQUATIONS FOR IMCOMPRESSIBLE VISCOUS

FLUIDS.

5.1. Formulation of the Navier-Stokes equatioms.

Let  be a domain onRN (N=2,3 in practice) and [ be its boundary. The
steady flows of an incompressible and viscous newtonian fluid, in 2, are modelled

by the following Navier-Stokes equations

~x

(5.1) -VAu + (u*V)u + Vp = £ i 2,

(5.2) Veu = 0 in Q (incompressibility eondition).

~

In (5.1),(5.2) :
u = {ui}§=] is the flow veloeity,
p is the pressure,
V is a viscosity parameter,
f is a density of external forces,

. . . . 1
(u*V)u is a symbolic notation for the vector-function {uj 3;—}.

Typical boundary conditions associated to (5.1),(5.2) are

(5.3) u=ug on r,
where u, is a given function defined over T' and satisfying (from the incompres-

B
sibility condition (5.2))

~

(5.4) J u.en dl = 0 v
T ~B
where n is the outward normal unit vector at T.

The Navier-Stokes equations for incompressible viscous fluids have motivated
a countless number of papers, reports, books, ... from both the theoretical and
numerigal points of view. Concentrating on books only, we shall mention, among
others, LIONS [ 7 ], LADYZENSKAYA [20], TEMAM [217], GIRAULT-RAVIART [ 227], RAUTMANN .'
[ 23], THOMASSET [24] ; we refer also to the numerous references containet in these
books.
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It follows in partiqular from [ 77 [20], [21] that if £ and uB are suffi-
ciently smooth, then problem (5.,1),(5.2),(5,3) has a solution {u,p} belonging
to (H](Q)) X(L (Q)/R) (the pressure p is clearly determinated only to within
an afbitrary constant). If we suppose in addition that v is sufficiently large
(or equivalently - if vV is given - that f and uB are suff1c1ent1y small), then
problem (5.1)-(5.3) has unique solution in (H (Q)) x (L /R).

A3

5.2. Stream function-vorticity formulation of the Navier-Stokes equations.

We suppose from now on that Q is a bounded domain ofiR?. We also assume
for simplicity that Q is simply comnected (see e.g. GLOWINSKI-PIRONNEAU [25] for
the case where £ is q (2 1) connected, i.e. contains q holes). With I' the boun-
dary of §, let n, s be respectively the unit vector of the outward normal at 9

‘on I' and the unit. vector of the corresponding oriented tangent.

There exists from (5.2) a stream function ¥ (determlnated only to whithin

an arbitrary constant) such that
-y - -
(5.5) U =35 U = T30

and it follows from (5.1),(5.5) that y satisfies the following (well-known)

nonlinear biharmonic equation

' 3E,  Of
2, .3 3 L -2 _ 1.
(5.6) VAV o Y T, o, M T %,

Concerning the boundary conditions we have

(5.7) %%-= ug*n on ' ;

~

0, (5.7) implies that

since J u,°n dl
r ~B~

(5.8) | Y (M) J’_\ ‘n dl'  wMeT |
M M '

where_Moe I“(Mo can be arbitrarily chosen and we have prescribed w(Mo) = 0). We

also have
(5.9) %%—= -5'53 on T.

Actually (5.6),(5.8),(5.9) is a particular case of the more general family of
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nonlinear biharmonic problems

(5.10) va%y + %ﬁ} %EQ Ap - %%5 %;1 Ay = £ in Q,
(5.11) Y = g, on r,
52 - Eeg ot ‘

An equivalent formulation of (5.10)-(5.12) as a nonlinear system of coupled

second order elliptic equations is .

i} W oW _w W g
(5.13) , VAw  + Bx] sz sz Bxl . fin Q,
(5.14) - = win Q, ’

wlth the boundary conditions (5.11),(5.12). In (5.13),(5.14), w is the vorticity

'functlon.

5.3. Variational formulatioms.

We suppose that g = {g],gz} is sufficiently smooth (see [25] for the precise
requirement), so that there exists wo such that, wo'F = 8> (awo/an)lr = gy
Let us define Vg by

| o 2 0 2
(5.15) v, = (oo e (D, ¢Ir=g,,5¥i—lp=gz} ’

-then Vg'is a non-empty, closed, affine subspace of HZ(Q), where

2 s

H@) = (0o, 2, L P@, ¥ 1,50
T i™73

In particular V = {¢|¢)5H ), ¢|F (8¢/8n)|r 0} (= H (Q)) 1s a closed sub-

space of Hz(Q) (we recall - Q being bounded - that ¢ - (fQ |A¢| dx)l/2 is a

. morm or V_ equivalent -to the Hz-norm)

A variational formulation of (5.10)=(5.12) is then

Find V € vg'suah that ¥$eV
" (5.16) o

Bx ax x

&

f
VJQ MY A dx + J Aw(a"’ ¥ W ¥ Jax - [ £6 dx.
Q
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- To obtain a variational formulation of (5.11)-(5.14) seems to be more
‘complicated ; in fact, introducing ¢ LZ(Q) such that 8 = -A¢ and using (5.14),
it follows from (5.16) that the pair {w,y} satisfies ' '

{w,w}e Wg, and ¥ {8,¢}¢ wé we_kave‘

5.17 -

where

(5.18) | W = {{6,¢}|6‘e LZ(Q), ¢ev.°, -Ap = 6 in s_z},'
(5.19) Wy = ({6,0}[6 2@, d;eVg, A = 8 n Q).

Conversely if a pair {w,)} satisfies (5.17), then {w,y} is also a solution of
the nonlinear boundary value problem (5.11)=(5.14) (and ¥ a solution of (5.10)-
(5.12)).

The variational fo;mulation (5.17) of problem (5.11)—-(5.14) contains
second order derivatives in the definition of Wd and Wg ; having in view the
approximation of (5.11)=(5.14) by simple finite element methods it is of great
interest 29 have a Qariational formulation of (5.11)-(5.14) containing first
order derivatives, only. Such a goal is easily achieved since Wo and Wg have the

alternative definitions

f .
(5.20) W= {{6,0} e L2@®) xu:)(sz), J'QV('b'Vq dx = j 6q dx ¥qe H' (@)1,
, : Q _

=
"

{{0,¢} ¢ L2(9)><H](Q), b = g, on T, [ VpeVq dx = J fq dx +
(5.21) | ' | & &

f
+ | gaar vqe ' @),
r o |

respectively. The eqﬁivalence'between (5.18),(5;19) and (5.20),(5.21) follows

easily from the Green's formula
N - SRy 2
. 5E}q-d = IQ ¢q dx + QV¢ Vg dx ¥qeH (), ¥ de H (Q),

-and supposes that T' (= 9Q) is suffictently smooth (or Q convex).
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A variational formulation such as (5.17),(5.20),(5.21) is usually known as a

mixed variational formulation.

5.4. Continuation solution of problem (5.10)-(5.12).

5.4.1. Synopsis.
We apply now the solution methods of Sec. 2 to the nonlinear boundary value

problem (5.10) - (5.12). As parameter A we choose A = % s A is &irectly propor-

tional to the Reyrold's number if we fix the boundary conditions as A varies.

We consider first (in sec. 5.4.2) the solution of (5.10) - (5.12) via the
variational formulation (5.16) ; the solution of (5.10) - (5.12, via (5.17) will
be dicussed in sec. 5.4.3.

A mixed finite element implementation will be discussed in sec. 5.5.

5.4.2. Solution of (5.10) -= (5.12) via the variational formulation (5.16).

The space V (= H () which plays a fundamental role in the sequel is

equipped with the inner product

{v,w} » J AvAw dx
]

: 1/2
and the corresponding norm v - (J |Av|2 dx) .

Taking )\ as paramefer the problem to be solved is

' O I S |
(5.22) A ll) = }\(axz 5% AU) -3;— BT' AIP) + A ’LYZ‘ Q,
1 2 |
(5.23) Y = g, o T,
3
(5.24) 3"5’5 gy on T

A variational formulation of (5.22) - (5.24) is given by

Find ¥ e v, such that ¥¢ v,
(5.25)

ApAY dx = x[ Aw(—i"- - 3%y a4y 4 AJ £ dx.
Q ox, ox)

Bx -axz Q
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Description of the continuation procedure :

In the particular case of problem (5.22)-(5.24) the continuation techniques

of Secs. 2.3, 2.4 lead to the following algorithm :

(a) Initialization

(5.26) Take \° = 0 ;

L

the corresponding wo is the unique solution of the following linear variational

‘problem,

Find ° eVg such that
(5.27) '
MDA dx = 0 ¥p e V.

Problem (5.27) is in fact equivalent to the linear biharmonic problem

Azwo - Q in Q,
(5.28) o

o _ Wy _
] —glonI‘, n —gzonl“.

We take {wo,O} as the origin of the arc of solutions passing through it, and

define the arc length s by

(5.29) (8s)? = J lasw|? ax + (502,
Q .
Denote-gé by.i ; by differentiation of (5.25) with resﬁect to s, we obtain at
s=0
[o} e}
J AP(0) Ap dx = }\(O)J A¢°(%\P_ 3 _ W 8,y 4
. X, 8x2 3x2 Bxl
(5.30) & ‘ @ |

+i(0)'J fopdx ¥ ¢eV_ 3 (0) eV ..
o o

Q

We have also by definition of s

(5.31) J ]AJ,(O)|2 ax + 3%(0) = 1.
Q .

Define Y as the solution of the following problem

A
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q)Evo’ .

(5.32) o 5

. A‘Ad =IA (._Q__.Q— @‘P—-L)dxd-Jf dx V¢€V H
Jsz b dpdx = | M 9%y 3%y 3%, Q ? °©

we clearly have from (5.30)-(5.32), that
XONP

+ J |A$|2 dx)_l/z.
Q

1l

(5.33) $(0)

(5.34) A (0)

b) Continuation

~ With As (> 0) an elementary arc length, we define for n> 0 an approximation
wn+1’>‘n+l} (e vng) of {Y((n+1)4s), A((n+1)As) } as the solution of the following

nonlinear variational system :

Find W™ VMY e v xR such that

1

n+l o+l O i S a¢
JQ ApTTAR dx = JQ B ox, 0Ox,  ox )dx *
- . 1 2 2

(5.35)1

+)\n+1J'f¢dx ¥evV ,
Q °
(5.35), JQ AW v M (0yax + (A\'-A%)A(0) = As f n=0,
n ,n-l n yn-1
(5.35), Lz A(wn*‘-w“)A(Y_&ﬁ__)dx + AM1am (?‘_‘A'z_-) = As if nzl. ®

With Vo equipped with the inner product

f
{v,w} > J Av Aw dx : ‘
Q ,

a convenient nonlinear least squares formulation of (5.35) is then

Find (W1 a0ty €V XR such that

(5-36) . -
: ’ n+l n+l :
I U s R S & R {x,u}evgxn ,

where in (5.36) the functional Jn+1(-,°) is defined by

(5.37) n+l

- 12
(X, W) =~J %1% ax + 2 [B]*
Q
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in (5.37), i and | are nonlinear functions of {X,u}, obtained as the solutions

of the linear problems

XeVy s %eV  we have

(5.38) - . . .
> = - ox 96 _ X 3 yi._| -
A Ap dx = J AxApdx J A (—X— )dx uJ f$ dx,
JQ X b0 0 XA H Q X axl sz sz axl _ Q
' n n-l APy B
(5.39) J Al )A(U——) dx + (A >(~—A—s—~) - hs,

respectively ; problem (5.38) is a biharmonic problem. In that particular situa-

tion the conjugate gradient algorithm (2.37)-(2.46) reduces to :

Step 0 : Initialization

(5.40) ' {wo,ko} € Vg xR 1s given.

Compute then {g‘i,g;} € Vox]R as the solution of

aJn+l o .0
Agw Jatol dx = <——— 3 W A ),¢> ¥ e Vo’

(5.41)

g$e VO’

aJd

(5.42) g = ““ W\,
and set
(5043) {23,2;} = {gll(j’g;} . u

Then for m= 0, assuming that {wm,km} {gf;,gl;\l}, {z$,z;l} ‘are known, compute
m+1 m+l m+1 m+1 m+l m+]
v }, {8 8 }s { } by

Step | : Descent

Find pmeR such that, ¥pekR,
(5.44)

Ty WpgzpsA 0,23 <3, (7-pz X =023)

and set
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m+ mtl

(5.45) V™ =y 2 . AP-p 2T

Step 2 : Construction of the new descent direction

Define {g$+l,g';+l} as the solution of

aJ

JQ bl 8¢ dx = <2 AT Wev,
(5.46) . . ‘
m+] S .
N gﬂ) Evo’
. ’ 3J
mrt | +] m+] | mt]
(5.47) g  =—Hm— @7 AT,
compute
mt] ©, mtl_ m mtl]
( 4.8) J A(gw gw)Agw dx + (8, =8))8,
5. Y =
. m < m m 2 '
JQ|A%| ax + |0
and set '
mtl _ m+] m mt1 m+ 1 ‘m
(5.49) zy = gq) + szw » 2y =8y + YpZ)

Do then m = m+! and go to (5.44). ™

According to Sec. 2.4 we should use {an n-1 an_)\n—l} as initializer in

(5.40) to compute {lb n+1} by the Son_]ugate gradient algorithm (5.40)-(5.49).

dJn+1 n+1

we should prove that at {y,u} ¢ VgXR

About the partial derivatives 503X
we have ‘
3J .
T ot - Ay abdx - uf (B 3K 3 3.
< aw (Xv“)’¢> = JQ AX A¢ dx ujg(axl axz axz xl)A¢ dx
r ~ n n-1
(5.50) -pJQ Ax(gi] %§ gi X )dx + “J A(———!L—-9A¢ dx
¥p e Vo’
3J ~
n+1 - A )\ - X 9X _ 9x X - >
(5.51) Zml o = pdiA JgAx(ax, LBt e e,

where, in (5.50), (5 51), {X, u} is obtained from {x,u} through the solution of
(5.38), (5 39).



_65_

Remark 5.1 : Despite its apparent complexitj algorithm (5.40)-(5.49) is quite
easy to use in practice ; what it requires is essentially a good solver for

linear biharmonic problems of the following type

A2w=fin Qs
(5.52) ‘
w =g on'T, %%=_gz on T.

Finite element solvers for (5.52) will be discussed (briefly) in Sec. 5.5 ; they

are founded on the mixed variational formulation (5.17).

5.4.3. Solution of (5.10)-(5.12) via the mixed variational formulation (5.17).

Using A = 1/v as parameter, the nonlinear mixed variational problem (5.17)

becomes

Find {w,y} € Wg such that % {6,0} € W, we have

(5.53)

W dx + )\J 3‘1’—#’; —“’—l)dx= )\J £6 dx,
Q Q X, 99X 3x Q

with W and W still defined by (5.20),(5.21), respectively.

Description of the continuation procedure :

We clearly have from Sec. 5.4.2

(a) Initialization

(5.54) Take A\° = 0 ;

o . . . . . . . .
~then {w°,y°} is the unique solution of the following linear mixed variational

problem (equivalent to (5.27))

Find {w®,0°} ¢ W, such that
(5.55)
w'® dx =0 ¥ {8,6}eW. .
Q o
We take then {{w®,y°},0}as the origin of the arc of solutions passing through

it and define the arc length s by

(5.56) (8s)% = J (5w)2dx + (50)2.
Q
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By differentiation of (5.53) with respect to s, we obtain at s=0

o [ ]
J B(0)6 dx = i<0)J °(3“’ g‘,’; -3y A(O)JQ £ dx
Q 1 2

(5.57)
¥ {8,0) e W ; {0(0),0(0)} € W

‘Since‘ we have
J |J»(O)|2 ax + 320 =
9]

we obtain from (5.57) that

A(0) = (1+I |a]2 an)~'/2
Jo

(0(0),§(0} = A(0){w,91,

where {%,)} is the solution of the linear mixed variational problem

@0} e W,
(5.58)

- R aw a¢ _ o 3¢
o @e dx = [Q 3%, x| 3"1 axz)dx + chp dx W{0,¢}ew .

. (b) Continuation

With As (> 0) an élementary arc length we define for n20 an approximation
{{ n+l,wn+1}’>\n+l} Wg xR of {{w((n+1)A4s),P((n+1)As)},A((n+1)As)} as the solution

of the following nonlinear mixed variational system :

Pind {{u™1," 10" ¢ W, xR such that

f _ oo+l o+l ay?*' 36 _ ap™! 3¢ n+]
(5.59)1‘ JQ w? 6 dx = A Jva 3%, 3"1 - Bx] axz)dx + A JQ f¢ dx,
‘ v {8,0}eW,
(5.59)2 J (w -0 0)dx + ()\ -X )A(O) As 1f n=0, : °
Y
: n_ n-l n ,n-1
(5.59)3 J (oon+1 - )(ﬂl-—)d + ()\ )(A_-ZT_) ‘= As ¢f n21.®
Q .

The space Wo can be equipped with

-

Jo
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as inner product. A convenient least squares formulation of (5.59) is then

Find {{wnﬂ,wnﬂ},)\nﬂ} € Wg xR such that
(5.60) : ;
. +1 +1 1 . .
Ige ™t T o Jnﬂ({n,x},u) V{{.n,x},u} € wg xR ,

where in (5.60) the functional jn+1§°,-) is defined by
' . ; 1 .12 1~ 2
(5.61) 3e noxdw = E‘ngnl dx + = []” 3

in (5.61), {7,X} and {i are nonlinear function of n,X,u obtained as the solutions

of the linear problems

{TisX} e W3 ¥{0,¢} ¢ W we have

~(5.62)
- X 9 _ 9X 9% ..
ne dx = J ne dx - uJ n( - ydx - uJ f¢ dx,
JQ Q g 9% X 9x; 9% Q
L omn wn_wn-l n )‘n_)\n—l
(5.63) B = Jg(ﬂ-w )(—'ZE———)dx + (u-A )(—fzg———) - As,

respectively ; problem (5.62) is equivalent to the biharmonic problem (5.38).

’
The conjugate gradient algorithm (2.37)-(2.46) becomes in that context

Step O : Initializatiom

(5.64) {{wo,wo},)\o} € Wg'XIR s given .

Compute then {{gg,gi},g;} € w0 xR as the solution of

33 _y ~
. g8 dx = <o (w10, (0,0 6,0 e W,
(5.65) .
{8g’g.$} € WO’
93
(5.66) g = —r ({w%,0°),09),
and set

(5.67) {zg,z$,z§} = {gg,gq‘j,g; . m
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Then for m=>0, asswmning that {w® ,w Py } { g$+g } {z ,z ’ZA} are known,

compute (™1 y , ‘P ’ )‘

Step ! : Descent

Find p_€R such that, ¥ o ¢R,

(5.68)

Nl q,” ) € n+1<{w oz g AT,
and set
(5.69) W™ =Tl g™ - VW oy2y NI a?) -

Step 2 : Construction of the new descent direction

Define {g?l,gmﬂ}, 8 ™1 s the solutions of

mt+1] 3 m+1

g e dx = < ’w) ™™y, I"“),{e o1> ¥ (0,0} €W,
(5.70) '
{gyl,gyl}ewo,
3 1
ml | %pel . mHl mel,  mtl
(5.71) & = Hw Yy 1 X ),

respectively. Compute then

mtl m mtl m+] m, mtl
fn fgw gw)gw dx + (g;\ g)\)gx
-12) m © fm2 . m2
| leai? ax « 1gj)
and set
5. mtl _ m omtl _ omtl, o om mHl _ mt] m
( 73) zw gw + szw’ zw glp +szw ’ ZA gk +szk

Do then m = tﬁ+l and go to (5.68). ®

According again to Sec. 2.4 we should'use (20" an wn l}, 272" l}

as initializer in (5. 64) to compute w ’wn+l o+l by the conJugate gradient

algorithm (5.64)-(5.73).
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. ' . . ajn+l ajn+] '
Concerning the partial derivatives 3G.0) ’ we should prove that at
’

f{n »x}sul e ng]R we have
33 In+i -
M) {n ’X} su) » {6 9¢}> = JQ ne dx

ax ax 8X X Bx Bx ax

(5.74) J(_x__x_ A X yg dx_uJ n@X_ 20 _ X N 44y
Q ]

n n-l .
J E—2—)p ax ¥e,9}e W,

= sATA 5 XX _ X 93X -
Q 1 2 2 1 Q
where in (5.74),(5.75), 70,X,}i are obtained from n,x,u through the solution of
(5.62),(5.63). )

Remark 5.2 : The main motivation of the mixed variational formulation discussed
in Secs. 5.3 and 5.4.3 is that it provides a convenient framework to the appro-
ximation of linear and nonlinear biharmonic problems, by very simple finite

element methods like those discussed in the following Sec. 5.5.

5.5. Finite element approximatién.

5.5.1. Triangulation of . Fundamental discrete spaces.

We ‘suppose for simplicity that Q is a polygonal domain of'Rz. With t; a
triangulation of Q obeying to the conditions given in Sec. 3.2.1 we define the

following finite dimensional functional spaces

1 0,=
(5.76) B = {vh|vheC ), vthePk ¥TeT ),
(5.77) H] = ]erl(Q) (= {v |v € ! v = 0)
oh = HynH, 0! Vh €y Vn|r
. o 1 1 .
with Pk = gpace of polynomials in X 9% of degree <k ; Hh and Hoh approximate

H](Q) and HL(Q), respectively.

We approximate then the spaces W and W (defined by (5.20) and (5. 21),
respectively) by

. _ ) 1l . _ 1
(5.78) W = ({60 el xH . [Qwh Vq, dx = Jgehqh dx ¥q eH 1,
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' ' R | . ‘
. ‘ wgh = {{eh’¢h}€ H.hX H-hs ¢h = 8 o r, L_Zv¢h'vqh d}_‘ =
(5.79) ' i
' 8,9 dx+Jg2q dar} ,-
Q h*h T h*h .

where, in (5.79), 81n and gZhAare convenient approximations of g and gé, respec-

tively. We observe that woh¢ Wo 3 similarly wgh¢ Wg, even }n the simple case

wherg glh = gl’ gZh = 8y A

5.5.2. Approximation of the Navier-Stokes equations via the {w,y} formulation.

Using A = 1/v as parameter, a mixed variational formulation of the Navier-

Stokes equations was giVeg’in Sec. 5.4.3 by (5.53). We approximate then (5.53) by

Find {wh,wh}e Wgh such that ¥ {eh,¢h}e woh we have

(5.80) J 3wh a¢h 3wh a¢h

w9, dx + A w, (
h”h Q h axl axz axz axl

Ydx = XJ £ ¢, dx,
Q oMb

with fh a convenient approximation of f.

We refer to GIRAULT-RAVIARI,[ZZJ,‘for the convergence properties of {wh,wh}
as h > 0. o

Conceﬁtrating on the numerical solution of problem (5.80) by continuation
least-squares methods we should adapt easily the algorithms of Sec. 5.4.3 (which
are concerned with the continuous problem (5.53)) to the solution of the appro-
ximate problem (5.80) (see REINHART [ 3] for more-details on the solution of
(5.80) by the methods of the preseﬁt paper) . _

In fact applying;, to the solution of (5.80), the discrete analogues of the
methods described in Sec. 5.4.3 requires an efficient solver for the various
discrete linear biharmonic problems coming from the mixed finite element appro-
ximation ; such a solver is particularly required by the conjugate gradient al-

gorithm solving the least squares problem encountered at each step of the con-

tinuation process.

5.5.3. On the solution of the discrete linear biharmonic problems.

5.5.3.1. Generalities. Synopsis.

A careful examination of the algorithms discussed in Sec. 5.4.3 shows that
the discrete linear biharmomic problems to be solved are in fact mixed finite

element approximations of biharmonic problems of the following class
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of of
2 . 1 _ "2 .
Ay = fo 5%, 3%, Af3 n Q,
(5.81)
' = Ny o

in (5.81), fie LZ(Q), Vi = 0,1,2,3, and the derivatives occuring there have to

be understood in the sense of distributions. Assuming that 8,:8, are sufficiently
smooth, problem (5.81) has a unique_ solution in Vg (see Sec. 5.3 for the defini-
tion of V_ and Vo) ; this solution Y is also the unique solution of the following

g
variational problem

Find y € Vg such that ¥ € v,
(5.82)
= 9 8 _
JQ N A dx Jg(fo¢ + £ o *+ £, %, £,A¢) dx.

An equivalent mixed variational formulation of (5.82) is given by

Find {w,y} € Wg such that ¥{0,¢} €W
(5.83) ‘
f d 3¢
I woax=1| (£ +£ 2+ + £.0)dx,
‘JQ JQ o 1 axl 2 9%, 3 |
where W° and Wg are defined by (5.20) and (5.21), respectively.

Starting from the mixed formulation (5.83) we shall discuss in the following
sections the finite element approximation of (5.83) and solution methods for the

approximate problems.

5.5.3.2. Finite element approximation of (5.83).
Following CIARLET-RAVIART [26] and GLOWINSKI-PIRONNEAU [25] we should ap-

proximate (5.83) by

Find {wh,wh}e Wgh such that V{Gh,¢h}§ W
JQ “pfn 4% = | (Fontn * Fin 32 * fon 3w, * fan00) 9%

‘where th and wgh are still defined by (5.78) and (5.79), respectively, and

where fih is, for i=0,1,2,3, a convenient approximation of fi'
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. Is it 'quite easy to prove that (5.84) has a unique solution ; concerning
the convergence of {wh,wh} to {-MW,V} as h > 0, it follows from CIARLET-RAVIART
[26], SCHOLZ [27] that '

(5.85) lim|[ -8~ | , =0, lim [yl | =0

0 L°@) 0 H ()
for all k21 (in the definition of QL scf. (5.76)). Actually the convergence
result (5.85) supposes that some mild assumptions on the angles are satisfied

as h + 0 (see the two above references for more details).

5.5.3.3. Decomposition properties of the approximate problem (5.84).
We follow (and complete on some points) GLOWINSKI-PIRONNEAU [25].

A direct solution of (5.84) is a non trivial task ; however taking into
account the very special structure of (5.84) we shall be able, via a decomposition
principle, to reduce its solution to the solution of a family of discrete Poisson
problems (much easier to solve).

The starting point of our discussion is the fact that the pair {wh,wh} solu- .

tion of (5.84) is characterized by the existence of ph_such that

1

Ppe o

(5.86) 2, 2%, ]
0 Vo' V0, dx = Jg(foh¢h oy, T I T, Ydx ¥ e H ),
o ol
ne iy
(5.86),
_ 1
JQ wheh dx = jg(f3h+ph)eh dx Vehe H,
S
bpe By, Yy =g on T,
(5.86),

L] ’ -_— . 1
Q th th dx.— nghqh dx + JPgthth the Hh.

To prove the characterization (5.86) we should observe that (5.84) is

equivalent to the minimization problem

Pind {mh,wh}e Wy, Such that
(5.87)
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where

5.88 ' = L[ 62 TP W W
(5.88) Ip Opstp) fijﬂeh 7] P * Tin B * fon B, T T

hence P, appears as a lagrange multiplier for the linear equality constraint

satisfied by {w ,¥,} in (5.86)3 (and in the definition of W, ; see (5.79)).

To go further in the decomposition properties we introduce now a space W(h

obeying the following properties

77(h is a complementary space (not precisely defined for the moment)
(5.89) : _
| ) BN 1 1 _o
of H, in K, Z.e. thcﬂh and Hoh@mh =H .

It follows ffom (5.89) that the bilinear form WZhX 7'711 + R defined by
{)\h,uh} - II‘ )‘huh QP
is a sealar product over My,
The key step is in fact to introduce a bilinear form a, :mhxmh -+ R,

defined as follows :

Let )\hemh and let Py > respectively wh’ be the solutions of the

following approximate problems
| ' L 1 1 I
(5.90), JQ Py Yoy, dx =0 ¥y e Hops ppey, pyAy e Hops
[ 1 1
(5.90), JQ Vo, Vo, dx = JQph¢>h dx Vo cHL Y cH .
Then we define the bilinear form ay (+5°) by
- . . r | ‘
(5.90)3 ah()\h,ph) = Jgphuh dx - JQVlPh'Vuh -dx Vuh eW(h.

It follows then from [25, Sec. 3.5] that ah(-,-) is symmetric and posttive

definite.
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Apﬁlication to the decomposition of the approximate problem (5.84) :

Let {wh,xph} be the solution of (5.8&) and let ), be the component in772h of
this function Py occuring in the characterization (5.86). Let Eh’ t'p'h be the

solutions of

= - 1 - 1
(5.91) IQ Vph'V¢h dx = 0 Vcbhe Hoh’ ph-)\h € Hoh’

= ' - |
(5.92) «[Q th°V¢h dx = szhd)h dx V¢he Hoh’ lphe Hoh'

Let Poh and woh be the solutions of

My 3y, 1
IQ vPOh.V‘bh dx = JQ(foh¢h + flh m + fzh _axz) dx Vd)he Hoh,
(5.93)
1
Poh € Hon?
. | 4 1 I _ o
(5.9%) JQ Won" Vo, dx = Jg(poh+f3h)¢h dx WpeHy, Ypel, v, =gponT s

we clearly have P, = Eh + Pon and wh = lbh + woh'

We shall now show that )‘h is the solution of a variational problem inmh.

Theorem 5.1 : Let {wh,tph} be the solution of (5.84) and let >‘h be the component

in7/'(h of p, defined from {wh,lbh} by (5.86). Then A 18 the unique solution of

the linear variational problem

o (2P = Jnvwoh.vuh dx - Jﬂ(poh+f3h)uh dx - IrgZhuh dr
(5.95)
Vupe Mys e My,

which 1s equivalent to a linear system with a positive definite matriz.

Proof : We have from (5.90)-(5.92) that
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ah(kh’uh) = J p 9% - ng$h°vuh dx =

“J o
|

Q

(p,.-p h)“h dx - JQV(wh-woh)°Vuh dx =

o)

(5.96) .
Vw -Vuh dx - J (poh+f3h)uh dx
Q .

Q
- (JQ W, -V dx - LZ (Py+Egply 0 Ve M.
ﬁut from (5.86)2, (5.86)3 we have

I W)h'Vuh dx - I (ph+f3h)1‘lh dx =

Q Q

= | W,*Vy, dx - J w, Y, dx =
JQ h "*h Q h*h

= L,gzh“h dr %y e My,

which, together with (5.96), proves (5.95). The uniqueness is obvious since
ah(o,-) is positive definite. The equivalence with a positive definite linear

system is a classical result of the approximation of linear variational problems. m

Remark 5.3 : To compute the right hand side of (5.95) it is necessary to solve

two approximate Dirichlet problems ((5.93) and (5.94)). Similarly if Ah is

known, to compute Py, 20 and ¥y it is necessary to solve

i i
Phe Hys Prry e Hop o
(5.97) | | I
3¢h 3¢h

= 1
JQ VpyVoy, dx = JQ(foh(bh et o T, 9% Vet

1

. wh€H~h:
(5.98)
!
JQ wpdy, dx = Jg(f3h+ph)eh dx W0, e By,
Yy e By Wy = By on T
(5.99) |

' B
J Vi, *Vdy, dx = I Q(ph+f3h)¢h dx ¥, eHyp »
Q

i.e. two discrete Dirichlet problems ((5.97) and (5.99)), and (5.98) which is
a much simpler linear problem (wh is in fact the Lz-projection on H; of the

function ph+f3h)‘.
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Recapikulation : It has been shown that solving the discrete biharmonic problem
(5.84) is equivalent to solve (5.93),(5.94),(5.952,(5.97),(5.98),(5.99) sequen—
ticlly. Problems (5.93),(5.94),(5.97),(5.99) are discrete Dirichlet problems,

for the operator -A, for which very efficient direct or iterative solvers exist

the variational problem (5.98) is even simpler to solve, since the matrix of
_the equivalent linear system is very sparse, has a condition number in 0(1) and
* igs in fact an approximation of tﬁé‘identity operator. Finally the only non-
standard step is the solution of the variational problem (5.95) ; the solution

of p:pblém (5.95) 1is discussed in the following Sec. 5.5.3.4.

5.5.3.4. Solution of problem (5.95).

Several methods for the solution of (5.95) have been discussed in [25, Secs.

4 and 5]. Let us mention among them a conjugate gradient method which yields a
solution algorithm for the discrete biharmonic problem (5.84) ; the cost per
jteration is essentially the solution of two discrete Dirichlet problems for

the operator -A ; nuﬁerical experiments show a convergence in O(Vrﬁh) iterations,
where N = dim W?.,kb may find also in @5, Sec..4] a detailed analysis of a »
direct method for solving (5. 95) requiring the construction of the symmetric,
positive definite (and full) matrix Ah of the linear system equivalent to

(5.95). In fact one does not construct A, but (u51ng the ChoZesky factorization
method) a lower triangular-regular matrix Lh such that Ah Lth since the
construction of Lh requires (cf. 25, Sec. 41]) the solution of 2Nh discrete
Dirichlet problems it seems preferable to use the conjugate gradient algorithm.

Actually reality is more complicated for the following reasons :

(i) Since the 2thdiscret¢ Dirichlet problems mentioned above have all the
same matrix which is symmetric and positive definite, a Cholesky factori-
zation done once and for all will result in an important saving of compu-
tational time. ‘ .

(ii) If a large number of linear discrete biharmonic problems have to be solved

. = like in time depeﬁdenf problems or during an iterative process like those

discussed in this paper - the solution method of (5.84), founded on the
construction of Lh offers (from our numerical experiments) a more economical

strategy than the conjugate gradient algorithms discussed in [25, Sec. 51].

The above comments justify the choice of the direct solution of t5.95)

for the numerical experiments described in Sec. 5.6. o
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However in order to complete [25, Sec. 5] we shall describe in this section
a new conjugate gradient algorithm with scaling (i.e. preconditioning) faster
(i1f the speed of convergence is measured in number of iterations) than those
diécuss_ed in [ 25, Sec. 5] ; compared to the conjugate gradient algorithm des-
cribed in [25, Sec. 5] (algorithm (5.76)-(5.83), pp. 197,198) the new algorithm
requires the solution of three discrete Dirichlet problems instead of two, at

each iteration.

b

Description of the new conjugate gradient algorithm :

In the sequel C denotes a positive constant.

Step O : Initialization

(o] . o
(5.100) A eWZh 18 given ;

then compute, sequentially, p;)l, wﬁ, rﬁ, zg, gﬁ as the solutions of the following
finite dimensional linear variational problems (all equivalent to linear systems
whose matrices are symmetric and positive definite)

o 1 o .,0 1
ph€ Hh’ Ph AhéHOh’

5.101 : S
( ‘ o ! oy . 3 1
o VPV 4% = | Eopby * fin 5 Ton 5,04 ¥ dpe B
o 1 o
Y€ Bpe Y = Bjp o7 Ts
(5.102) .
[ 0uC.vo. dx = | (pO+£..)0, dx W, ¢ B!
I Uy Voy, 9% JQ PptEqn)dy dx ¥ e By,
(o]
LM, :
(5.103) -
1 rlu dT = | (potfa du dx VeV, d + 4T v/
JI” huh Qph 3h uh.A a h Uh X 82h11h VUhE _(h,
5 1
zg € H'h’ zg—r;: € Hoh’
(5.104)
[ U2°.vp, dx =0 ¥4, cH!
JQ 2y Vo, dX O € Hons
g;’e Mys
(5.105) .
( g dr =c| tOu dr + | v20evn dx ¥u e M
Jr‘hh r b'h Qhuh~ Hh € Mye
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Then set
o )
. = a
(5.106) . ‘wh 8
For n20, 2f we suppose'that A;, rﬁ, gﬁ,.wﬁ are knowm,
gﬁ+l ,'wﬁ+' as follows :

Step | : Descent

Compute sequentially ﬂﬁ, x;,_nn as the solutions of

we compute

I

h
Trne 1 “n_wne Hl
h€ e " Yh € Hone
(5.107) '
' n 1
JQ Vnh V¢h dx = 0 V¢he Hoh’
X € Bons
(5.108) . ,
J Vx“°V¢ dx = J ™ dx W, € Hl
Q h h Q h'h . h oh’
) nﬁemh,
(5.109)
n »
J n;‘uh ar = J "tl:“h ax - J VxpeVh, dxo VW € T,
r Q Q
and then
n ._n nn
| _ JF v Ty dr JT 8, h dl
(5.110) p_ = (= )s
n nn nn
‘ l nwy dr l n vy dar
r r ,
n+l n n :
(5.111) Xh .= Ah - PV

Step 2 : New descent direction

n 1 n .n 1
“h€Bh s S Hon
(5.112)

n _
JQ Vch V¢h dx = 0 V¢he:H

An+l

n+l

s
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n
&he mhs
(5.113)
[ n n n
J Exipy 97 = €] mypy df + | Vg, eV, dx ¥y € My
T T Q
ntl _ n _ n
(5.114) Ty STy T Ppp
n+l _ _ n
(5.115) O S
n+]l n+l
Jr g, Th I
(5.116) Yn=[ ot r® ar ’
r h "h
(5.117) G g ey el

n+l and go to (5.107).

Do n

Remark 5.4 : The conjﬁgate gradient algorithm (5.f00)—(5.ll7) may appear as a
complicated method for solving the discrete biharmonic problem (5.84) via the
linear variational problem (5.95). In fact what it requires is mainly the solu-
tion of the three discrete Dirichlet problems (5.107),(5.108),(5.112) at each -
iteration ; problems (5.109),(5.113) which are of a much smaller dimension

require in comparison a small computational effort.

The justification of algorithm (5.100)=(5.117) is founded on the fact that
problem (5.95) is iﬁdeed the approximation 6f a boundary integral problem and
that the matrix Ah associated to the bilinear form ah(-,') may Be viewed as the
approximation of a boundary integral operator mapping the Sobolev space

H_l/2 ]/Z(F) (see [25] for more details). A more complete discussion

(T') onto H
of (5.100)-(5.117), and related algorithms for solving the Stokes problem in

the pressure-velocity formulation may be found in [28].

Remark 5.5 (On the choice of th) : Suppose that HL is made of ordinary la-
grangiaﬁ finite elements of order k (k=1,2 in most applications). It follows

then from [25] (for which we refer for more details) that the best choice for

M

L 18 given by

1
(5.118) m, = {uh|uhe B, MpT = 0+ ¥Te € such that 3TnT = ¢} |
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with such a choice the elements of th are completely determinated by the values )
taken at those nodes of C’ belonging to I'. In that direction we should take as
basis functions for W?h those basis functions of Hh associated to the boundary

nodes (see - again - [25] for more details).

5.6. Numerical experiments.

5.6.1., Formulation of the test problem.

With Q = 10,1[x]0,1[ we consider the following Navier-Stokes test problem

-vAu + (ueV)u + Vp = 0 in Q,
(5.119) Veu=01nQ ,
'B(xl’XZ)Ir = {1,0} Zf Xy = 1,'= {0,0} Zf Ox< X, < 1.
Hence problem (5.119) is the classical driven cavity problem. The corresponding

{w,p} formulation is

I T WA
vAw + ( 3x2 3x2 BX]) =0 1n Q,
(5.120) MY = w in 9,
p=0o0onT; %%-(xl,xz)!r =11f x 1, =0Zf 0<x,<1.

5.6.2. Triangulation of Q.

The triangulation t% used to approximate (5.119),(5.120) by the methods
of Sec. 5.5, is shown on Figure 5.1. It contains 128 triangles and since ptiece-
wese quadratic elements are used (i.e. k=2-in (5.76)), it corresponds'to 64
‘boundary nodes and 225 interior nodes (vertices and midpoints). Actually the
above finite element grid is too coarse for high Reynold's number calculatlons,
but using a finer grzd would have been difficult with the computer used for

these numer1ca1 51mu1at10ns.
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Figure 5.1

5.6.3. Numerical results. Further comments.

The numerical procedure described in Sec. 5.4.3 has been applied to the
solution of. the approximate problem (5.80) associated to (5.120) (with A = 1/v
= Re). We have used As = 10 for 0< X <400, As = 25 for 400< X <900, As = 50
for 900< )1 <1200 and As = 100 for A >1200. The conjugate gradient iterations
were stopped as soon as the least squares cost functional was less than 10—5.
Figures 5.2, 5.3, 5.4 show the variations of the least squares cost functional,
as a function of the number of conjugate gradiep; iterations, for A = 380, 800,
1100, respectively ; as expected the number of iterations necessary to obtain
the convergence is an increasing function of A(= Re). Actually restarting from
time to time the conjugate gradient algorithm in the direction of the gradient
(i.e. taking Yp = 0 in (5.73)) seems to improve the convergence properties of
the conjugate gradient algorithm, as shown on Figure 5.2 where this was done
at iteration 7 (it was not done for the problems corresponding to Figures 5.3,
5.4) ;3 a systematical waonf doing that restarting would be of great interest>

for these very large nonlinear least squares problems (for restarting proce-

dures see POWELL [ Zj).
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Figure 5.2
Variation of the cost function during the iterative

process (Re = 800)
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Figure 5.3
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Figure 5.4

Variation of the cost function during the iterative

process (Re =.l300)
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The stream lines corresponding to Re = 10, 200, 400 and 1600 have been
shoyn on Figures 5.5, 5.6; 5.7 an& 5.8 respectively. It is quite clear - as’
mentioned previously - that the finite element grid of Figure 5.1 is not fine
enough, to observe the small scale properties of the flow (boundary layers,
small eddies, etc...)} For more accurate calcuiations, for the same driven

cavity problem, by other methods, see OLSON-TUANN [29].

Figure 5.5

Streamliqes at Re = 10
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6. - CONCLUSION.

~ We have discussed in this paper the solution of nonlinear boundary value
problems containing a parameter by a combination of arc length continuation
methods, least squares - éonjugate gradient algorithms and finite element
approximations. The resulting methodology is quite general and has been applied
to the solution of second order and fourth order nonlinear boundary value pro-
blems whose branches of solutions may exhibit limit point, bifurcation, etc...;
actually it has been applied also to the solution of more complicated nonlinear
boundary value problems than those consxdered in this paper, such as the Von
Karman equations for nonlinear plates (cf£. REINHART [17]) or the computation of
the multiple solutions of the full potential equation modelling transonie flows

for compressible inviseid fluids.
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