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Abstract :

We analyze a stack protocol of the Capetanakis—Tsybakov—Mikhailov type
for resolving collisions in a multiaccess Broadcast channel and study in detail
the mean collision resolution intervals (CRI) . We obtain a functional
equation for the generating function of the mean CRI's which is non local with
a non-commutative iteration semi-group. Using Mellin transform techniques and
properties of the iteration semigroup we show that for arrival rates smaller
than a fixed threshold, the mean CRI for n colliders is asymptotically

proportional to n. Ergodicity conditions are also given.

Résumé :

Cet article présente 1'analyse d'un protocole de type Capetanakis-
Tsybakov—Mikhailbv pour la résolution de collisions dans un réseau & accés
multiple. On y étudie en détail les temps moyens de résolution de collisioms.

La série génératrice de ces quantités vérifie une équation fonctionnelle non
locale dont le groupe d'itération est non commutatif. L'utilisation de la
transformation de Mellin en conjonction avec des propriétés stochastiques du
groupe d'itération permet de montrer que le temps moyen de résolution de n
collisions est essentiellement linéaire en n. Nous concluons par des conditions

d'ergodicité.



Introduction

For more than ten years, a hﬁge'literature has been devoted to the
analysis of the performance'of a multiaccess satellite or ground broadcast
channel used as a single communication medium in,packet-switching netwofks

(ALOHA type systems). We briefly recall the basic operation involved.

a) ' A single broadcast channel is shared among many independent users
(sources, stations, ...) which emit packets. Channel time is
discrete and measured in "transmission slots" - packetAduration
being equal to one slot. Soﬁrces are synchronized so that trans-
missions are initiated at the‘seginning of a slot, i.e at time

0,1,2,...

b)- ‘Each transmission is broadcast to every user-including the emitter.
When several stations transmit‘simultaneously, packets will collide
(interfere) and it is assumed that none of them is received correctly:

these collisions are handled as transmission errors.

The resolution of the contention is clearly the Gordian knot of that

multiple access scheme.

Many protocols for conflict resolution have been suggested ané some-
times modelled. Most of them are based on theloriginal ALOHA system and
on several cognate varieties: when conflicts occur, each station will
rétransﬁit randomly in the next slot with some given ﬁrobability. The
main drawback of these protocols is that the system'is inherently unstable
in  the ‘absencé of external control, whep the number of stations

is large (say, an infinite source) - see [FAYT5].

1. The C.T.M. Algorithm

In this paper we consider the Capetanakis-Tsybakov-Mikhailov (C.T.M.)'

collision resultion algorithm (CRA), which proves ergodic if the mean
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input rate of new packets is not too large. It requires no external
control. Moreover, this CRA allows transmitters to broadcast a message
for the first time immediately in the slot when it is available. Thus,
they do not have to monitor the éhgnnel continuously, but only when they

have an active message.

1.1 Description of the CTM algorithm with continuing input

(far a complete survey see [MAS81]))

Points a) and b) of the basic operation hold.

a) Each user monitors his own stack consisting of cells k = 0,1,2,... .

A new packet entering the stack abt time t is entered in cell O.

B) From a global point of view, the set of all user stacks will be
considered as a conceptual "super stack" made of frames. The frame
i is the union of all packets occupying cell i in their respective
stack and a packet can leave the system only when it is in frame O

(successful transmission).

The procedure RESOLVE written below, describes the operation of

the super stack. This can be summarized as follows:

i) At the end of each transmission slot, colliding ﬁackets (if any)
are divided into two groups according to some Bermoulli trial,

each collider flipping a coin.

ii) One group is allowed to retransmit in the next slot. The other
groups will retransmit later - namely after collisions of the

first group have been solved.



?ROCEDURE RESOLVE
COMMENT: "N(i) is the number of packets in frame i;
DEPTH is the depth of the stack." ,
DEPTH ¢+ 1 |
IEN(0)=0 or 1 THEN collision:=false; N(i-1) ¢ N(i), i1 ;
DEPTH ¢ DEPTH+1 | |
_« ELSE BEGIN collision:=true; N(i+1)< N(i), i21 ;
DEPTH ¢ DEPTH+1
COMMENT: "each of the N(0) users flipsva coin. >The result is
saved in the variable RANDOM which takes the value
P (resp. Q) with probability p (resp. a), prq=1."
k=1; NEW N(0O) + 0;

BEGIN FOR k=1,..N(0)

IF RANDOM:P; THEN COMMENT "STAY in frame O"

NEW N(0) ¢ NEW N(O)+1 °
ELSE COMMENT "GOTO FRAME {"
N(1) ¢ N(1)+1;
END;
N(0) ¢ NEW N(0);
~ END;

END RESOLVE

Assume that n packets initially collide in frame 0, i.e. the
super stack is in the state [N(0)=n, N(1), N(2) ..., N(DEPTH)]. The
time necessary to élear frame O - hence getting the state
[(N(0)=0, N(1), N(2) ««+y N(DEPTH)] - will be called the mean resolution

interval, and denoted by Ln'



In the next section,a stochastic model is studied to derive the

d
expected length a et E(Ln) of the CRI.

Let us remark at once that some variations of the preceding
algorithm can be presented to save slots which would otherwise be doomed
(see [Masseyl; [FAY,HOESZ]).?his happens when the first group (resulting
from the tossing of packets in frame 0) is empty, in which case the
following slot will surely produce collisions. We refer the reader to

4

the concluding section 5 at the end of the paper.

1.2 A Funetional Equation for the Generating;function of mean CRI

Assumptions:

H1: There is an infinite number of identical sources.

H2: The number of new packets which appear in the system in one slot
is a random variable independent of t and of the history of the

channel up to time t - having 'a Poisson distribution of parameter A,

The definition of the channel protocol provides the following

recursive relation for the random variables Ln:

Ly=L =1 | (1)

1
= >
L o=1+Ly  +0L .4 822 (2)
where:
I: the number of messages immediately retransmitted (Bernoulli

trial with parameter p).
X: the number of new arrivals in that immediate slot.

Y: the number of new arrivals in the slot following the resolution
of the I+X messages.
X and Y are Poisson random variables with mean A.

4



Taking expectation in (1) and (2) yields

\
ay = o, =1 (3)
n . . /e
o =1+ = = £ pt qn—1 e72k AE A (@ +a ) (4)

n k20 120 i0 : T yag i+k -n—1+1

Relations of type (4) have been studied in |TSY-VVEDSO] only when
P=q=%, although it was in the case of more general input. The arguments
were different and, as will appear later, the mathematical problem is

completely different when p#q -

Introducing

def © n
ao(z) = T 9 z_ :
n=v n!
def (5) ‘
-z

o(z) = e afz) ’

we get from (3) and (4)

9(z) - P(Mpz) - O(Mqz) = 1 - e 2[2 9(A) (142)+20* (M)]  (6)

where @©'(A) = ae(z)
dz l z=)

Putting successively in (6) z = % and z = % , eliminating @(21),

one obtains @’'(A) in terms of ®(A):
© (1) = 2(K-1) 9()).

Where

A A
K= e’ -ed (7)
A A
Aga_A_p
q P

Finally (6) can be written as:

?(z) - ¢(A+pz) - 9(Mqz) = 1-290(A)e” "(14Kz) .

—-5-



2. An Iteration Scheme for the Functional Equation

In this section we develop an iterative scheme for solving the basic

functional equation:

9(z) - P(Mpz) - ®(Mpz) = 1 = 20(N)e”” (1+Kz) (1)
where
A A
P__4q ,
K = = Ae = ’ 90y =1 , 9'(0) =0 (2)
Aoa_A P
q P

and for expressing the Taylor coefficients of
z
afz) = e ¢(z) (3)

This requires the introduction of a non-commutative iteration semigroups

whose properties are also of use in the later asymptotic analysis. The

solutions appear as sums indexed on this iteration semigroup.

With as before 01(z) = Mpz and cz(z) = Mqz, we introduce the

following definitions:

(i) We let H be the semigroup of linear substitutions generated by
01,02, where the semigroup operation is the composition of
functions. The identity of H, denoted by €, is thus the function

e(z) = z for all z € G.

(ii) Any substitution in H can be written under the form

0=0, O, ...0, wheren =0 and i. € {1,2},
1 *2 n J

and we set



|G|1 = card{3/1j=1} ; lc|2 = card {J/1j=2};

lof = Il + loyl

this last quantity being called the length of substitution o.

(iii)The subset of H formed with substitutions of length n is denoted

by Hn’ so that

H = {oc/ |ol=n} .

The semigroup H satisfies the obvious decompositions:

H {e} U 01H U GZH (4)

o _ fe A
H= {€} y Hoy  Ho,. (5)
and correépondingly for Hn:

H = 01H (6)

n n-1 U c2Hn—2

H =H (7)

a = Hnq% g Ba2%
Notation: If a, B are complex numbers, we define

lol, loly-
(;8)° = « g 2

We can now state:

Proposition 1: If o, B are complek numbers satisfying the contraction

coﬁdition:
lo| + [B] <1

and if t(z) is an entire function, then the functional equation

£2(z) - o £(0,(2)) - B £(0,(2)) = t(z) - (8)
-has a unique entire solution given by |
£(z) = T (8)7 t(a(2)) . (9)
o€H :



Proof:

(i) Existence: For z in C and any o€H, we have

lo(z)] = max (|zl, %)

Let u(z) = {|t(x)|/x € C, IxL < max(IZI;%)}

then the sum in (8) is absolutely convergent and its modulus is bounded

by
w(z) T (lal;18))7 = B2

0€H I—IG!I-|B|

Thus for z in any bounded domain, f(z) as given by (9),is a uniformly
convergent sum of analytic functions and therefore is itself amnalytic.

Using decomposition (5), we have:

t(z) + = (B)° t(o(z)) + T  (05B)° 4(o(2))

0€H01 o€H02

f£(z)

t(z) + @ £ (23P)7 t(ro,(2)) + B I (2;B)" t(ro,(2))
T€H ! T€H

t(z) + o f(c1(z)) + B f(oz(z)),

so that f£(z) satisfies equation (8).

(ii) Unicity: To discuss the solutions of (8), we need to consider
domains D -such that

01DC D O'ZDC D

Such domains necessarily contain the real interval E%;%] since for any

z, the set

H{z] = {o(2) / o € H}

-8-



Figure 1: The successive transforms of a point z, in the case p = %,

- 1 : A . .. .
q = 5. The point Gi1 012 . oim(z) is labelled ipod,.. 4.

admits this interval at the set of its accumulation points (see Figure 1).
Let f1 and fé be two analytic solutions of equation (8) in such a domain
D. By iteration of the functional relationm, f1 and f2 are necessarily

entire. Setting
6() = £,(2) - £,(2)
. we see that 6(z) satisfies the relation

6(z) - 06(01(2)) - BG(GZ(Z)) =0 ,

whence by iteration for all n>0:

§5(z) = = (o3 B)O 6(o(z)) . | (10)
&H -

n

Ve prove'that 6(z) is of bounded modulus in the whole of the complex

plane, hence constant by Liouville's theorem: 1let
. o o).
M =max {|8(z)| / |z = il

!



For any z € (¢, there exists some n € N such that

2\
< 2L €
lo(z)| . for all ¢ € H

Thus with (10) and this value of n
[6(z)] =M = (lal3518D) = M(lal+|B])* <M ’
o€H
n
which therefore establishes the .uniform boundedness of 6. Obviously we
can only have 8(z) = O which proves the two solutions f and f, to

1

coincide.
Lemma 1: For all n 2 2, let

g, = (<)® = e—o(O)(Pn’qn)c

ofH
k= (D" 2 e 5(0)(p,q™°
o€H
and define
)Ln
D(A) = Z [(1-Kn) g+ Kk ] o7

n=2
A necessary and sufficient condition for equation (1) to have an entire

solution is that
D(A) # -3, and K #

If this condition is satisfied, one has

o =1 - T:E%TXT [T+ KU +KnV ]+ on™M , n>o0
where
T,= % e=0(0) [-(p;)%)™ = 1 + n(p;)°)
o€H
U= 2 e (9)% [H-(ps) D)™ - 1 + n(p;0)]
ofH
V.= I e"’(o)(p;q)UL(1—(p;q)c’)n_1 - 1]
ofH

-10-



Proof: In order to be able to use Lemma 1, we consider thg functional

equation
£(z) - p2f(01(z))— qu(oz.(z)) = (A+Bz)e” (1)
vpere |
= - 2¢9(A)(1-2K) B = =p(A)K . (12)

This equation is obtained by differentiating (8) formally twice. The
coefficients p>,q° satisfy the contraction condition and thus (11)
admits the solution
2 2,0 . -
£(z) = Z (p%59°)° (A + Bo(z)) e~
ofH

under the sole condition that A and B - i.e. K and @(A) - be defined.

" Assuming that condition to be fulfilled, and noticing that

~o(z) = o(0) + (p;q)c zZ .,

we find for thé coefficients of f+:
£ = nil2"] £(2)

the expression

Bk : ' (13)

fn.= (A_Bn)gn+2 + n+2

with g, kn defined in the statement of Lemma 1. Since f is entire,

it can be integrated twice. The result is the function

n
Z

2 T (14)

9lz) =1+ I
nz2

vhich is also entire and satisfies equation (1). Relations (12), (13), (14)
give an-explicit expression of £(z) for all z, assuming thus only K and

®(1) to be defined:

* We denote by [2"]a(z) the o' Taylor coefficient of a(z):

n m
z =
[z ] - a z =a .

_11_ ¢



n .
o(z) =1 - 29()) Z [(1-Kn)g_+Ks 1 = . (15)
n n- n!
n22
Instantiating (15) for z = A\, we thus find that a necessary condition for

the existence of ®(A) is that D(A) # -3, K # @ and the condition is also

clearly sufficient. Thus when D(A) # -%, solving (15), we find:
e(d) = [1 + 200077 . (16)

The second part of the Lemma follows by taking the Taylor coefficients of
a(z) = e?p(z) with 9(z) given by (16) and grouping terms using standard

binomial expansions. 0

The next step is to use exponential approximations for the
coefficients T, U,V (cf. [Kn73] p.131 for a similar situation). To

that purpose, we introduce the quantities:

8(x) = og o000 (mala)x_ o L)) (17)
H

alx) = cz: =90 50y (720X | 4 a(o)x) (18)
H

v(x) = cg e—c(O)a(c)(e—a(c)x_ 1) (19)
H

where we have set a(o) = (p,q)o. We prove:

Lemma 2: The collision resolution times satisfy the relation

o = ﬁﬁﬂ [+(n) + Ku(n) + Knv(n)] + 0o(n'~™

for some real TpPO.

Proof: We use the expression of Lemma 1 and show that Tn, Uh, Vh are
approximated for large n by resp. t(n), u(n), v(n). Ve only prove the

result for Tn’ the other cases being identical. From the definitions

-12-



T - t@) = = e 0 [(1-a(0))® - &2(9)m]
n . OGH A

\

= Z &(0) .
o€H. :

To evaluate this sum, welsplit it and define

S1(v) = Z $&§(c) ; Sz(v) =‘. Z §(c) .
olSv o>y

Since for positive a, (1-a)<e o, an& since for |o|%v, a(G)ZqV, we find:

v
5,(v) = 0(2%™™) . (20)
Chooging v such that p“<% ensures that for all o: |o|>v ,

-.(i—a(c))n _ e-a(c)n _ e-a(c)n O(naz(c))’

uniformly in n and o, so that:

5,(v) = 0(n Z a(0))
lol>v
= 0(n(p%+q%)") o . (21)

We can select

' 2
_ log™m

v = logq( n ) ’

vhich ensures that S1(v) is exponentially small by (20):

-lo 2n
€ 1) for some c,;

: s
S1(\)) = o(n 'e 1

The condition that p = 0(1) is also satisfied, so that by (21)

0(n(p+%)")

S,(v)

= O(n1—n) for some strictly positive T.

3. Asymptotic Analysis

We now propose to study the asymptotic behaviour of o asn gets

large. Lemma 2 has reduced the problem to that of estimating the asymptotic

-13=



equivalents of t(x), u(x) and v(X) as x * ®. We first compute the Mellin
transforms of t, u, v which appear to have factored forms in which both
the gamma function and certain Dirichlet series related to the iteration
group appear. We then use the classical correspondence between the
singularities of Mellin transforms in a right half plane and terms in the
asymptotic expansion of the original functions for large values of the
arguments, a fact which comes from the inversion theorem for Mellin

transforms.

Locating singularities of the Dirichlet series, and in particular
estimating the dominant terms in their asymptotic expansions around their
pPoles requires some deeper properties of the iteration group H. Once
this is done, we can conclude with the asymptotic analysis of t(x),

u(x), v(x). The discussion distinguishes two cases based on certain
arithmetical properties of the probabilities p, q, and we can conclude

finally that o has a linear growth in n.

We start by introducing the two Dirichlet series:

o(s) = Z o005 45)0 (1)
§(s) = GgHe""O’o(o)(ps,qs)" (2)

in which the sums are absolutely convergent for Re(s)>1. We also consider

the function
B(x) = t(x) + Ku(x) + Kxv(x) (3)

which appears in the approximation of qn, and which is defined for all

x20.

-14~



The Mellin transform of a function f(x) defined on R is denoted

by f*(s) or M[f(x),s] and is given by

f*%(s) =jﬂm f(x)xs-1dx . : - (4)
0

(See (Do557, [Da78] for basic properties and definitions of the Mellin

transform.) We have:
Lemma 3: The Mellin transform of the function B(x) of (3) is:
Bx(s) = 8(-s)(T'(s)+KT(s+1)) + KE(-s)T(s)

-and the integral (4) defining B* is absolutely convergent for s:-2<Re(s)<-1.

Proof: The Mellin transform satisfies the important functional property:
M(f(ax);s] = a~ £%(s) | (5)

for any positive a. Applying (5) repeatedly we see that a function of

the form ' ' | X

F(x) = OEH ccf(dcx) ' . (6)

has a transform of the form

P(s) = £1(s) T e (a)™ | (7)

which is valid provided s in the intersection of the domain of absolute
convergence of f*(s) and of the domain of absolute convergence<f‘the
sum that appears in (7).

We use the classical transforms

J1 (e - 4 + x) xsf1dx = T'(s) fof s: -~ 2<Re(s)<1 (8)
o | .

.J (™™ = 1, S lax = I'(s) for s: ~ 1<Re(s)<0 . (9)
o - '

-15-.



Applying (7) to the sum giving t(x), we thus find that

() = T(s) = o ((p,9)°}° ,
o€H

wvhere the condition on (8) is -2<Re(s)<~1 and the condition on the sum is
Re(s)< -1. The transforms of u and v are dealt with in a similar way,

whence the result by linearity of the transform. a0

By the inversion theorem B(x) is éxpressible in terms of Px(s) as the

integral

1 r c+ie s
B(x) = Zin J Bx(s)x "ds , for any c: =-2<c¢<~1. (10)

c-i®

We propose to evaluate (10) by shifting the line of integration to the
right taking residues of the integrand into account. The first residues
give the dominant terms in the asymptotic expansion of B(x) as x?* «,

This however requires some more detailed analytic information on 8(s) and

| E(s).

To treat ©(s) and €(s) simultaneously, we thus consider Dirichlet

series given by a sum of the form

w(s) = T r(a(0)) (°,p%)° (11)
s o o PSP )

where r(u) is any continuously differentiable function on [O;%]. We have:

Proposition 1: The function ®(s) is meromorphic for Re(s)>0. It has a

simple pole at s=1, and around that point admits the expansion

o(s) = 7 ! J& ()aw + |7 r (whwla)an + 0(s=1)
R h(p,q)(a- _%) )\q rludu + ja r(whv{u)dn + 0(s=
D

-16-



where h(p,q) is the entropy function:

- -1
h(p,q) =p logp - +q log q

and w(u) is a weight function independent of r(u) .
We first prove that w(s) has, in the half .pla.ne Re(s)>0, the same-
singularities as (1—ps-q§)_1. ‘ \
Lemma 4: The function
(s) = w(s)(1-p°=°)
is analytic for Re(s)>0 and uniformly bounded in any half plane Re(s)2TpO.

. Proof: For Re(s)>1, the sum expressing w(s) is absolutely convergent, so

that we can regroup terms in the expression of T(s). We have:

m(s) = 2 r(cr(O))(ps;qs)c7 - Z 1r(0(0)) 2°(0°%,09)° - & r(c(0))¢®(2%,4°)°
o€ : ofH

H o€H
(12)
We first transform the second and third sums in (12) -
2 r(o(o)p®(0%¢)% = X (o] (0)(p%a%)T  (13)
o€H : T&Hc1
Z r(0(0)) ¢°(2%¢")% = T r(1a;(0)) (%4%)T 5 (14)
ocH TGHGZ

We then use the decomposition H = {¢} U Ho1 U H02 in the first sum in
(12), and group terms with those of (13), (14), so that

n(s) =r(0) =Z (x(ra]"(0)) = #(r(0))) (°%,aM)"
T€Ho1

- Z (r('fG;(O)) = £(1(0)) (%a®)" . (15)
TGHOQ .

Equation (15) is valid for Re(s)>1; now using the observations:

-17=



7(a) - T(b) = (p,a)" (a-b)

'

r(t(a)) - r(7(b)) = 0((p,a)")

uniformly in T for fixed a and b, we see that the sums in (15) are
H s+, T + s+ -
o £ 11,8 = o(l1-1p%11-1°"1117)
T€H
and therefore converge for Re(s)>0. Thus (15) provides the analytic

continuation of T(s) to the left of s = 1 and the Lemma is established. O

The next stage in the proof of Proposition 1 is to obtain the main
terms in the expansion of w(s) around s = 1. To that purpose, we

decompose the sum expressing w(s):

ws) = £ X r(c(0))(%4q%)°

n=0 ofH
n
with, as before H = {c€H/ |o| = n}. Ve define the sequence of functions:
(s) M -5 =8,0 . - Bs -s S
g~ (u) = (»7,q7) w1thP=ss;q=J—ss (16)
o(0)<u P +q P+
o€H
n
Function ¢£s) is thus the cumulative distribution function of the

discrete probability distribution which to point o(0) with oeHn associates
the probability (ES,ES)O. The expression of ®(s) then becomes
_ 5 s s [ ( (s) ,
w(s) = (p7+q") JT u)ag =’ (u) (17)
n
. n20

vhere the integral is a Riemann-Stieljes integral taken on R. As we shall
see, when n tends to infimity, ¢£S) tends to a limit, and the value of

this limit for s = 1 gives the main term in the local expansion of w(s).

-18-



Lemma 5: For & such that p<6<1,let D(8) be the domain:
D(6) = {s € ¢ / |5'*) <6 ana 135(<5 .

‘Then, for each s in D(8), there exists a function ¢is)(u) defined on R,

such that

|¢is)(u) - ¢is)(u)l5vA6n for all u in R and for some A € R.

In particular, ¢i1) has the explicit form

0 if us A
P
w-X
(1) D T | A
= -_— Ly s =
¢m (u) A if B u a
Q P
1 if L™ u.
q

- Proof: From the definition of the ¢is), using the decomposition Hn+1 =

°1Hn U o.H , we have:

2'n
o =§,=S =8,0 -5 ,~8 =8.0
¢f§3 W= £ 657+ 2 @)
ofH o€H
n n .
010(O)<h 020(0)<u
and since 01,02 are monotone increasing:
#(2) ) = 3% (o7 () + 8% (03 (), (18)
with
¢és)(u) =0if uw<o ; ¢(()S)(u) =1if 05 u.
. Let us consider the four regions:
R, ={u/u< A} ; R,={u/ A u < 27}
1 P ’ 2 . P

R

. A A
< < 2 . = - s .
3. {u / 2L = u q} I {fu/ 1 u}l

-19-~



the substitutions 0:1 y 021 operate on these regions as follows:

0;1(R1) <R ";1 (By) < R
";1(R2) <R 5, (B,) € By
o) (Ry) Ry, R, 5, (Ry) € B, o
°;1(R4) <R o, (R,) < R,

In particular, each element of E%,%{ has only one image by 0;1, 051

in the interval. For any I C R, we define the norm
“fHI =sup{|f(u)| / u € I} .

Let ﬁo be such that

n

0 A
01 02 (O) > P H
then:
Yo ) A
Vn > n, Yo € H o 010(0) > " (20)

Working on the four cases of (19), we first find that for all n > n,,

using (20):

1) gl s 6 ligls) —gls)

n+1 1 'R,
thus
ll¢r(:3 - ¢I(IS)HR1 S
Similarly:
gz - 871, = 18,7 - gl s 118 - e,
1
g2} - oIy = 19l - g2l + o g - g2, -
(s) _ (), _
H¢n+1 - ¢ns IIR4 -

=20



Therefore, for some A2:
(8) _4(8)| =, 6° .. |
g, - g g = a8 S (21)

Hence for each u, the sequence {¢és)(u)} is a Cauchy sequence, so that it

cénverges to a limit ¢is)(u). From (21) follows that, for some A:
(s) (s) <D '
g% - 8.3 1] < as | (22)
as was to be proved.

Using this result in conjunction with equation (18), one sees that

¢o(os) satisfies the equation

9 @) = 5% e ) + 8 (o5 ) (23)
. with the boundary condition
¢°(°s)(u) =0 ifu S% ¢°(°S)(.u) = 1A .if% S u ’ (24)

and it is easy to check that (23), (24) when s=1 are satisfied by the

piecewise linear function of the statement of Lemma 5. 0.

Thus ¢i1)(u) is nothing but the cumulative distribution function
associated to the uniform distribution on E%;%]. We now proceed to

use this result in conjunction with the expression (17) of w(s). Ve

define:

L L M r(u)du (25) -

D(s) = w(s) - J— X
1-p -q -‘.l- -

which, a priori, exists only for Re(s) > 1. Using (17); (25) becomes

D) = = %M [ [x a@® @ - 4P w))
n20 . _
o) = %) [ @@V @ - gDl o)

n=0

f2]-



as follows from summation by parts. Using the decomposition
i@ - 1w = g w - g w4 iV w - P @

we have

D(s) = D1(s) + Dz(s)

with

D () = B %) [2) 3w - o) a @

DZ(S)

i

B %" [ 0P - 6w a @)

Using the geometric convergence (22) of Lemma 5, we see that D1(s) is

aétually analytic in a neighbourhood of s=1, and

b, (1) = % [ @ w - w)

D, (1) = jr’(u)w1(u) du
with:

v = I 0w - V@) . (29)
We prove

Lemma 6: Function Dz(s) is analytic in a neighbourhood of s=1.

Proof: We use an indirect argument: since
D,(s) = D(s) - D (s)

is the difference of two functions meromorphic at s=1, it is meromorphic
there and has at most a simple pole at s=1 by Lemma 4. We propose to

prove that as s
D_(s) = 0(=)
2 s~-1

which will establish that Dz(s) is regular at s=1. We write first:
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Dé(s) = @ (s) with @ (s) = (p°+¢°)" £ r(v(0) %53 -
n=0 ° n : 'UGHn .

»

Ve estimate the dn's‘using the decomposition

=H_XH  wvith k=k(n) =|/n] ; 1=1(n) =n -{/n] . (30)
We have:

a(s) = %)™ £ I (o m(ONIGE%3)T - (p50)°"]

ofH_ T€H
Since r is assumed to be continuously.differentiable
o]
r(o7(0)) = r(c(0)) + 0((p3q)~)

uniformly in o,T. Thus:

a_(s) = (0%¢%)" £ 2 r(a(0) [(7°; a7 - (p30)7"]

o, e,

+ (%9 o2 = (%397 + (230)7Up30)7).  (30)

o€Hk¢EHl

Using the fact that

—s -3
T€H1 ( )
we get S . »
4 (e)= @O r(o(0)) L3537 - 25)7T + @7 0( 2 (%37 4
:+ (Pz;q2)c)

For s in a neighbourhpod of 1, the second term is
o((e" "+ %Y, 0
and thus is O(Mp) for ;ome M: O<M<1.
The first term can be estimated, computing derivatives, one finds

that
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(3%:3%)° - (0350)° = o(k(n)(s-1))

Uniformly in ¢. We have thus proved that

a_(s) = 0((p°+a*) k(n) (s-1) + o(u").

Since , as x > 17

z b/h] x* = 0(1—x)_3/2 .

we thils obtain.

Dz(s) = 0(s—1)—%

and'D2(s) is analytic at s=1 by our preceding remarks.

With Lemma 6 and observation (29), we can thus conclude that

D(s) is analytic at s=1, so that

Q>

r(u)du (31)

w(s) = = ‘
R hea & - D) J

P A

p

admits around O an expansion of the form '

a. + a1(s—1) + az(s—Z)2 + oeene .

0

To complete the proof of Proposition 1, we now look for an explicit

expression of aq e The problem is equivalent to that of determining

D(1) whose existence is guaranteed by Lemma 6.
Using now the decomposition
0w - 8P = 8@ - g P+ gV - g w

wé see that D(s) can also be rewritten under the form:

2(s) = 56%)® | @@ w - 8P w) @

+ (1925 2@ w - Py (2)
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For Re(s)>1. When s 1+, the first term converges to D1(1) given by
expression (29). The second term is thus another form of D2(1), S0

~that it has a limit when s 1+ and is equal to:

D2(15

j'r'(u)wz(u)du-

with

) = - el e g @,

To estimate w2(u), we differentiate the functional equation satisfied

by ¢°£s) and find:

89w =5 &8 @) 3 5 665 W)
+ 19 W) -G @) 6y

with L=pqlogi§.

Let 8(x) be the tfiangular function
6x) = 18 0] ) - 85 ) (34)

The graph of 8(x) is displayed on Figure 2. Instantiating (33) at s=1,
and using the iterative scheme for solving this functional equation,
we thus find that:

=

O

$

Figure 2: The graph of the triangular function §(x)

~25-



%) = E (23a)° 8(c”" (w)) (35

Equation (35) defines a function which is nowhere differentiable and
which is a superposition of triangular functions of smallest and
smallest supports and amplitudes. Functions of a similar nature

appear elsewhere in the analysis of algorithms -

Function w1(u) in (29) can also be expressed in a similar way

as:

v (0) = Fu(050)7 (o7 (w)) - (36)
‘where €(u) is the piecewise linear function

e(w) = ¢ ) - g8V (w)
whose graph is displayed on Figure 3.

These calculations thus complete the proof of Proposition 1
and w(u) = w1(u) + w2(u) has an "explicit" expression through (35),

(36).

e

Hﬁ

o
] L R

Figure 3: The graph of function €.
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Proposition 1 thus gives an expression for the first terms in the
‘expansion of functions 6(-s), E(-s) appearing in Lemma 3, around their

singularity at s=-1. By the Mellin inversion theorem (10):

s

B(x) = =

To2im

=3/2 + i
1

- —jo

Bx(s)x “ds .

At last we establish a general property on the poles of w(s) in the

right half plane in order to move the integration contour in the above

integral to the left, let
£(s) = p° + q° - 1, | |
and

Z(f)

{s / Re(O) >0; f£(s) =0}
The set Z(f) coincides by Lemma 4 with the poles of w(s) in the right

half plane. We prove that Z(f) is uniformly discrete in the following

sense:
Lemma 7: There exists a real number 6 > O such that

Vs, s’ € Z(f) ls - sl >8 .

Proof: Assume a contrario +that the Lemma is not satisfied. Then
for all & > O, there exists an s in Z(f) and an a with |a|<§ such
that;

PS“*_qS=1 a'nd:pS'i'a._i_q-S-I-a_:1 .

’ a
pS = =9 _ (38)
a a
P -q

Now for small a, a local expansion shows that
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The function

Mx) = - Log{l=x)

satisfies:

AMx) > 1 for all x € J0; #[ . Thus the right hand side of (38)
is of modulus strictly larger than 1 for a small enough. There is
thus a contradiction in (38) since for Re(s) > 0

Ip%I< 1 ;

this establishes the Lemma. 0

The argument used in Lemma 7 can actually be used to prove that
all the elements of Z(f) are simple zeros of f and that for all 6§ > O

there exists an 7 > 0 such that:
Vs',RE&(s*) >0 , Vs e Z(E):ls - s'| > 6= 2(s")>1 . (39)

One then sees that for some fixed small enough € > 0 such that the
minimal distance between points in Z(f) is larger than 4€¢ and for
each integer n there exists a closed contour Tn with the following

properties

(i) Tn consists of four curves:

n n n n n
with
L' = {2+ it/ t€ [-n; + n])
Fnz < {z / Re(z) € [- %;—el; I (z) € [n;n+2e]}
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: rzc {2 / Re(z) € [-3¢;-¢]; Inm(z) € [-n-2¢; n+2¢])

Tﬁ c {z / Re(z) € [- %;—e]; Im(z) € [-n-2¢; -n]}

(ii) Each point in f;is at a distance at least € from a zero of f(-s).

Such a contour can be constructed by distorting 'a rectangular contour so
as to avoid the zeros of f(-s). We can thus assume that [ is rectifiable
and has length O(n). Figure 4 displays the shape of such a contour.. We .

now consider the integral

4

In = E%F Jﬁ Bx(s)x “as

r
n

with Fn oriented clockwise, and let n tend to infinity.

n‘ Nuulinn i
t
=¥ 4in : ¢ . P
' 3
: ‘ , fo
' .
4 : ‘ .
’ln ‘ .. . ]
: ]
i . .
i
1
i 4 . '
i .
] » N
1
t 4 b Y
L}
}
=¥y -4, -€(©
(]
L]

ig : ‘ i ' i 1f plane.
Figure 4: A schema_showlng ﬁhe contour Fn in the upper half plane
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By the complement formula for the gamme function I'(z) has an
exponential decrease at infinity along imaginary lines. On the other
hand, along all of Eﬂ 8(-s) and E(-s) are bounded by Lemma 4 and the

remarks following it. Thus, the integral

J. Bx(s)x “ds. (40)

taken along Fi and Fi tends to zero exponentially fast. Integrals (40)

along Tl and Ti tend Yo limits that are respectively B(x) and a function
€

of x which is O(x3 ) as x gets large. Taking residues into account by

the Cauchy Theorem, we therefore get

B(x) = - & Res(B*(s)x™5) +0(x>")

the sum being extended to all the poles that lie inside the F;s.
Because of the exponential decrease of ['(s) at i® and the uniform
discreteness of the set of zeros of f(s), the sum of the residues

is absolutely convergent.

To conclude on the behaviour of B(s), we estimate the residue of

B*(s) at s=-1. Introducing the notations:

A
_ 1 1 [ =
lJ'(I‘) = h(P’Q) J)\ q r(u)du (41)

p

AL
qa P

(r)

A
JI q ' (u)w(u)du, (42)

we have around s=-1:

0(=s) = = ple M) (s+1) 7" + V(™) + 0(s+1)

E(-s) = - w(ue ) (s+1)~ " + v(ue™) + (0(s+1)

T(s+1) = ;%T - Y + 0(s+1)
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I(s) = S+ (¥-1) + 0(s+1)
x o = x—1(1 4 (s+1) 1oé x”+ 0(s+1)2) .

With these expansions, we see that Px(s) has only a simple pole at s=1.

The residue there is found to be equal to -A where

=\ -A 2
1 (e T - ¢ Q) N » _ |
AEmD (I L iy tJ e - @eneT v
‘ @ P . P

(43)
Similarly, for X a pole of (1—p-s—q-s)"1, the residue of P*(s) at X

is - a(X) where:

80 = g [n () (C(0) + K T(140) + K 1 (OT(0] . (44)
p"logp+qTlogq . S
and ﬁ1, ™, are the T-functions of Lemms 4 associated to r(u) = e-u, ue o,

With these calculations, we have:
Theorem: The average time to resolve n collisions satisfies

24

2 -X 1-1
Gn = 1+2D()\) n + 1+2D()\) § a'(X)n + o(n )

the sum being extended to ¥'s satisfying:

1-p%-q®=0 ;5 -1SRe(X)< 141 ; X # 1.
for ‘any sufficiently small‘n’> 0.

The sum in the expression of the theorem is a bounded fluctuating
functiqp vhose amplitude is small compared to the value of A. Its
asymptotic nature depends on very specific arithmetical properties of

numbers p and q. In the sum

£ a(x)u* - (45)
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for large u, the a(x) have an exponential decrease in |Im(x)| while
the u X increase with |Re(X)|. Estimating the order of (45) thus
necessitates to determine the relation between Re(X) and Im(x) for

the leftmost X's that afe poles of (1 - p > - q—s)_1. Setting
Re(x) =-1+¢ ; Im(x) =1t ,
we look'for the solutions of
p1-e Jitlogp q1-e Jitlogq _ ’ (46)
where € tends to 0. Simplifying the discussion, (46) decomposes
into

(47)

il

-€ -€
P cos(t.logp) + q1 cos(t.logq)

il
o

-€ -£
p1 sin(t.logp) + q1 sin(t.logq) (48)

With «,B denoting the principal determinations of tlogp and tlogq

in J-m;7m], (48) yields

. 1-€
siny _ q
sinP P1-€ ’ ' (49).

so that o and B are of opposite signs. For € small enough, from
(47), (49) we see that o,P must be small and in the limit, when €=0,

(47) can only be satisfied by a=B=0.

Local expansions show that for some constants A,B:

1 1
2 2

|o]= As |B|=Be (50)

Expressing the fact that o and B are determinations of tlogp, tlogq,

then

tlogp = 2am + «

tlogq = 2bm + P



for integral a,b. Thus eliminating t and using (50), one must

have

Bofes

e
lp - %-I < 23— where p = %%ég (51)

Since p is linearly related to t, this represents a relation between

€ and t, i.e. Re(X) and Im(Y).

Corollary: If p ='i—§§€- is rational; p =3 vith (a,e) = 1,
one has :
= —2A 1-1
% = T32p(0) © + P(e.logpn) + 0(n' ")

for some N > 0, with P(u) a Fourier series of u with mean value O.

The proof relies on the fact that (51) for small enough € has
the only trivial solutions a = kd, b = ke; thus the Dirichlet

series in this case have a pole-free strip right of Re(s) = -1.

In general the fluctuating function (45) is 0(n).

4, The Ergodicity Condition

Theorem: The necessary and sufficient condition to have a stable
c.hamulal, ie. o <o Vn finite is A < My Vhere AMAX is the
first root of ,'

1 +2D(W) =0 (1)
(see equation 2.16)

Proof: The proof relies on results of section 3 together with standard

results on Markov chains (see for example [91N75 ] as follows.

The state of the System.(super stack) at time t can be repre-

sented by a vector of variable length
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N(t) = [N(0), N(1), ... N(DEPTH)]

using notation of section 1, or setting W = [N(1), N(2) ... N(DEPTH) ]

N(t) = (N(0),¥).

ﬁ(t) is clearly & Markov chain with a countable state space
irreducible and aperiodic. In such a case‘it is well known that all
states are of the same type (i.e. they are all transient or recurrent).
Assuming the initial state is [N(0) = n,W], a is the mean time of first
visit to state (N(0) = 0,¥]. Hence the o , n22, will be all either
positive and finite or all infinite. Moreover there is at most one
solution ¢(z) = e %a(z) . (This last fact was proved by other

arguments in section 2.)

From equation (2.15), (2.16), Lemma 1 of section 2 and the last

theorem of section 3, it follows that there are only two possibilities:

i) ¢(z) is an entire function, i.e. analytic in every finite region

of the plane.

ii) ¢(2) is degenerated : this occurs when either k=, that is when

A= AO’ Al where

_A A
q

- AO is the root of A-e —-A eP =0
q P

- Al is a root of 1+2D(Xl) =0 see(2.16).

The above considerations show that the necessary and sufficient

condition for the ergodicity of the system is to be in case (i).
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Numerically, it can be seen that there exists a unique A, . Moreover,

1

< <
o X1 XO (.

Hence = A "and the conclusion follows:
? 1
if A < AMAX’ a(z) entire exists.

if A2 hMAX’ q = Yn=>2.

The proof is concluded. - . N

The ergodicity condition (1) is equivalent to

Max = inf{1|0 € @(A) < =}
and the stochastic interpretation of @(\) is easy.

e_xhna

© . '
Indeed 9(A) = & represents the expected value of the

n=0 . n!

mean collision resolution.interval (in a wide sense, because % and QH

~are taken into account).

Numerical Results

7

.

XMAX‘: 0.3765

p =0.5+ 10"

5 Conclusion

As said in section 1, other schemes can be proposed to get a highef
AMAX' They essentially try to save "doomed" slots. This can lead for

exdmple fo the following recursive relationships for the Ln:
LI+X + Ln—I+y _ if I+X £ 0

L =1+
n

L if T4X = O
n - .

(see [Mas81], [FaHO82]).
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LY

The functional equation for the generating function of the

o = E(Ln) is then non symmetrical with respect to p and q = 1-p.

Moreover, there is a term involving o(qz). Nevertheless, the same

methods of analysis could be applied.

£
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