N

N

Non convex methods for computing free boundary
equilibria of axially symmetric plasmas
B. Heron, M. Sermange

» To cite this version:

B. Heron, M. Sermange. Non convex methods for computing free boundary equilibria of axially
symmetric plasmas. RR-0108, INRIA. 1981. inria-00076452

HAL 1d: inria-00076452
https://inria.hal.science/inria-00076452
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00076452
https://hal.archives-ouvertes.fr

27 R e a ‘ij.wwﬁ\‘g

4

g Rapports de Recherche
N° 108
NON CONVEX METHODS |

FOR COMPUTING FREE :
BOUNDARY EQUILIBRIA OF *
AXIALLY SYMMETRIC PLASMAS

ERs

A

T

22

Bernard HERON
Michel SERMANGE

5 i

S

53

FRET LTRSS

TR,

i  Décembre198l !

RN = 3 B PEVRR T RN



NON CONVEX METHODS FOR COMPUTING FREE

BOUNDARY EQUILIBRIA OF AXIALLY SYMMETRIC PLASMAS

Bermard HERON®, Michel SERMANGE' "

ABSTRACT. - This paper analyses the convergence of an iteration scheme adapted
to a class of nonconvex problems where the functional to be minimized is the
difference between two convex functions. These problems include a mathematical
description of free boundary equilibria for axially symmetric plasmas governed
by equations containing diseontinuous nonlinear terms. A Galerkin method is
used to discretize these partial differential equations in the space-variables.

Numerical computations are performed on examples via a finite element method.

RESUME. - Cet article analyse la convergence d'un schéma itératif adapté 3 une
classe de problémes non convexes ol la fonctionnelle & minimiser est la diffé-
rence de deux fonctions convexes. Ces problémes incluent la description mathé-
matique d'un plasma a frontidre libre en équilibre axisymétrique gouverné par
des équations comportant des termes non linéaires diséontinus. Ces équations
aux dérivées partielles sont discrétisées en variable d'espace par une méthode
de Galerkin. Des calculs numériques sont effectués sur des exemples par la

méthode des éléments finis.
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0. - INTRODUCTION.

As it was pointed out independently in two papers (H. BREZIS-H. BERESTYCKI
[ 3] and one of the authors (M.S.) [17]), there exists a very efficient itera-
tion scheme for computing general free boundary equilibria of axially symmetric
plasmas. In [3], it is proved that for any initialization some subsequence con-
verges to a solution, whilst in [171,018] local convergence around variational
solutions is proved and numerical computations are performed (including a bifur-
cation case).

The aim of this paper is to improve the mathematical background of this
scheme and to show that it can be generalized to other problems.

The paper begins with the study of the abstract subdifferential problem

of finding u such that
(0.1) dF (u) n3G(u) # 0 ,

where F and G are both convex functions and OF (u) denotes the subdifferential
of F at u. '

We are interested in questions of existence and approximation of solutions
of (0.1). The duality theory (mon convex duality) for these problems was first
studied by J.F. TOLAND (cf. [231,[241]).

In Section 1, we prove the existence of at least one solution for (0.1)
without assuming J = G-F to be bounded from below ; then we generalize the
iteration scheme quoted before and prove its convergence to a solution of (0.1)
for all initializations. As far as we know, these results are new (a more res-
trictive framework was considered by the second author in [18]).

In Section 2, using an internal approximation of the space (which includes
Galerkin method and finite elements), we define an approximation of the abétract
subdifferential problem (0.1) and prove its convergence. We also give the dis-—
crete analogue of the continuous iteration scheme.

In Section 3, we study the general set-—valued equation
Lucd, §(+,u(*) in &,

(0.2) u = const. (unknown) on I = 30,



where I is a prescribed constant, £ an elliptic operator and ¢(x,s) a function
which is convex with respect to s. Sec. 1 and 2 yield the existence of at least
one solution and the convergence of an iteration scheme for Eq. (0.2). This
problem (resp. the associated iteration scheme) differs from the set-valued equa-
tions studied in other papers (see for instance K.C. CHANG [4]-[ 6], I. MASSABO
[12], I.M. and C.A. STUART [13]) mainly by the nature of the prescribed data
(the integral of the conormal derivative is given instead of the value of u

on I).

The remaining part of the paper is devoted to physical applications. The
main one (Sec. 4) is the determination of free boundary plasma axisymmetric
equilibria by solving STOKES-GRAD-SHAFRANOV equation, which is a special case
of Eq. (0.2). Even in the case of set-valued nonlinear terms Bs¢, we obtain
the existence of solutions and the convergence, of an iteration scheme ; that
way, we improve the existence results of R. TEMAM [21], H. BERESTYCKI-H. BREZIS
[2], J.P. PUEL [14] and approximation results of H. BERESTYCKI-H. BREZIS [3]
which were all proved assuming the continuity of ¢;. Let us mention that
R. CIPOLATTI also uses convexity methods in [8] to study -Au = XPK(u) (where
K is some convex set of functions) which generalizes the plasma model-problem
-Au = Au,. As other application, we present in Sec. 5 a convergent iteration
scheme for computing the shape of a heavy rotating string (cf. I.I. KOLODNER
[10], J.F. TOLAND [ 24]). Both applications are illustrated by numerical results.

Many other applications are expected.

1. - AN ABSTRACT SUBDIFFERENTIAL PROBLEM.

1.1. The abstract framework.

This section is devoted to the non-standard problem of finding points
where the subdifferentials of two convex functions have a non-empty intersection.
OQur most interesting result is an algorithm for computing solutions of such a
problem. We first prove the existence of solutions through the closely related
problem of minimizing the difference between the two convex functionals on a
non-convex set. We then propose an algorithm and study it.

The abstract framework of this study is the following.

Given a reflexive Banach space (V,H'||), Z a closed subspace of V (which

can be {0}) and F,G two functionals on .V, we assume that

(1.1) F is convex, weakly continuous on V,



(1.2) G is convex, continuous on V,
(1.3) G is invariant by translation with respect to Z,
(1.4) there exists 0> 0 such that for all u,ve V and all Le 9G(u)
Gty - 6w 2L +afl¥l2,, .
- v/z

Then, the problem we consider is that of finding ue V such that
(1.5) dF (u) n 3G(u) # @.

This problem will be often referred to as problem (1.5) for simplicity. The
following remark helps us to locate the solutions of this problem if there

are any.

Remark 1.1 : It is easy to check that assumption (1.3) is equivalent to
o (*)

(1.3)" for all veV, 3G(v) cZ .

Moreover this condition (that disappears if z ={0}) allows us to consider G

as a continuous convex functional on V/Z which is even strictly convex due
to (1.4). 8

If us is any solution of (1.5), it is now clear that BF(u)nZ° is not

empty. As a consequence, u necessarily belongs to the set
(1.6) K={veV : F(v) <F(v+z) for all zeZ}.

As we shall see problem (1.5) is closely related to the minimization

problem

a.7) Inf {G(v)-F(v)}
veK

when a few additional coercivity conditions are met.

(}) The quotient space V/Z is a Banach for the normll%“v/z= Inf ||v+z||
zel

(*) The polar set z° of the subspace Z is given by
2° = {IJEV* : L(z) = 0 for all ze 2}

where V' denotes the dual space of V.



These assumptions are

(1.8) for each veV, F(vtz) * +° when z€¢2Z, ||z|| > +=,
(1.9) the functional J = G-F is bounded from below on K,

S the set K is bounded in ¥
(1.10)

( or J(v) = +© yhen vesK,||vH > 4o,

Remark 1.2 : Concerning the terminology, we shall refrain from calling the
solutions u of 9F(u) N9G(u) # @ the critical points of J = G-F (as did
J.F. TOLAND in [24]) because this property depends on the decomposition

J = G-F, as it was pointed out by K.C. CHANG [6].

Quadratic case for G.

Let G(v) = % a(v,v) be a functional on V satisfying the classical con-
ditions
i)y (v, ) and (H,
embedded in H.

ii) a(*,*) is a bilinear form on V which is continuous, symmetric, nonnega-

) are Banach spaces ; V is reflexive and compactly

tive and satisfies the coercivity condition
there exist real constants A =0, C>0 such that for all veV
[ {awe alvZac vl
‘We shall see below that i)-ii) yield

iii) the null space Z of a(*,*) 1is {0} or finite dimensional,

iv) there exists 0> 0 such that for all veV

2

a(v,v) 2 0'”\.7”\7/2 ¢

It is then clear that relations (1.2)-(1.4) are fulfilled since every quadra-

tic functional G satisfies

G(u+tv) - G(u) - G'"(Wv = G(v).



In this framework relation (1.5) becomes
(1.5)" a(u,*) € 3F(u)
which is equivalent to the variational inequality
(1.5" a(u,v) < F(u+v)-F(u) for all veV.
And in the particular case of a differentiable F, (1.5)' means a(u,*) = F'(u)glj
Let us now prove iii)=-iv). Because of the embedding Vc H and inequality
(1.11), the norms on V and H are equivalent on Z. The identity operator on Z

is therefore compact due to i), which yields iii) (cf. M. SCHECHTER {151,

L
We argue by contradiction to prove iv). Assume that a sequence {vn} sa-
tisfies

3 . . ]
Vh“ =1, a(vn,vn) <E .

In each class v, We can select va such that

1
n

.

. <
(1.12) Lellv lls2 5 atv,v)
By compactness, some subsequence {vp(n)} converges weakly in V and strongly
in H to some ue V. The weak lower semi-continuity of convex continuous func-

tionals yields

a(u,u) <0 = lim inf a(vp(n)’vp(n))'

Since a(*,*) is nonnegative, u belongs to Z. Then, applying relation (1.11) to
(vp(n)-u) we get
2 2 . 2
A - >C - =zC
a0 oy Vo) MYp el T2 C Yy oyl Vo 1v/2

and letting n » +® , we infer from this and (1.12) that

(}) This case was previously studied in [ 18] with a(*,*) taken definite positiv



lim inf va(n)-ul2 Z%> 0
in contradiction with the strong convergence of vp (n) to u.

Remark 1.3 : It should be noted that hypotheses (1.9)-(1.10) only involve the

behaviour of the functional J on K. There is indeed no global property of

coercivity, since according to (1.3) and (1.8) we have lim J(v+z) = -
€
for all veV. ”:”Z_*w

1.2. Two lemmas.

Hereinafter, a key-role is played by the following lemma

Lemma 1.1 : Let F,G be two convex functionals on a Banach space V. We assume

that two points v, ,V, of V satisfy
BF(V‘)‘ n BG(VZ) # 0.

If we set J = G-F, we then have
J(v]) ZJ(VZ).

Moreover if I is a closed subspace of V and if relation (1.4) is fulfilled,

one has
3wy 2 3Cwy) +allvy vyl
177 2 1 "2Vv/z
We shall also need a characterization of the set K (defined by (1.6)) given by

Lemma 1.2 : Let F be a convex continuous functional on a Banach space V, Z a

elosed subspace of V and z° its polar set. For ahy ueV the conditions

i) F(u) <F(ut+z) for all zeZ (i.e. uek)

ii) 3F(u) nz° # @

are equivalent.



Proof of lemma 1.1 :

Let Le BF(vl)n 8G(v2) ; by convexity we get

F(Vz) > F(V]) + L(VZ—V]) ’
G(V]) 2 G(VZ) + L(V] —Vz) ’

and adding these inequalities we obtain J(vl) 2 J(vz). Furthermore, if G satis-

fies relation (1.4), replacing the second inequality by (1.4) we immediately

get
Iv)) 2 30wy *allv,=v,ll7 .

Proof of lemma 1.2

It is a straightforward consequence of Hahn-Banach's theorem. Though a
justification can be found in K.C. CHANG [ 4] we give here some more details.
Assume OF (u) nz° is not empty, and let L be any element of this set.

Since

F(utv) 2 F(u) + L(v) for all veV,

L(z) = 0 for all ze Z,

it is obvious that F(u) < F(u+z) for all ze Z.
Conversely, assume that i) is fulfilled. The convex functional F defined

on V by
ﬁ(v) = F(u+v)~-F(u)

M

clearly satisfies

o]

. s
zx{0}nepi F = 0.

Hahn-Banach's theorem asserts that there is a closed hyperplane T of

VXR such that

(}) epi F = {(v,t) e VXR : F(v) < t}and we denote by S the interior of a set S.



0
SN

(1.13) zx{0}cm and mnepi F=0.
Let Le V*, o ¢ R such that
(vyt)em™ & L(v)at = 0.

It follows from (1.13) that Le 7° and L(v)-at is never zero on epi f‘, thus

keeps its sign unchanged, say the negative one. We easily get that a> 0 and
L{v) £ o Inf t _ = G.%(V).
(vot)eepi F

Therefore &—L belongs to 3F(u)n z°. The lemma is proved. m

1.3. Existence of solutions for problem (1.5).

In the framework specified in Sec. 1.1, we have the following existence

result concerning problem (1.5).

Theorem 1 : Assume that conditions (1.1)=(1.4) are fulfilled. Under assumption
(1.8) the set K defined by (1.6) is not empty, and if problem (1.7) admits
solutions, all of them satisfy (1.5). Since they have a minimim property, we
shall call them variational solutions of (1.5).

If we assume moreover that conditions (1.9)-(1.10) are satisfied, there
is at least ome solution of the minimization problem (1.7), and therefore at

least one (variational) solution of problem (1.5).

Proof of theorem 1.1 :

Let us first check that the set K is not empty. Given ve V, it is classi-

cal that the minimization problem

(1.14) Inf F(v+z)
zeZ
has always a solution since Z (as well as V) is reflexive, and F is weakly

continuous and satisfies (1.8). As a consequence, we have

©(1.15) for each veV, there exists z e Z such that v+z e K.

So, K is obviously not empty.
Suppose now that u is a solution of problem (1.7). We noticed that uce K.
Lemma 1.2 allows us to choose Le 9F(u) n z° ; let us introduce a new minimiza-

‘tion problem
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Inf {G(V)-L(v)}

veV
Since the functional (G-L) is invariant under addition of an element of Z to
the variable v, we may consider this problem as defined on V/Z. The reflexivity
of V yields that of the quotient space V/Z ; the functional (G-L) is convex,
continuous on V/Z and coercive i.e. 1lim (G(;r)—L(\.r)) = +o , Concerning this ‘

last property we have indeed ||v||++oo

o2
G(v) 2 G(0) + Lo(v) +0.”V”V/Z
by application of (1.4) with L€ 3G (0), so that

.
v

[ ] . M 2
G L) 2 6(0) +allvllg,, - I-T llHvily,,
whence the coercivity follows.

The minimization problem

(1.16) Inf (G)-LI))

Tev/z
is of the same classical kind as (1.14). It has a solution W, and this solu-
tion is unique by strict convexity (see Remark 1.1). We now prove that W= u
and Le 3G(u) n 3F(u). ‘

It follows from (1.16) that for any wel we have Le BG(wj. Thanks to
property (1.15) we may suppose we Kn W3 since u is a solution of (1.7), we
have J(u) < J(w). On the other hand, since Le 5F (u) n 3G(w) we get by lemma 1.l
J(w)+o¢||1.1-v:1“3/zg(u) . It turns out that :1=‘:V, and as we saw before this yields
Le 3G(u) ; hence u satisfies (1.5).

Concerning the second part of the theorem, let {un} be a minimizing
sequence for J.on the set K. Such a sequence is bounded in V due to (1.9)-
(1.10). By reflexivity, there is a subsequence {unk} that weakly converges to
some ue V. Let us show that u is a solution of (1.7). First of all, we have
ue K. It is indeed clear from (1.1) and (1.6) that K is weakly closed. More-~
over, it follows at once from (1.1)-(1.2) that J is weakly l.s.c. (lower semi-
continuous) as the sum of two weakly l.s.c. functionals, so that J(u) < lim inf

J(up, ). Since ueK, we get J(u) = Inf J(v) as announced.®
veK
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1.4. Approximation of solutions of problem (1.5).

The method we used to prove theorem 1.l ensures that a solution (ever a
variational solution) of problem (1.5) exists, but it does not enable us to
compute it. We now study an algorithm that makes possible an effective compu-
tation of solutions. It also provides an alternative proof of theorem 1.l as

a by-result.

Iteration scheme.

The starting point is some u; e K ; once u e K,...,une K have been obtained

we get u € K in the following way.

‘Step 1 let Ln be any element of the (non empty convex) set BF(un)r1Z° 3 we

define $%+l€ V/Z as the solution of the minimization problem

Tnf {600 -1, Q0)
UeV/Z

Step 2 : then we take for u

el 2 solution of the minimization problem

Inf F(u).

ueY 4y

Remark 1.4 : In the quadratic case previously described,'un+le V/Z is defined

by a('L(nﬂ,'I/') = Ln('V) for all ¥ e V/Z.

Assumptions (1.1)-(1.4) and (1.8)-(1.10) grant that for any choice of
u € K we can construct a sequence {un} with this algorithm. The arguments are
the same as in the proof of theorem 1.1.

Concerning such a sequence we have the following convergence result

Theorem 1.2 : Assume that hypotheses (1.1)=(1.4) and (1.8)-(1.10) are fulfilled.
Then, every sequence {un} obtained through the above mentioned algorithm is
bounded and has at least one weakly conmvergent subsequence. The 1limit u of any
weakly convergent subsequence {unk} is a solution of problem (1.5). Moreover,
the sequence {hnk} converges strongly to & in V/Z and the corresponding sequence
{Lnk} admits a subsequence that converges strongly in v* to some L € oF (u) n 3G(u).
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Proof : From the first step of the algorithm we infer that Lne 3G(un+]) S0
that L e aF(un)fxaG(un+1). Lemma 1.1 then yields

(1.17) J(un+l)+o(.“u U ”V/Z <J(u ).

It turns out that the sequence {J(un)} decreases. But it is bounded from below
according to (1.9) and therefore converges. Thanks to assumption (1.10) the
boundedness of {J(u )} yields that of {u }. By reflexivity of V, there is a
subsequence {unk} that converges weakly and its limit u belongs to K since K
is weakly closed. In order to show that u is a solution of (1.5), we mainly

use two properties of the sequence {Ln} which are

i) the sequence {Ln} is bounded in V¥,

ii) lim Ln(vn) = 0 for any sequence {vn} weakly converging to O.

Let us draw the conéequences of i)-ii) before proving them. Thanks to i)
we may suppose (modulo extraction of another subsequence) that L“k weakly con—

verges to some Le v*. Since Lnke BG(unkH) n Z)F(unk) we have
(1.18) F(unkw)'z F(up,) + In, (v) for all veV,
(1.19) G(v+unk+1—unk) 2 G(unk+l)+Lnk(v-unk) for all veV.

We want to pass to the limit in (I .18) and (1.19) in order to prove that
Le 9F(u) n 3G(u). From i) and (1.18) we get

F(utv) 2 F(u)+L(v) for all veV

that is to say Le dF(u). .
To deal with (1.19) we use ii) and consider G as a conveX continuous func-
tional on V/Z. Since the sequence {J(un)} converges we infer from (1.17) that

lim || = 0. Thus, in the space V/Z &nk_;lnk"‘l + 0 strongly and

n+1 ”V/Z
llnk+l > u weakly, which yields

(1.20)
lim inf G(Up, +1) 2 G(W).
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It is then clear from (1.19), (1.20) and ii) that
G(v) 2 G(u)+L(v-u)

or else LedG(u). We have shown that Le dF(u)n 3G(u) i.e. u is actually a solu-
tion of problem (1.5).

Proof of i). For each ve V we have
(1.21) |Ln(v) | < max (F (un+v) -F(un) ,F(un-v) -F (un))

so that ”Ln“_ sup (F(u +v)-F(u )). But the sequence {u } is bounded in V,
say by M, and LhD ball {v : ||v||sM+1} is weakly sequentially compact in V.

The image of this ball by F is compact because F is weakly continuous. This

proves i).
Proof of ii). Just take v=v in (1.21) and apply the weak continuity of F.

Let us prove now that unk converges strongly to & in the quotient space
V/Z. We argue by contradiction, and suppose that some subsequence uni( satis—

fies “u—un{JlV/Z >¢>0. Then, according to (1.4) we have

2
G(u+un1'(+1_un"<)ZG(unl'(+l)+Ln."(+l(u_u y) e .

N

Letting n.l'( + +»o and repeating previous arguments we get
2
G(u) 2 G(u)+oe

which contradicts € > 0. The whole sequence {ﬁnk}' therefore converges strongly

to u in the quotient space V/Z.

Finally, the last part of theorem 1.2 follows directly from the property

*
iii) given a reflexive Banach space V, if a sequence {Ln} of V converges

weakly to O and satisfies ii), then {Ln} converges strongly to O.
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Proof of iii) : By the weak sequential compactness of the ball B = {ve V,
||v“< 1}, for each L we get v'esB such thatllL H L (v ). If the sequence
{]IL ||} does not tend to 0, there exist €>0 and a subsequence {n } such that.
HLn l|>€ for all k and {v. } converges weakly to some ve V. Since Lnk conver-

ges weakly to 0 and satisfies ii), it follows from

”Lnk” = Lnk("nk"’)”‘“k“’)

that 1imHLn " = 0 in contradiction with € > 0. We thus have limlan“ =0, ®
k n-r+o

Remark 1.5 : If the space Z is finite dimensional the strong convergence of

{un } in V/Z yields that of {un } in V. In this case, the strong and weak

topologles are indeed equlvalent on Z which admits moreover a topological

complement isomorphic to V/Z (cf. L. SCHWARTZ [16]).

Corollary 1.1 : Assume that hypotheses (1.1)=(1.4) and (1.8)-(1.10) are ful-
filled and that problem (1.5) admits only finitely many solutions. Let {u }
be a sequence obtained with the above mentioned algorithm. The whole sequence

converges weakly to a solution u of problem (1.5) in V, whereas the sequence
{u } converges strongly to u in the quotient space V/Z. Moreover, 1f the space

Z 18 finite dimensional the sequence {u } Ztself converges strongly.

Proof : Let us prove first that the whole sequence {ﬁn} converges ; to do this,
we shall use three properties of this sequence. We know by theorem 1.2 that
cluster values of {un} are solutions of problem (1.5). They form a finite set
by assumption, and the cluster values of {ﬁn} are their projections in V/Z so

that

i)  the sequence {Gn} has only finitely many cluster values.

It also follows easily from theorem 1.2 that

ii) the sequence {ﬁn} forms a relatively compact set in V/Z (strong).
Moreover, it appears in the proof of this theorem that

iii) 1im|lun—un+l“V/Z = 0.

Let us check that properties i)=-iii) yield the strong convergence of {ﬁ }
in V/Z. We denote by %S, j=1,2,...,p the cluster values of {u }. Let N be a
balanced neighbourhood of zero such that, for each J,?xj is the only?(k containe
in 'Z,(j+3N.



_15_

According to iii), for n great enough, say n"n , we have (& +‘-& ) € N. Because
of i) and ii) there is n, such that for nzmn,, un belongs to one of the sets
(uj+N), j=1,...,p. Suppose that for some n2n_,n, we have u € a{] +N). Since
(u +l-ﬁ ) e N, we have un € Cu +2N) but the choice of N y1e1ds CuJ +2N) n
(Wk+N) @ for k # J , so that G 41 also belongs to Cu +N) Thus14 is the
only cluster value of {0 }, and by:compactness it.is” also its. llmlt. Conse—
quently, the cluster values of {un} all belong to the same class modulo Z.

But if z€ Z and if u and u+z are solutions of problem (1.5), for every Ae (0,1)
utAz is also a solution. Problem (1.5) then admits infinitely many solutions
unless z=0. This proves that the sequence {un} has also an only cluster value
which is therefore its limit. Let us now check that u+lz is actually a solu-

tion. Since ze€Z, for Le 9F(u) n3G(u) we have
F(utiz+v) 2 F(u)+L(v),
G(utiz+v) 2 G(u)+L(v).

Since u and (u+z) belong to K (cf. (1.6)), it is clear that F(u) = F(u+z)

= Inf F(u+z'). The convexity of F then yields F(u) = F(u+iz) for Ae (0,1).
z2'el
But we also have G(u+Az) = G(u) for all A so that for Ae (0,1) we obviously

have Le 9F (u+tAz) n dG(u+iz), whence (u+iz) is a solution of (1.5).

Concerning the case when Z is finite dimensional, the argument is the

same as in Remark 1.5.

2. - DISCRETIZATION OF THE ABSTRACT SUBDIFFERENTTAL PROBLEM.

2.1. The discrete problem.

In the same framework as in Sec. 1, our purﬁose is now to give a discre-
tization of problem (1.7) or more generally of problem (1.5). Let us recall
that solutions of (1.7) are said variational solutions of (1.5).

We suppose given an internal convergent approximation of the space V in a
c13351cal manner (cf. P.G. CIARLET [ 7], R. TEMAM [22]) that is to say a family
{Vh}he ( ) of f1n1te d1men510na1 subspaces of V satisfying the convergence

condition

(}) The set Hof indices is a basis of a filter that converges to O.
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2.1) lim { inf Hv—vh”} = 0, for every ve V.

0 Vhevh

We suppose moreover that the space Z (appearing in (1.3)-(1.4)) is contained

in every V;.

We denote by Fh’Gh’Jh the restrictions of the functionals F,G,J to the

space Vh and we call Kh the set
(2.2) K = {vh€ Vh : Fh(vh) < Fh(vh-l-z) _for all zeZ} ,
which is nothing else than Kth.

We associate with problem (1.5) the following family of discrete problems :

for fixed he ¥ , find u € Vh such that

We also associate with problem (1.7) the following problems : for fixed

he ¥, find uy such that

(2.4)h u € Kh and Jh(uh) th(vh) for all vy € Kh.

Since conditions (1.1)-(1.4) and (1.8)-(1.10) are satisfied by F and G,
they are clearly true for their restrictions Fh and G, 3 thus according to
" Theorem 1.1, every solution of Ineq. (2.4)h is also a (variational) solution

of (2.3)h and there is at least one such solution.

Remark 2.1 : In the quadratic case G(v) = 12- a(v,v), the discrete problem (2.3)h

can also be written : find u € Vh such that

(2.3)] ap (u,°) € oF, (u) .

2.2. A convergence result.

Concerning the convergence of a sequence {uh}heu of solutions of (2.4),
we cannot expect a global convergence because of the non-uniqueness of solu-

tions. However, we have
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Theorem 2.1 : Assume that hypotheses (1 1)=-(1.4), (1.8)-(1.10) are satisfied
and that the approximation {Vh}ﬁeu of the space V ig convergent in the sense
of (2.1) ; then, if {“h}heu is a family of variational solutions of (2.3)»
there exists a subsequence {“h‘}h' which converges strongly in V to a varigq-
tional solution of (1.5). Moreover, the limit u of any weakly convergent sub~
sequence of solutions (resp. variational solutions) {“h'}h' of (2.3) i8 a
solution (resp. vartational solution) of (1.3).

Proof of theorem 2.1

i) First step : the variational solutiomns u of (2.3)h are bounded indepen-
dently of h.

The minimization of F on the space Z provides some z ¢ Kn Z. Because of
the inclusion Z¢ Vh’ z, belongs to each K. Any solution u, of (2.4)h then
satisfies J(uh)s J(zo). This estimate and the coercivity assumption (1.10)
yield there exists C>0 independent of h such that||uhn < C for all h.

Given solutions v of (2.4)h for infinitely many values of h, there is

therefore at least one weakly converging subsequence {uh.}.

ii) Second step : the weak limit u of a sequence {uh,} of variational solu-
tions of (2.3)h is a variational solution of (1.5).

At first, we have ue K since K is weakly closed and each U belongs to
K. Now, we prove that J(u) < J(v) for all veV. Given veV, the convergence con—

dition (2.1) allows us to introduce a family {vh}heu of elements of the spaces

Vh such that v, V. Then, by (1.15) we know that there is zy € Z such that
vy, = NN belongs to Kh' And since U satisfies (Z.A)h, we have
(2.5) NG CADR

But we noticed- in Sec. 1.3 that J is weakly l.s.c. on V, whence

J(u) £ 1lim inf J(uh,)s 1im inf J(wh.).
h'->0 h'-+0
To prove that u is a solution of (1.7) as announced, it is now enough to show
(2.6) lim J(wh) = J(v).
h>0

On the one hand, we have G(wh) = G(vh) because of (1.3), and lim G(vh) = G(v).
0
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On the other hand, we have F(wh) sF(vh) because W € Kh’ so that 1ti\m+s16p F(wh)
< F(v). Besides that, since ve K there exists Le 9F (v) nZ° and we have

F (wh) > F(v) +L(vh—v) s

which yields lim inf F(w_ ) > F(v). We finally obtain 1lim F(w,) = F(v) which
h h
h~-+0 0
completes the proof of (2.6).

iii) Third step : the weak limit u of a sequence of solutions {uh.} of (2.3)h
is a solution of (1.5).

Let {Lh.} be a corresponding sequence of continuous linear forms on Vh'
such that Lh' € th' (uh,) n 8Gh(uh,). We introduce below extensions ih' e V' of
the forms L, and prove that they have a cluster value Le 9F(u) n3G(u), which
shows that u is a solution of (1.5).

Using Hahn Banach theorem as in the proof of lemma 1.2, we see that Lh'

can be extended into .th' e V" satisfying

thv € BF(uhv)-

The weakly convergent sequence {uh,} being bounded, the arguments used
to show i) ii) and iii) in the proof of Theorem 1.2 can be repeated to prove
that a subsequence of {Lh'} converges strongly in V¥ to some Le 3F(u).

On the other hand, since ﬁh'lvh, = Lh' € aGh,(uh.) we have

G(vy ) ZG(Uh;)*‘fh,(v ~u) for all v, eV, ,.

Let {vh.} be a sequence converging strongly to v. Since G is weakly l.s.c. on

V, we get at the limit
G(v) 2G(u)+L(v-u) for all veV,
that is to say Le 9G(u). Hence L e 3G(u) n9F(u).
iv) Fourth step : any weakly converging sequence {uy.} of solutions of (2.3)y

converges in fact strongly to its limit u. According to Remark 1.5, we only

need to prove the strong convergence in V/Z. We argue.by contradiction and
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assume that {'uh"} is some subsequence such that H:lh"_a”V/Z >e>0 for all h".
Repeating the arguments of step jii) we may also suppose that corresponding
forms Lh..e BFh..(uh,.) naGh..(uh..) have been extended into T‘h"e V" and that the
sequence {T.h,,} converges strongly to Le 9G(u) n 3F(u) . Let Gh" € Vpu be such
that ﬁh,, > u strongly (such a sequence exists thanks to (2.1)). We then have

G(a-hu) 2 G(uh")+Lh"(ﬁh"-uh")
> (by (1.4))
-4 G(u)"’L(uhn-'u) +th" (ﬁh"-uh") +QH :"":’h"“ ‘2,/2 .

Taking the lim sup of the two members of this inequality we get

0> o lim sup ”ﬁ—ﬁh"”lelz > asz

h'"->0

in contradiction with €> 0. This proves that the convergence of {uh,} to u is

strong and completes the proof of Theorem 2.1. W

2.3. The discrete iteration scheme (for fixed he H).

The starting point 1s some U, e Kh ; once u, € Kh’ ceesy € Kh have been

obtained, we get u ., ¢ K in the following way.

Step | : let L_ belong to the (non—empty convex) set oF (u )nZ° ; we define
___.2.—— n h''n

Kﬂl eV, /z as the solution of the minimization problem

Inf {G_(W-L_(W}.
'L(evh/z h n

Step 2 : We then take for u a solution of the minimization problem

n+l

Inf Fh(u) .

ud(m—l

For fixed he ¥, since ZCVh, conditions (1.1)=(1.4) and (1.8)-(1.10) that are
fulfilled by F and G on the space V, are also satisfied by their restrictions
Fh and Gh on the space Vh. Consequently, as well as in the continuous case, a
sequence {un} can be obtained by this algorithm and its convergence properties

are described by Theorem 1.2 and Corollary 1.1 which are still valid omn Vh'
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3. - A SET-VALUED ELLIPTIC DIFFERENTIAL EQUATION.

3.1. The problem. Equivalence with an abstract subd].fferem:ial problem.

Given a bounded domain QcRN wlth a smooth boundary ', let

N
o= - ] ax (a..(x) )
i,1=1
be a second order uniformly-strongly elliptic d1fferent1a1 operator (with cons-
tant of ellipticity n>0). We suppose that a; ¢ C (§) and that a, ij = a5 Let
3

5 be the outward conormal derivative associated with the operator #

u
a1j (x) cos (\),ei) N,

N
du  _
W §1 h|

1"
where v denotes the unit outward normal to T.

Let ® : QxR -~ R be a function which satisfies

i) for all seR, &(+,s) is Lebesgue-measurable,

ii) for almost all xe Q, d(x,+) is convex,

3.1 iii) &(-,0) e”L((Q) annd for almost all xe Q,®(x,s) =0(x,0) for s<0
®(+,s)
iv) 1im —~—————— = 0 where o is N if N> 2 and some
o+l N-2
s>+ s

number >1 if N< 2.

Remark 3.1 : Assumption ii) yields that for almost all xe  the function ¢(x,*)

is continuous, whence & satisfies the Coratheodory condition.

Let us now define the left and right derivatives of ¥(x,*)

t -+ s-0 t-s t->s+0

p(x,s) = lim 2DR0L) L Fir o) = lim 9 (x,1) =0 (x,5)
-— ’ < b4 t"'s

It is easy to check that the functions ¢ and 5 are nonnegative a.e., nondecreas-

ing with respect to s, and that we have the asymptotic condition

16,9l
(3.2) lim ————— =0 , with o given in (3.1) iv).
S + sc'

Moreover, if u : Q »R is any Lebesgue-measurable function, the functions
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Q(-,u(-)) and 5(-,u(-)) are also Lebesgue-measurable.

We consider the following set*valued equat1on : given some positive cons-

tant I, we look for solutions ue H Q) of

lﬁue[Q(x,u(x)), q_>(x,u(x)):| a.e. in §,

(3.3) u = const. (unknown) a.e. on T,
du
- '—"'do=Io
Jra"-&

The following part of this section studies the equivalence of problem (3.3)

with an abstract subdifferential problem entering the framework of Sec. 1.

Let V and H be the spaces

{ve H](Q) : v = const. a.e. on I},
L2

\')
H

which are Hilbert spaces when equipped respectively with the scalar products

#

(u,v)
(u,v)

J VueVv dx + u(T)v(l),
Q

J uv dx,

Q

where v(T') denotes the constant value of vonT.

We associate with the operator £ the nonnegative symmetric bilinear form

onV

a(u,v) = g J . (%) g; gl dx.
' i, =1 Q

Its kernel Z consists of all the functions that are constant on §.
It is easy to check that conditions i)-ii) of the quadratic case in Sec.l.l
are fulfiiled by V,H,a.

Now, let us study the two convex functionals

Fo(v) = | ¢(x,v(x))dx,
F(v) = Fo%v) - I.v(I).
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+
It follows from (3.1) that for some constant C> 0 we have |®(x s)[ < C+|s|a !

for all s and almost all x. Then, if ve L a ](Q), we have ¢(+,v(*)) € L «).
Moreover, according to a theorem of KRASNOSEL'SKII (Th. I.2.1 of [11])
v + ¢(+,v(+)) maps continuously La+1(Q) into Ll(Q) so that the functional Fo
is continuous on La+1(Q). Sobolev's theorem asserts that the embedding
H‘(Q)c:Lq(Q) is continuous for 1< q< 20, and completely continuous for 1<q<2q,
especially for g=q+1. Hence, the functional Fo is weakly continuous on V, and
so is F. The subdifferential BFO(V) (and consequently 3F(v)) can be determined
thanks to arguments contained in I. EKELAND - R. TEMAM [9]. By definition,
Lu+l/a(Q) = (ﬂu+l(ﬂ))' belongs to BFO(V) if and only if

(3.4) ¥ (WAF (V) = J vV (x) dx,
0 )
Q
where the conjugate function of Fo is given by

FZ(V*) = sup { v dx - Fo(v)}.
ver®*! (9] 2

By Prop. IX 2.1 of [ 9], FZ(V*) can be expressed in the form
F(v") = J ®* (x,v" (%)) dx
o
Q
where Q*(x,s) = sup {st-d(x,t)}.

teR

Equality (3.4) then means
* * *
J [d(x,v(x))+d (x,v (x))-v(x)v (x)] dx = O,
Q
but the bracket being nonnegative, this is also equivalent to
* * * .
(3.5) d(x,v(x))+d (x,v (X)) = v(xX)v (x) a.e. in Q.

By definition of subdifferentials, we see that v*(x) belongs to the subdiffe-
rential of &(x,+) at v(x) for almost all x, i.e. v*(x)e.[Q(x,v(x)),$(x,v(x))]
a.e. Conversely, any mesurable function v* which satisfies this latter relation
belongs to La+]/a(9) because of (3.2) and to aFo(v) because of (3.4)-(3.5).
Then, by Prop. 1.5.7 of [9] the subdifferential 3F(v) of F at veV consists of
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all the linear forms L such that

L(v) = J v*(x)v(x)dx - I.v(T)
Q

where v* ¢ Luﬂ/a(g) satisfies v (%) ¢ [o(x,v(x)), $(x,v(x))] a.e. in Q.
As we check it below, problem (3.3) can be put in the following abstract

subdifferential form : find ue V wuch that a(u,«)e€ oF (u), that is to say

find ue V such that
(3.6) a(u,v) = J p(x)v(x)dx - Iev() for all veV
Q

with ¢(x,u(x)) < p(x) = $(x,u(x)) a.e. in Q.

If ue HZ(Q) satisfies (3.3), then ue¢ LOH1 () and p = Luc Lozﬂ/a

d(x,u(x)) < p(x) < $(x,u(x)) a.e. in Q. If we multiply the equality p =«u by

() since

veV and integrate over Q, we get by Green's formula

a(u,v) = J o(x)v(x)dx + v(T) J 2—3- do ,
Q r VL
so that (3.6) is satisfied since I = -J -g—ti do .
r Ve

Conversely, if ueV satisfies (3.6) we have Zu = p in the sense of dis-
tributions, and u is constant on I'. By Sobolev's embedding Hl Q) CLZQ(Q), we
have ueLZa(Q) so that pe LZ(Q). Then, classical regularity results yield
ue HZ(Q), since the boundary T and the coefficients ai.(x) are smooth enough.
Green's formula is therefore valid and leads to -J U do = I, whence u satis-

oV
fies (3.3). r e

We now conclude this section with an explicit characterization of the set

K, defined as in Sec. 1.1 by
K = {veV : F(v) <F(v+z) for all z€R},

which contains every solution of (3.3).
According to lemma 1.2, ve K if (and only if) 9F(v) nz® ¢ @, that is to
* -
say if I = ]‘Qv (x)dx for some function v* such that ¢ (x,v(x)) <Sv¥(x) S ¢(x,v(x))

a.e. in Q. Considering for example the function 6¢ + (1—6)5 for an appropriate
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Be(0,1) it is easy to see that

(3.7) K={veV: J Q(x,v(x))deIsJQ ¢ (x,v(x))dx} .

Q

3.2, An iteration scheme.

We note that H:)(Q) is a topological complement of Z in V ; it is therefore
isomorphic to V/Z. For this reason the iteration scheme described in Sec. 1.4
becomes : the starting point is some u € K ; once u;,...,u € K have been ob-

tained, we get u ¢ K as follows

n+l

Step 1 : Let pneLz(Q) be defined by

p_(x) = 09(x,u (x)) + (1-8) &(x,u (%)),

with 6 ¢ (0,1) chosen such that J Dn(x)dx = I ; we then determine Enﬂ as the
unique solution in H;(Q) of

-ﬂﬁnﬂ =p a.e. in €,
Step 2 : Ve set U = u-m_] + Z 41 where Z 0 +1 eR is a solution of

Flu ,1*2..) <F(u ,,+z) for all zeR.

Remark 3.2 :
i) wherever Q(x,un(x)) = a(x,un(x)) we have pn(x) = $(x,un(x)).

ii) we could also take for pn any function such that
JQ pn(x)dx = I and gg(x,un(x)) < pn(x) S¢(x,un(x)) a.e. in €.

iii) we can equivalently obtain z by solving

n+l
JQ Q(X,ﬁnﬂ (x)+zn+l)dx <I< JQ Eﬁ(x,ﬁm_1 (x)+zn+])dx.

iv) If V; is some finite dimensional subspace of HL(Q) (for example a finite
element approximation of H:)(Q)) and Vh = {;h®R’ the discrete iteration

scheme of Sec. 2.3 consists in computing DneLz(Q) as above, then Gn+1 eV

in solving
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a(ﬁn+i,%h) = (pn,%h) for all Vhe'Vh,

and finally in setting U s 1 .. +z with z determined as above.

n+l “n+l n+l

3.3. Existence of solutions and convergence of the iteration scheme.

Theorem 3.1 : The domain @ and the operator &£ being those defined in Sec. 3.1,

ve assume that the function & satisfies condition (3.1) and that the constant

I satisfies 0<I<I_ (with I = lim ¢(x,s)dx). Then

Qs>+

i) Eq. (3.3) admits at least one solution ue HZ(Q) H

17) for every u e K , the sequence {u } obtained with the zteration scheme
described in Sec. 3.2 admits a subsequence which converges in u! Q) to a
solution of (3.3), and the limit of any other converging subsequence s
also a solution of (3.3) ;

ii%) furthermore, if the solutions of Eq. (3.3) form a finite set, the whole

sequence {un} converges to one of them.

Proof : We have to check conditions (1.8),(1.9),(1.10) of Sec. 1.1.
i) Verification of (1.8)

Let us recall that in this section, the space Z consists of all real
constants. We study separetely z » +wand z » —-®.
1f z » —», we have ¢ (x,u(x)+z) -~ ®(x,0) a.e. in { so that by Lebésgue's

theorem of dominated convergence

J o(x,u(x)+z)dx ~> J ¢ (x,0)dx
Q Q

whence F(u+z) > +° for z + —x.
By assumption, there is B> 0 such that J lim ¢ (x,s)dx> I+2B, and we
obtain by the theorem of monotonous convergencg that there exists C> 0 such

that
(3.8) J ¢ (x,u(x)+c)dx2 I+8 .
Q
For almost all x, it is easy to see that

o (x,8) 2 (s-so)Q(x,so) for all s,s .
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Then, if we set s = u(x)+z, 8, = u(x)+C and integrate over {I, we get
F(u+z)+(u(l)+z)I> (z-C) JQQ(x,u(x)+C)dx.

According to (3.8) we have for some constant c'
F(utz) 28z + C',

whence F(u+z) » +o for z » +o

ii) Verification of (1.9).

A broad use of techniques contained in the proofs of lemma 1.1 [21] of
R. TEMAM and lemmas 3.2, 3.3 [3] of H. BERESTYCKI - H. BREZIS - in which ¢ (x,*)

is a function of class Cl - leads to

Lemma 3.2 : Under the hypotheses of Th. 3.1, there exists constants n' >0 and
c'> 0 such that

(3.9) 1fa(u,u)-F(u) Zn'IVulzz - C' for all ueKk.
L

Proof : The first step is to see that for every € >0 there are positive cons-

tants Ci e (i=1,3) such that for all veV

- 1
(3.10) 0<¢(x,s) < $(x,s) sCl e + e(s+)a for all s and almost all x( )
20 /2
(3.11) l0Ce,v(N)] ,s{Cy _ +eflv ]y}
L ’ L
1
2 1- —
(3.12) |¢(-.v(o)>|L] < {C3’€+€lv+|L2°‘}.lQ(.’V.(.))|Ll a+ |<1><-,0>|Ll

Relation (3.10) is an easy consequence of (3.'2).

We then set s=v(x) and integrate the square of $(x,v(x)) on { ; in this
way, we get (3.11) since the domain Q is bougded.

It follows from the relation ®(x,s) = J d(x,t)dt + $(x,0) that

[o}

| atx, )< s, 0(x,8) + [8(x,0)]

(1) Hereinafter s, denotes max(s,0) for numbers and functions as well.
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whence by Holder inequality

3. . . < . . . .
(3.13) 0]y = 1vel 2N g +lec0]

where q is the conjugate of 20 (given by 2‘ (‘1 =1). We have 1 <q<2 and

%1-= %4- 1_;6_ with 6 = 'c1>_r. so that by Holder inequality again

(3.14) FORIONII IR ))I"“l¢<-,v< ))l‘ e,

Then, we use (3.11),(3.13) and (3.14) to obtain (3.12).

From now on, we only consider the case ueK. It follows from (3.12) that
1-1/a 2
(3.15) |&Ce,u(N| , =1 {C3’€+e|u+| o) * |2 ,0)] .
L L L
Now, we consider separately the cases u(T) €0 and u(l) >0.

First, we have u ¢ HlO(Q) and Sobolev embedding's theorem yields
(3.16) |8 u(-))| £, _*ejvul’
* ’ = Y4 TV LZ ’

for some constant C, € depending on € > 0.
’

From (3.10) it follows that for some C5 e

H

v (x,8) < Co  + ely+s )Zu for all y> 0.
o€ +
Taking s=u(x) and y = -u(T), we obtain by integration over Q+ = {uz0}
- 1/a : 2
|U(P)|'|¢(’,U('))l 1 SC6,E + elu—u(r)lea .

1/a

The left—hand side member of this inequality is greater than |u(T)|°I since

ue K, and applying again Sobolev's theorem to u-u(T) € H Q) we get
(3.17) lu(m | sc, _ + ¢|vul?, .
* T 77,€ L2

From (3.16),(3.17) and the coercivity of a(+*,*) on Hz(ﬂ), choosing € small
enough, we get (3.9) in the case u(I) <0. '
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We have u—u(F)e‘Hl(Q) and by definition of K

F(u) < F(u~u(l)).

Since ue K. and ¢ est nondecreasing, we have
J ¢ (x,u(x)-u(l))dx < J o (x,u(x))dx< I.
Q Q ,

Then, applying (3.12) to u-u(T) we get
lo (o ,umu() | <Cq  +e|vul’

’ 1= 8, L2

thanks to Sovolev's theorem.

Finally, we have
2
-F(u) 2 -F(u-u(T)) 2 -€|Vu| 2~ “8,e
L b4

whence (3.9) follows.

iii) Verification of (1.10).

We argue by contradiction and assume that a sequence {un} satisfies
1
u_ ek, |ju_||>+° and 5 au ,u )-F(u) <C

for some constant C.

It follows from (3.9) and (3.17) respectively that
|vu | 2sC » -Csu (T)

for another constant C. Hence, the sequence u "ug (') which is bounded in H (D)

admits a converging subsequence in L () and we may even suppose that
un,-un,(F) + w a.e. in Q.

Since on the other hand we must have un(F) -+ 40
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u, >+ a.e. in Q
n
and Fatou's lemma yields

J lim  ¢(x, s)dx‘<11m inf J Q(x,un,(x))dx
9)

g *++o© n' >+ /Q.

in contradiction with the assumption I < I .

This completes the proof of Theorem 3.1.m

4. - APPLICATION I : FREE BOUNDARY EQUILIBRIA FOR AXTALLY SYMMETRIC PLASMAS.

4.1. Stokes-Grad-Shafranov equation :

The last two sections of this paper are devoted to physical applications ;
the main one is the determination of free boundary equilibria for axially symme-
tric plasmas, the formulation of which we briefly recall now. |
We use a cylindrical coordinate system (xl,e,xz) whose axis 0%, coincides
with the center line of the toroid. In the meridional plane (Oxl,Oxz) we denote

by Q (with x, 20 >0 for every (x], 2)e Q) the domain bounded by the shell T,

12

by Qp the plasma, by F the interface plasma—vacuum and by Qv the vacuum.
According to the Magnetohydrodynamlc theory (see G. BATEMAN [1]), the phy-

sical quantities B (magnetlc field) and p (pressure of every axisymmetric equi-

1ibrium can be expressed in terms of the poliodal flux function u(xl,xz) by

- £ (u)
B = X, €9 * X, €g »
p = p(u),

the functions p,f,u being related in the plasma by Stokes-Grad-Shafranov equa-
tion
Ly = xlp'(u) + ;l— f(uwf'(u),
1

where o denotes the operator - -g-— ( - (— L ), whilst in the vacuum

X X Bx 8x2 x1 3x2

p=0, f = const. and the function u satisfies£u = 0.
Following a method of R. TEMAM (ef. [20],[21]), we look for axisymmetric
equilibria by specifying the whole domain §, the functions p = p(u), £ = £(u)
1

and the total current crossing the plasma I = f je dx]dxz( ). When the functions

(1) j =#u is the toroidal component of the plasma.
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p and f are smooth (with p(0) = 0), the unknown poloidal flux has to satisfy

Lu = 0!(*,u(*)) in ,

(4.1) u = const. (unknown) on T,
1 3du
| ¥y =1,
L.. X, v

where we have set for x = (xl’XZ)

X, p(x) + -i-:lt_ fz(s) if s>0,
(4.2) o(x,s) = !

1 2 .
'i';{-l—f (0) if s<0,

and v denotes the unit outward normal to T. The region Qp accupied by the plasxﬁa,

not known beforehand, is given by
Qp = {xe : u(x) >0} .

But in many cases of physical interest, the functions p and f are not regular,

1
so that, in the case where s -+ 0(x,s) is convex( ), it seems natural to consider

the generalized problem

2u € [6(,u(+)),d(+,u(+))] a.e. in @,

(4.3) u = const. (unknown) a.e. on T,
1 du
-] —+-do=1,
JI‘ X, v
where ¢(x,¢) and $(x,~) are the left and right derivatives of ®(x,*).
Moreover, we shall see that the solutions of (4.3) are in some sense solu-
tions of (4.1). More precisely, the convexity of @(x,*) yields that 4); is well
defined on % (R-D) (where D denotes an at most countable set DCR+), and

choosing the following extension for @; on xR

<I>;(x,s) for s¢ D,
(4.4) for all x€Q, ¢(x,s) = {0 for s=0 izf 0eD,
any value( ) for s#0 such that seD,

(}) which is essentially a mathematical assumption.
(?) Let us stress that this value does not depend on X. This ensures that

$(+,u(*)) is measurable for all measurable functions u.
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we shall see that every solution u of (4.3) is also solution of

Ly = ¢(+,u(*)) a.e. in Q,

(4.5) - u = const. (unknown) a.e. on T,
1 du
- =—=%—do =1.
IF X, v

Remark 4.1 : If we look for cylindrical plasma equilibria instead of axisym—
metric equilibria, the magnetic field B and the pressure p can be expressed

in terms of a flux function u(xl,xz) by

=
]

Vu x eq + f(u)e3,

p(u),

o
]

and the problem (4.1) becomes

-Au = ¢'(u) in Q,

(4.6) u = const. (unknown) on T,
ou
-l =—=do =1,
~ JQ Y

where we have set

p(s) + 17 £2(s) if s>0,
(4.7) o) = 3,
7 £7(0) if s<0.

1t is immediate to rewrite the generalized problem (4.3) and the single-valued

problem (4.5) in that case.

4.2. Existence and computation of solutions.
Assume that Q is a bounded dorﬁain Qch, with a smooth boundary I', such
that
0<0L5xl <B< +o for all (xl,xz) e,

and that p : R_>R_, f : R, >R are two functions satisfying
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i) p + ‘Lf f2 and p + - f2 are convex functions,

(4.8) i1) p©) = 0 and 20%p(s)+£2(s) > £2(0) for all s>0,
p(s) + == £2(s)
iii) lim 20 = 0 for some Y > 2.
g > +0 SY

Corollary 4.1 : Under these hypotheses, and the assumption that the constant 1

1
satisfies 0<I<I_ (with I = lim (xlp'(s) + ;}-f(s)f'(s)) dx( )), then
Qg >+ 1

i) Eq. (4.5), with ¢ defined by (4.4), admits at least one solution uest(Q);,

i1) for every u_ eK (defined by (3.7)), the sequence {un} obtained with the
iteration scheme described in Sec. 3.2 admits a subsequence which conver—
ges in HI(Q) to a solution of (4.5), and the limit of any other conver-
ging subsequence is also a solution of (4.5) ;

ii1) furthermore, if the solutions of Eq. (4.5) form a finite set, the whole

sequence {un} convergeg to one of them.

Proof : This result is due to theorem 3.1 and the equivalence between the set-~
valued equation (4.3) and the single-valued equation (4.5). In order to apply
theorem 3.1 we only need to check condition (3.1) ii), since the others are

obviously satisfied.

i) Verification of assumption (3.1) ii). Given x¢{, there is 6el0,1] such

that —%-= j%-+ l%;-, whence by (4.8)1)
X o B
1 2. 1 2
(4.9) ® (x,8) = x,[8(p(s) + —5 £(s) ) + (1-0) (p(s)+ —;—2- f£(s)M)]
20. 2

is convex with respect to s.

ii) Equivalence between Eq. (4.3) and Eq. (4.5). The two convex functions

p+ 2—;7 fz and p+ ;? f2 are continuous on R+ and differentiable except perhaps
on an atmost countable set DcR_.

Then it follows from (4.9) that & (x,*) is also differentiable onJR+-D for
all xe Q so that we may introduce the function ¢ by (4.4).

(!) As we shall see in Remark 4.2, p and f are differentiable on R, -D.
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Now, let ue HZ(Q) be a solution of Eq. (4.3). We associate with u a parti-

tion of § in measurable sets

Q = {xeQ : u(x) é D},

[
[]

9 {xeQ : u(x) = 0} when OeD and ¢ otherwise,

o]
"

{xef : u(x) # 0 and u(x) e_D.}.

If xe¢ Ql, d(x,+) is differentiable at s = u(x), whence ¢(x,u(x)) = $(x,u(x))

= @;(x,u(x)) and it turns out that
ZLu(x) = ¢(x,u(x)) a.e. in Q.

Now, given some s €eR we introduce the measurable set ES = {xeQ : u(x) = sl.
Since uce¢ HZ(Q), a well-known result of G. STAMPACCHIA [ 19] shows that £y =0
a.e. in E_. We have therefore ¢(x,s) <0 a.e. in E_. But, for s>0, it follows
from (4.8) ii) that Q(x,s) »0 a.e. in Q, whence ES is a set of measure 0, and
so is 5. On Q, = E_ we have £u = 0 = ¢(+,0) a.e. . This shows that u is a so-
lution of (4.5). Conversely, if ueHZ(Q) is a solution of (4.5), we introduce
the same partition of Q as above and observe again that Q3 is a set of measure

0. Thus, u satisfies (4.3). o

Remark 4.2 : Under the assumption (4.8)1), it can be shown that the functions
p and f are continuous on R and differentiable except perhaps on an atmost
countable set D' which contains D. Hence, if we substitute D' to D in (4.4),
we may differentiate &(x,°) term by term.

Remark 4.3 : In the cylindrical case, assumptions (4.8)i)-iii) become -

i) pt L f2 is a convex function, ii) p=0 and p(s)+ -12— fz(s) >']é' f2(0) for s>0,

2
1 .2
p(s)+ 5 £ (s)
iii) lim = 0 for some Y>2,
gr+oo S’Y
whereas I is now given by I = IQ o lim (p'(s)+f(s)f'(s)), with lQI denoting

. 8 > oo
the measure of the domain Q.
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4.3. Numerical results.

The example studied numerically corresponds to the following problem

(cylindrical case)

~Au = AH(u) a.e. in Q,

(4.10) u = const. (unknown) on T,
Ju
- e do ,
JI‘ oV

where H denotes the Heaviside function (H(z) = 0 for z<0, H(z) 1 for 2> 0),

and A,I are two prescribed constants such that 0< I<ZA|Q|( ). This problem is

discretized by piecewise linear finite elements.

Fig. | shows the domain © and the triangulation used for the computations,
and Fig. 2 shows the computed interface vacuum-plasma and flux-surfaces for a

prescribed value of A.

Remark 4.4 : The domain § is symmetrical with respect to the line Xy = 0 but
the solution is asymmetrical. As mentioned in [18] it is possible to obtain a
symmetrical equilibrium by solving (with the same iteration scheme) problem

(4.10) on the half domain with a Neumann condition on the boundary X, = 0.

5. — APPLICATION II : SHAPE OF A HEAVY ROTATING STRING.

An inelastic string of uniform cross—section, suspended with one end—poiﬁt
fixed, lies in a vertical plane rotating with angular velocity w. The only forces
are gravity forces and tension. Without loss of generality, we may suppose the
length of the string to be 1. I.I. KOLODNER [10] showed that the horizontal dis-
placement as a function of the arclength( ) is given by A lu (s) where A is the
constant wzg l'(g denotes the acceleration of gravity) and ue H (0,1) is a solu-

tion of

_un(s) = A ____Egﬁ)_____ s, SE (0,]),
(5.1) qs2+u2(s)

u(0) = 0, u'(1)=0.

(}) In (4.10) -Au = AH(u) a.e. is equivalent to -Aue AB(u) where B is the set-—
valued mapping B(s) = {0} for s<0, B(0) = [0,1] and B(s) = {1} for s>0.

(?) The fixed end-point of the string corresponds to s=I.
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We observe that u=0 is always a.solution (vertical string)and that if u
is a solution, so is —-u. I.I. KOLODNER gives the exact number of non-trivial

solutions. If u <A< 4> where {pn} denotes the sequence of eigenvalues of

sy = u 2L,
(5.2)

¢(0) = 0, ¢'(l) o,

then Eq. (5.1) has exactly n couples (u,-u) of non-triviel solutions.

This problem was one of the motivations of the already quoted paper [ 24]

by J.F. TOLAND. It we set, following J.F. TOLAND,

1
J u'(s)2 ds,

G(u) =
0
1

F(u) = J dsz+u(s)2ds 3
0

the solutions of (5.1) are the critical points of J = G-F on the space
= {veH (0,1), v(0) = 0}.
One checks immediately that conditions (1.1)-(1.4) and (1.8)-(1.10) of
Sec. | are satisfied, with z = {0}.

Iteration scheme.

The starting point is some u_eV ; once U;,...,U have been obtained, we
o 1 n ’

set un+l<zV as the unique solution of
u (s)
n+l(s) > > y SE€ (O’I)’
(5.3) s +un(s)

- ' -
un+1(0) 0, un+l(1) 0.
Since the set of solutions of (5.1) is finite, we may apply Corollary 1.l

and we obtain

Theorem 5 .1 : For every fized \ >0, for every u eV, the sequence {u } obtained
through the iteration scheme (5. 3) converges strongly in H (0,1) to some solu-—
tion u of (5.1).
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Numerical results.

The problem is discretized by piecewise linear finite elements (40 elements)

Fig. 3 shows the shape of the string for various values of A,

Remark 5.1 :

i) For 0<)\.<.Ll.l (1.11 = 1,446), u = 0 is the only solution of (5.1). For A >Ll],
we obtain a nmon-trivial solution using a non-trivial initialization.

ii) For any fixed )\>111 , iteration scheme (5.3) provides very rapidly a solu-
tion of Eq. (5.3) which has the expected shape of a stable equilibrium
(i.e. the string does not meet a second time the vertical axis of origin

the fixed end-point). Other solutions (crossing the vertical axis) could

be obtained by a continuation method.
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Fig. | - Triangulation : 640 triangles and 369 vertices.
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Fig. 2 - One of the solutions for A = I = 1 (|Q] = 2.666)
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Fig. 3 - Shape of the string for

various values of A
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