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A TWO-STAGE FEASIBLE DIRECTION ALGORITHM FOR NONLINEARLY
CONSTRAINED OPTIMIZATION

Abstract :

We présent a feasible direction algorithm, based on lagrangian
concepts, for the solution of the nonlinear programming problem with equality
and inequality constraints. At each iteration a descent direction is defined ,
by modifying it, a feasible and descent direction is obtained. The linear
search procedure assures the global convergence of the method, and the feasi-

bility of all the iterates.

We prove the global convergence of the algorithm, and show the re-
sults obtained in the resolution of some test problems. Although the present
version of the algorithm does not include any second order approximation, like
quasi-Newton methods, these numerical results exhibit a behaviour comparable

of that of the best methods known at present for nonlinear programming.

Résumé :

On présente un algorithme de directions réalisables utilisant le
lagrangien, pour résoudre les problémes de programmation non lin&aires avec
contraintes d'égalité et d'inégalité. A chaque itération, une direction de
descente est d'abord calculée ; elle est ensuite modifiée pour obtenir une direc-
tion de descente réalisable ; enfin une recherche linéaire est effectuée pour

assurer la réalisabilité de 1'itéré suivant, et la convergence du processus.

On démontre la convergence globale de la méthode, et on présente les

résultats numériques obtenus sur quelques problémes de la littérature.

Bien que la présente méthode ne contienne aucune approximation du se-
cond ordre -comme dans les méthodes de quasi-Newton- ces résultats exhibent un
comportement analogue & celui des meilleures méthodes actuellement connues en

programmation non linéaire.
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1. INTRODUCTION AND PRELIMINARIES

The general non linear constrained optimization problem can be defined as

follows :

min f(x) (1.1)
x

A

subject to gi(x) 3 i=1,...,m

m+l,...,m+p

]
we
[ add

"

and gi(x)

where f(x) and gi(x) denote real valued functions of a vector x in the

. . . n
n—-dimensional Euclidian space R.

A considerable research effort has been done to obtain efficient and
reliable methods for the solution of this problem. Without trying to make a
survey of this area, we can mention different approaches concerning each of
the components of the problem. That is, minimizing the function, "solving"
the equality constraints and verifying the inequalities. A very interesting
survey in this sense, has been done by Fletcher [9]. The best known methods
of unconstrained optimization are concerned with the minimization of the
function. We shall mention steepest-descent, quasi-Newton, and conjugate

gradient methods, when only first derivative information is considered.

Equality constraints may be eliminated, linearized, or penalized.
Methods using simple penalty functions are robust, but when a good precision

is required they may give ill-conditioning.

Augmented Lagrangians [3,21] avoid in general the ill-conditioning, but they

are less robust and their precision is not very good.

When the constraints are linearized, the first idea is to project the
steepest descent of the quasi-Newton direction on the tangent subspace. In that
case we have the projected gradient method, or the reduced gradient ome [22,1,2].
When the constraints are not linear, they need some feasibility restoring scheme.
It is also possible to combine the projected gradient direction with a feasibility

improvement step [10].



The combination of a linear approximation of the constraints with a
quadratic approximation of the objective function, is the basis of a family of
methods which solve a quadratic programming subproblem in each iteration. They
give a direction tangent to the active equality constraints and improve

feasibility automatically.

It can be proved that if all the constraints are active, directions given
by projected gradient, augmented Lagrangian and quadratic programming subproblem

methods, are similar.

Inequality constraints may be treated as equalities, if the set of active
constraints at the optimum is known. In practice, it is very difficult to make
a good prediction of the active set and the methods that use this approach

are subject to the so-called "jamming'" problem.

Barrier and simple penalty methods search automatically the active inequality
constraints but they may give ill-conditioning, and inexact penalty functions

produce no feasible points.

The quadratic programming subproblem methods are naturally extended to
inequality constraints. They identify very efficiently the active set [21,11,24],

but the feasible region of the subproblem may be empty or unbounded.

Duality is at the origin of a family of approaches in the treatment of
equality and inequality constraints. Minimax and augmented Lagrangian methods

are natural applications of this theory.

If some proper update rule for the Lagrange multipliers is stated, the
exact minimization of the intermédiate unconstrained problem can be replaced by
a single minimization step. This idea is the starting-point of Tapia's diagonalized
multipliers methods [24] and Biggs' recursive quadratic programming [4,5,6].
These methods need less calculations than quadratic programming subproblem

approaches, but some active set strategy must be adopted.

We shall remark that, in general, the final convergence qualities of a



constrained optimization method cannot be better than those of the unconstrained

minimization technique included in it.

In this work, we present a strong and efficient method for the solution

of problem 1.1, with good local and global convergence qualities.

This is obtained by establishing an’ update rule for the Lagrange multipliers,
without employing active set strategies. Inequality constrained subproblems
and ill-conditioning given by penalty functions are also avoided. The method
gives a feasible direction for the inequality constraints and, in consequence,
feasible intermediate points. A superlinear local convergence may be obtained by

including an approximation of the Hessian of the Lagrangian,

An algorithm for inequality constrained problems is given in Section 2, and
its global convergence is proved in Section 3. The equality comstraints are

introduced in Section 4, and some numerical examples are considered in Section 5.
NOTATIONS

All vector spaces are finite dimensional, the space of all n X m matrices

is denoted by Rnxm and the transpose of M by MT. If ¢ 1is a real valued

. . n
function in R, then

7 (x) = (iﬁéx> : iﬁéf) ;... SUN,T
n

We call  the feasible region for the inequality constraints, that is

Q=1{xe Rn;gi <0 , i=1l,...,m},

and denote by

g() = [g (0,8, (), 00 nngy, (01

and A() = [V 8(x), Vgy(x),. ., Vg ()] .



DEFINITIONS
Consider the following definitions :

Definition 1.1 : A point X is a "stationary point" of problem (1.1) if there

exists a vector A in R° such that the following requirements are

simultaneously satisfied :

gi(i) <0 i=1l,...,m
gi(i) =0 ;3 1i=ml,...,m+p
Aigi(i) =0 ;3 i=1l,...,m
and
VE (x) + T A Vg.(X) =0 .
. i '°i
i=l,m+p

Definition 1.2 : A "Kuhn-Tucker point" of the problem (l.1) is a stationary point

associated to a vector A verifying

> |
v
o
-

i=1,...,m

Defintion 1.3 : d € R® is a "descent direction" of a real continuously differen-

tiable function ¢(x) in Rn, if
al vo(x) <0 .

Definition 1.4': d € R® is a "feasible direction" [14] of problem (1.1) at

X € § if for some T > 0 we have

x+td e § for all t ¢ [0,T].

Defintion 1.5 : A point x 1is a "regular point" of the problem (l.l) if the

elements of the set of vectors composed by all



Vgi(i) ; 1i=1,...,m so that gi(i) =0

and all

Vgi(i) 3 i=m+l,...,m+p

are linearly independent.



2. STATEMENT OF THE ALGORITHM

In this section, we shall consider the inequality constrained problem

min f(x) (2.1)
X

subject to gi(x) <0 ; i=1l,...,m .

The equality constraints will be introduced later.

We suppose that there exists a real number a so that the region

Qa ={xe; fx) <a}

. . . . . 1 2
is a compact with nonempty interior. We suppose also that f is € and g; are c

in Qa, and that all x ¢ Qa are regular points of the problem.

We shall define a feasible direction algorithm based on Lagrangian concepts,
for the solution of problem (2.1). The method constructs a sequence {xk}, starting
from an initial strictly feasible point, verifying

k .
gi(x ) <0 ; i=1,...,m and k = 0,1,2,...,

and converging to a Kuhn-Tucker point of the problem.

A direction d e R" is computed in two stages., First a descent direction

do(xk) is defined; by modifying it, the feasible direction d(xk) is obtained



without loosing the descent quality of do(xk).

A linear search is stated, in order to guarantee the global convergence

of the method and the strict feasibility of all the iterates.

In the definition of the first step direction do(xk), we shall apply a
scheme previously given by . .Zouain and the author in a non-linear programming
method for structural optimization problems [13]. An important feature, is that
all the constraints are considered in each iteration, and it is not necessary

to perform any active set strategy.
The algorithm for the solution of problem (2.1) is stated as follows :

Let >0, ae (0,1), Yo € (0,1) and ri(x) >0 3

Po

i=1,...,m continuous in Qa.

Step 0 : Select a strictly feasible initial point xo € @, , and the values of a,

Yor and Po* Set p = Po-

Step 1 : Compute AO ¢ R® and d0 e R" by solving the linear system of
equations
m
d0 = [ Vf(x) + 151 AOi Vgi(x)] (2.2)
T - . s o
d0 Vgi(x) = ri(x)koigi(x) 3 i l,...,m (2.3)
If do =0 , stop.
1-
Step 2 : Compute p, = = (2.4)
L Ao

If 0 < Py <p , set



Compute A € R®" and d ¢ R" by solving the linear system of equationms

m
d=-[VE(x) + I AV8;(x)] (2.5)
i=1
dT Vg. (x) = = [r.(x) A, g.(x) + p |d |2] : i=1 m
& i i 8 0 ;
(2.6)
Step 3 : For each constraint, set Y; = Yo if ki >0, Y = 1 if Ai < 0.

Call T the smallest T such that
g; (x+td) < v, 85 (%)
for t ¢ (O’Ti] and 1= 1,...,m.

Find t so that
f(x + td) = min f(x+td)

over t e [0,T]

Step 4 : Set the new iterate

X =x + td (2.9)

Step 5 : Go to step 1.

Denoting by R and G the m x m diagonal matrices with Rii(x) = ri(x)

and Gii(x) = gi(x) , then (2.2) and (2.3) are equivalent to
d0 =~ (VE + A AO) (2.10)

and

(2.11)



where V£,G and A are computed at X.

Substituting dO in (2.10) into (2.11) we get an expression for XO

Ao = —(ATA - re) ™! AT vg (2.12)
and consequently

dg = -1 - ATA - re)™ ATque (2.13)
In a similar way, we get

x = aTa - re) "D (-aT vE + 0 |d0|2 e) (2.14)
and

d=dy-p lag)? 88" - r0) 7! e (2.15)
where

ez (I,1,...,DT .

m

In consequence, A and d are given explicitely by (2.14) and (2.15).

Before carrying out the mathematical development leading to the proof of
global convergence, we shall make some remarks explaining the behaviour of the

algorithm and the ideas behind its construction.

- At the stationary points of problem (1.2),X and AO are equal to the
Lagrange multipliers, according to definition 1.1. At these points, d and
do are zero.

- d0 is the steepest descent direction for the function

L{x) = f(x) + ) z AOi gi(x)

i=1,m
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Equalities (2.3) can be considered as an updating rule for AO. They force
d0 to point to the constraints associated to a positive AOi—parameter.
This fact, which performs an automatic selection of the active set of

constraints, is confirmed in the statement of the linear search scheme.

A condition equivalent to (2.3), is verified in an algorithm for structural

optimization problems developped by Segenreich, Zouain and the author [23] .

If the minimum of problem (2.1) is an interior point, d0 approaches the

steepest descent direction.

d0 is contained in the subspace tangent to the active constraints. Then,
when there are active constraints, d0 may point towards the exterior of the

feasible region.

Comparing (2.13) with expression (11.25) in ref. [16], we can see that d0

becomes the projected gradient method when all the constraints are active.

In order to get a feasible direction when there are active constraints, the
tangent direction dO is modified to obtain a secant direction d. This
is done by adding a positive element in the right hand side of (2.3),
getting (2.6).

Strict feasibility condition is needed to avoid stationary which are not

Kuhn-Tucker points.

The stepsize procedure maintains a monotone decrease of the function and acts
as a barrier, in order to escape from the constraints with negative A. It

also guarantees strict feasibility at each iteration.
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3. GLOBAL CONVERGENCE

We must show that the algorithm given in section 2 is correctly stated, in

other words, that it is possible to execute all the steps defined above.

i)

ii)

iii)

iv)

The global convergence will be proved by showing successively that :

d0 is a descent direction of f .

d is a descent direction of f , and also a feasible direction of the
problem (2.1).

The algorithm produces a sequence of points converging to a stationary point
of the problem.

If a stationary point is a point of convergence of the algorithm, it must

verify Kuhn-Tucker conditions.

Lemma 3.1. The matrix W = (ATA - RG) , computed at X € ﬁ%, is positive definite.

. m .
Proof. Consider a vector y ¢ R ; since T, g. <0 , we deduce

i®°i
v (aTA - RG)Y 2 O .
T, 6 T
Suppose now y (A'A - RG)y = 0,
m - l"/'
then I r, g. y2 = yTAlAy
. i°i
i=1
We deduce y; = 0
for those i such 8 <0 >
and also Ay = 0
m
or .Z Y Vg, = 0.
i=1
Then, by the regularity conditions
y=20
and W is positive definite. O

Lemma 3.2. Consider the n X n matrix

7z = aaTa - re)~! AT
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computed at X € Qa , and let u, be an eigenvalue of Z. Then ,

Proof. If x is the eigenvector corresponding to Uy, we can write

Zx = uzx

or A(ATA - RG)_lATx = u,x

When ATx =0, u, is also zero and the lemma is true. If ATx # 0, call

Z
y = ATx .
Then ATA(ATA - RG)_ly = u,y
T -1
or {I + RG(A"A - RG) Jy = u,y

Premultiplying both sides by yT(ATA - RG)-I, we have

1

1 T T -
y = (uzi-l)y (A"A - RG) 'y,

RG (ATA - R(;)'l

yL(ATA - RG)™
whose left side is negative or zero. Considering lemma (3.1) we deduce
u, - 1 <0,

and as Z is positive semidefinite, the lemma is proved. 0

Lemma 3.3. The vector do, defined in step 1 of the algorithm, is a descent

direction of f£.
Proof. Premultiplying both sides of (2.13) by Vf', we get

VdeO = - VEL[I-ZIVE , (3.1)
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and it follows that

Vdeo <0.

Let us consider the case
T -
vE do =0 .
Then, (3.1) is equivalent to

VELVE = VEL Z VE ,

and, considering lemma 3.2, we deduce that vf 1is an eigenvector of
u, = 1 the corresponding eigenvalue. That is
2v f=vE,

and substituting in (2.13), we get

In consequence, d0 verifies definition 1.3.

Lemma 3.4. The direction d(xk), defined in Step 2 of the algorithm,

descent direction of f.
Proof. In consequence of expression (2.15) for d, we have
veld = velay - o |dg|” veT AGaTA - RG) e .

It follows from (2.12) that

T T 2 T
vitd = vEidy + p [dy|” g e
If Ag e< 0,
we get vEld < vET d -

is

Z and

(3.2)
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Then, d 1is a descent direction of f£.
Suppose now that
Ag e >0
considering condition (2.4) for p and (3.2), we obtain

T

vil d < vE 4+ (1-) |4 |° . (3.3)

0
From expression (2.13) for do, we have

T

vE-d, =-vE [I-2]Vf

and af a = vel [I - 2I(I - 2] VE .

It follows from Lemma 3.2, that [I - Z] is semi-positive definite and the

eigenvalues are less or equal than one, then

2 T
|dgl® < - vE" 4, . (3.4)

Substituting in (3.3), we get

vl d <oV £l d (3.5)

0 b4
which implies that d is a descent direction of f. O

Note that (3.5) is also valid when Ag e < 0. This inequality is important
because it gives an upperbound on the directional derivative of f in the directic

d as a function of the derivative in the direction dO'

The linear search procedure, stated in Step 3 of the algorithm, guarantees
that

"
]

1,2,...

X € f% H
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if Xo €. Since Qa is compact and f, g; are continuously differentiable,
|vf| and IVgi] are bounded in Qa. We can deduce, as a consequence of
lemma 3.1, that WmI is also bounded in Qa. Then, it follows from (2.12)
that kg e has a positive bound M, and we can write
NlesM ;3 k=0,1,2,... .
In consequence,p has a positive lower bound :

p 2 min{po, (1-a) /2 .M}

In order to guarantee the usefulness of d as descent direction, we

need the following corollary of lemma 3.4.

Corollary 3.1. There exists a positive constant f such that the condition

ldg|% = 8 a]? (3.6)
is verified for all x € Qa.

Proof. If we call

2, T -1
d_=-p ld | A(a"A-RG) " e
we have d = d0 +d_,
n
then ld| < |d0| +]d_|. 3.7

It follows from inequality (3.4) that

2
|d0| < |vi| Idol 3

in consequence

la_| < p |ve| |aTare)™ | |4, |.
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Then, from compacity of Qa, there is a positive constant Bl such that
ld | s p 8 |45l
is verified in © . It follows from (3.7) that
a
Idl <s(1+p Bl) |dol ’

and

1

8=l+of3l

verifies the requirements of the corollary. O

Note that (3.6) implies in particular that if d0 is zero, d 1s zero

also. The contrary is also true; if

it follows from lemma 3.4 that

T

dg

vi 20,
and in consequence of lemma 3.3, it is

=0.

We are now in a position to show that d 1is a feasible direction of the

problem.

Lemma 3.5. There is a real positive number 778%  guch that d is a feasible
direction of the problem (2.1), according to definition 1.4, for all

T € (O,Tmax] for all x ¢ Qa.

Proof. For each 1i, let u, < be an upperbound of the eigenvalues of V2gi

in Qa. Using a second order Taylor's development, we get
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2 .2
la]” .

' T 1
gi(x+td) < gi(x) +td Vgi(x) + 7Yt
Therefore,. if the inequality
T 1 2 2
gi(x) +td Vgi(x) + 7Yy t |d| <Yy gi(x)
is satisfied, condition (2.7) is satisfied as well.

By (2.6), this is equivalent to

2 1 2
g; (x) [(1-y;) =T A;t] - pt ldgl® + 3 u; t |d

It follows from (3.6) that, if

2 o8¢t ld2<0, (3.8

gi(x) [(I—Yi) - ri)\it] + (% ui. t
then (2.7) is true.

In order to have an interesting geometric interpretation, we shall

guarantee (3.8) by imposing

u, t2 -pBt=sO (3.9)

N =

and
- -r
(=y;) =T\t 20, (3.10)
where (3.9) gives a condition on t due to the curvature of the constraints.
If us <0, (3.9) is satisfied for all positive t, even when p = 0.

Inequation (3.10) is verified for all positive t, when A < 0, even if

Y; = 1. If X > 0 , which implies Y; < 1 , it must be

1 - v.
t < .

..
i1
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Considering all the constraints, in any x € Qa, we deduce that all
max .
T € (O’T ]’ WIth

- ¥,
™% = min. of positive(?'{lgé ’ ————‘l)

verifies (2.7). It follows that d 1is a feasible direction of the problem

(2.1). _ 0
Note that, if X, <0 ; i=1,...,m

and u

A

(=

=
I

= ly,00.,m

ax >0 is useful.

m
any value of T
In particular, if all the constraints are linear, it is possible to take

p = 0, which avoids Step 2 of the algorithm.

An important consequence of the last lemma is that d does not lead to
zig-zags.

It follows from lemma 3.1 that, for a given x ¢ Qa, Ao,do,k and d
are uniquely determined by expressions (2.12) to (2.15). Because f and 8;

are continuously differentiable in Q,, we can deduce that A do, A and d

0,
are continuous functions of x, in § .
a

Then, the map

D(x5) = d¥

which selects a direction dk in each point xk is closed. The map

. . PP . . . . k .
corresponding to the constrained minimization in the direction d, stated in

Step 3 of the algorithm, is also closed in consequence of lemma 3.5. Zigzagging,
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sometimes present in feasible direction methods, can be explained by not closed

algorithmic maps. See Luemberger [16], chapter 11.
The proof of the global convergence of the method will be done in two
parts. First, we show the convergence to a stationary point of the problem, and

then, that the point of convergence satisfies Kuhn-Tucker conditions.

In the proof of the next lemma, we shall apply a technique similar to that

developed by Han in a global convergence theorem in ref. [12].

Lemma 3.6. Any accumulation point x of the sequence {x"} _generated by the

algorithm is a stationary point of the problem.

Proof. If the sequence terminates, do =0 and (2.2) and (2.3) give the result

of the lemma.
Suppose that the sequence
(x5 > % ; ke K

Since d 1is a continuous function of x,

dk-+ 5
where d = d(x).
If d#0,

we can take t so that
f(x + td) = min (x + td) ,
0<t<sT
with T defined in Step 3 of the algorithm.

By lemma 3.5,

T>0,
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and as d 1is a descent direction of f(x), we have

f(x + td) < £(x) .

call

B = £(x) - £(x + £d),
then B>0.
Since ’ L rEdax+E,

there exists K such that

£ + Td¥) + -% < £(X) (3.11)

for all k >K , k K.

However, by

f(xk+l) = min f(xk + tdk) < f(xk + Edk) .

0<tsT
and
£®) < £
for all k, we get

£R) < £(x5 + ©dk

)
which contradicts (3.11).

In consequence

Considering (2.2) and (2.3), we deduce that X satisfies definition 1.1, and
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it is a stationary point of problem 2.1. 0

Theorem 3.1. Any accumulation point X of any sequence generated by the algorithm

is a Kuhn-Tucker point of problem 2.1.
Proof. As X 1is a stationary point of the problem, it is only necessary to
prove that the Lagrange multipliers at X are positive. Note that they

coincide with A.. and A. when d, = O.
01 i 0

Consider a sequence {xk} , k e K , converging to X, and a constraint

gh(x) so that
gh(i) =0,

As the method is strictly feasible
gh(xk) < 0 for all k.

In consequence, we can define a sequence

K' < K
so that g () > g () (3.12)
where ke K'.

k
Ah

v
o
-
=
m
x

Then {A:} s k e K' , will have an accumulation point Xh verifying

X
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and, as Ah is a continuous function of x and Qa is compact,
Ah(x) = Xh 20 .

In consequence, X is a Kuhn-Tucker point of the problem.
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4. EQUALITY CONSTRAINTS

In this section we consider the general non linear programming problem 1.1.
A theory will be given in order to extend the domain of application of the

algorithm stated in section 2 to problems with equality constraints.

This could be done in different ways. The simplest idea is to define a
suitable penalty function of the equalities, and to minimize that function
submitted only on the inequality constraints. Unfortunately, this approach

brings up the numerical problems given by penalty functions.

Our approach consists in the establishment of an auxiliary optimization
problem with inequality constraints, whose solution by means of the algorithm

previously stated, gives the Kuhn-Tucker points of the original problem.

Mayne and Polack, in ref. [17], developed . a similar idea. Our proposition
is more restricted, because we state an auxiliary problem intended only for
be solved by means of the method given before. We shall also consider the
behaviour of the iterative process; a monotonous approximation to the equality

constraints will be imposed.

Let us consider problem 1.1, and define the function

m+p
0 (x) = f(x) - z c.g.(x) 4.1)
¢ i=m+1 171

) 1is constant.

where ¢ = (c esesC
( m+l’" " Tmtp

The auxiliary problem is stated as

min 6 (x) O (4.2)
subject to gi(x) <0 ] i=1,...,m+p. (4.3)
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Notice that even if 8, is not continue, the sequence {xk} given by
the application of the algorithm to this problem, does not traverse the

discontinuity of ec.

Problem (4.2) must verify the same hypothesis that problem 2.1, for a

given c¢. Then, we assume that exists a real number a, so that the region
Qa = {x e R" 3 gi(x) <0 , i=1,...,m+p, Bc(x) < a}

is compact with non empty interior. In order to guarantee the existence of

solutions of problem 1.1, it is necessary to add the following hypothesis :

Let O ={xeR' ;g x)=0 , 1i= m+l,...,m+p} ,

then Qa n % is not empty.

We suppose also that f is c1 and g; are c2 in Qa, and that all

X € Qa are regular points of the problem I.1.

In consequence, 6 is c1 and all x € Qa are regular points of probler

c
(4.2).

We denote by

rlk = k rk T rek = k k T
= 1700 m) , = ( ol m+p) s
and by Gl, Ge; le, Rek the associated diagonal matrices.

Theorem 4.1. For any initial point x0 verifying (4.3), there exists

cy <o 3 1i=mtl,...,m+p ,
such that any convergent sequence given by the algorithm stated in section 2
applied to the resolution of problem 4.2, converges to a Kuhn-Tucker point of

problem 1.1.
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Proof. Let us perform the Step | of the algorithm, applied to problem 4.2, in

a point xk. We obtain the linear system

dy = -[VE + Alxo + Ae(uo—c)] (4.4)

AT ¢ = Rich (4.5)
0 0 '

AeT d. = _ReGe (4.6)
0 o > :

where Yo = (u is the vector of Lagrange multipliers corresponding

w12 M) _ Lagrang
to the equality constraints, Al = Vgl , and A~ = Vg .

We want to find ¢ such that

ugi >0>0 3 1i=mtl,...,m+p ‘ (4.7)

in all the points given by the algorithm. If {xk} - x*, x* is a Kuhn-Tucker
point of 4.2, and if (4.7) is verified, then

uOi(x*) >0 s i=mtl,...,m+p ,
and gi(x*) =0 3 i =m+l,...,m+p.
In consequence, x* will be a Kuhn-Tucker point of problem (4.2).

Substituting (4.4) in (4.5), we get

Ao = ~alTal - righy7! (alTys + AlTAe(uo-c)] , (4.8)

and substitution of (4.4) and (4.8) in (4.6) gives

u o= a®T(1-z1)a®-r%ce 7! (-a®T(1-zhyve + a%T(1-z2H)a%1 (4.9)

where 2t = at@alTpl - pighy™! 41T |
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Note that, in consequence of lemma 3.1,

wh o= atTat - ri¢?

is positive definite.

By lemma 3.2, (I—Zl) is positive semi definite, then

yia®T(1-z4)a8y 2 0 .

Suppose now that y ¢ RP is such that
y* a%T(1-z') A%y = 0,

in consequence of lemma 3.3 we have that

is contained in the subspace generated by the gradients of the active inequality
constraints of problem 1.1. Because of the regularity assumption, we deduce

that
y=0.
In consequence, AeT(I-Zl)Ae is positive definite, and also [AET(I-Z)Ae-ReGe] .

By means of equation (4.9) it is possible to find c, in each iteration,
such that ug verifies condition (4.7). But we think that in general, and
with the hypothesis that we have, it is not possible to find a unique value of

¢ for all the iterates.

Suppose now that

k

k
r
, Mos o (4.10)

=l/

it follows from (4.9) that
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b=c - 4Tzt 7t AT a-ztyved, 4.11)
In consequence, taking
c; > 0 + max {ef[AeT(I-zl)AeJ" AT (1-ztyved (4.12)

xef
€hq

when e; is the i-th cartessian unitary vector, (4.7) is verified in all
iterates. Since AeT(I—Zl)Ae is positive definite and Vf, Vgi are bounded

in Qa’ there is a finite o verifying (4.12).

Note that for such a value of ¢, Ty stated in (4.10) are positive in Qa

and depend continuously of x. Then r? are properly defined. O

In the algorithm for solving problem 1.1, we shall take r? defined in

(4.10). If we call

i=mtl,...,m+p , (4.13)

Aoi = Moi "¢ 3
condition (4.12) becomes
cy > 6 + max (—Aoi) .

Xefd
a

Note that Aoi(x*) are the Lagrange multipliers for the original problem 1.1.

The iterative algorithm for solving the general non linear programming

problem 1.1 is stated as follows :

Let py 2 0, ae (0,1) , Yo € o, , i >0 $ i=m+l,...,m+p, and

ri(x) >0 3 i=1,...,m continuous in Q-
Step 0O : Select a strictly feasible point for the inequality constraints,,
x0 € 2, and the values of a, Y5 Py and C.1 s i =m+l,...,mp. If it

is necessary, redefine the inequality constraints in a way that

gi(xo) <0 : i=m+l,...,m+p.

Set p = po.
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Step 1 : Compute AO ¢ R and d0 e R" by solving the linear system of
equations
m+p
d0 = -[VE(x) + ‘Z XOi Vgi(x)]
i=l
ar Vg.(x) = —r.(x) Ay, g.(x) ;3 i=1 m
0 '°i i 0i °i ’ e
dT vg.(x) = - (x) : i = m+l m+ (4.14)
0 gi. gl ’ gy P .
If d0 = 0, Stop.
Step 2 : If c; < =-1.2 AOi , set c; = —ZAOi H i=m+l,...,m+p.
m ‘m+p
Compute Z = .Z AOi + z (AOi + ci)
i=1 i=m+l
and Py = (1-a)Z.
If 0 < < < p, set
(4.15)

Compute A ¢ R® and d e R® by solving the linear system of equatioms

m+p
d=-[vEx)+ I A, Vg.(x)]
i=1 * '

T
d Ve;

~lr (0N g, () + 0 |d0|2] s i=1,...,m

T A.+C.

_o_r 11 2
d- vg; = [XBI;EZ gi(x) +p ldol ]

; iL=m+l,...mp  (4.1€
Setp 3 : Set Yy = Yo if Ai 20 or vy, =1 if Ay <0 for the inequality

constraints, and Y; = 0 for the equalities.

Call T the smallest T such that
gi(x + td) < Yigi(x)

for t ¢ (O,Ti) and i = l,m+p.
Find t so that
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Sc(x + td) = min ec(x + td)

over t e [0,T]
Step 4 : Set the new iterate
x =x+ td
Step 5 : Go to step l.
Condition (4.15) was obtained by substituting (4.13) in (2.4). 1In step 3,
Yi was taken zero for the equality constraints, in order to allow them to

be active in the next point.

In the numerical applications, we shall take

T

a’ vg, = - [g;(x) * p |d0|2] L= mHl,...mtp 5 (4.17)

“e

in the place of (4.16). In this way, the numerical computations in step 2 are

simplified.

With this modification all the theoretical development is valid, but :the
definition of Z given in (4.15) must be changed to
m+p

m
Z= I M.+ L (A
=1 i=m+l

el , T, i.i,-1
0i + ci) g (AA-R'G") e (4.18)
In a way similar to lemma 3.4, it can be proved that in this case, d

. . EA
is a descent direction of ec.



- 30 -

5. NUMERICAL RESULTS

In general, in real applications, it is not possible to perform the exact
minimization of the function included in step 3 of the algorithm. Instead we
take T verifying a criterium defined by Wolf in ref. [26] and developed by

Lemarechal in ref. [27].

The given algorithm has been applied to several test problems. We report
here our experience with six problems, described in a work by Hock et al. [14].

We shall identify them with the same number as in the mentioned work.

Problem 35 (Beale's problem ) has 3 design variables and 4 linear equality

constraints.

Problem 43 - (Rosen - Suzuki, [7]) has 4 design variables and 3 nonlinear

inequality constraints.
Problem 78 - [3,18] has 5 design variables and 3 nonlinear equality constraints.

Problem 80 - (Powell, [21]) is a modification of problem 78; it has 5 design

variables, 3 nonlinear inequality constraints and 10 linear

inequality constraints.

Problem 86 - (Colville N° 1, [8]) has 5 design variables and 15 linear inequalitj

constraints.

Problem 117 - (Colville N° 2, [8]) has 15 design variables, 5 nonlinear

inequality constraints and 15 linear inequality constraints.

In all of them, the initial point is feasible for the inequality constraint
and non feasible for the equalities. The iterative process was stopped with a
value of the function correct to five significant digits, the inequalities

verified, and the equalities verified with an error less than IOTS.

The tests were performed on a HB-68 DPS/Multics computer. All the
calculations were carried out in single precision (27 bit mantissa), except

problem 117, calculated in double precision.

In Table 5.1 we give our final results and also intermediate results in

which the objective function value is correct up to two significative digits.
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Problem Iterations Func. and grad. Function value
evaluations
35 5 6 0.1123447
9 11 0.1111125
43 5 9 -43.81453
13 18 -43.99907
78 5 5 ~2.959694
12 12 -2.919709
80 3 4 0.05478925
15 18 0.05394989
86 6 6 -32.03453
9 9 -32.34851
117 34 38 32.81567
49 64 32.34897
Table 5.1

Even if the purpose of the work of Hock et al. was not to study the
efficiency of the tested non]jnear Programming methods, it is very convenient
to compare our results with those that they obtained with six different methods.
In their work, the best performances are given by VF@2AD and OPRQP programs.
VF@2aD was developed by Powell; it is an implementation of Wilson, Han and

Powell's method [11,12,19,20].

OPRQP was developed by Biggs, based on his own method described in refs. [5,6].
Note that VF@2AD solves a quadratic programming subproblem at each iterationm,

and OPRQP needs an active set strategy. Both programs approximate the Hessian



- 32 -

of the Lagrangean of the problem, by means of a quasi-Newton method.

In the numerical tests shown in [14], in general VF@2AD needed a less
number of functions and gradient evaluations than OPRPQ; but in counterpart,

OPRQP used less calculation time.

In the examples considered here, the number of evaluations with our method,
generally goes between the number of VF@ZAD and OPRQP. We estimate that
computation time per iteration used by our method is similar to that used by

Bigg's approach.

Table 5.1 shows that the final convergence of the present method is

slow. It seems that this may be improved with the used of quasi-Newton technique

Considering that the present is a feasible method and that it doesn't make
use of quasi-Newton techniques, we conclude that the numerical results are

very satisfactory.
The method proved also to be very reliable. This is due to the fact that

active set strategies are unnecessary, and that the linear search scheme

doesn't introduce discontinuities.
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