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ASYMMETRIC QUASILINEAR FINITE ELEMENT
METHODS FOR SOLVING NONLINEAR INCOMPRESSIBLE
ELASTICITY PROBLEMS

Vitoriano RUAS

RESUME

On introduit dans ce rapport une méthode d'éléments finis simpliciaux
pour la résolution de problémes d'élasticité incompressible en dimension n, n=2
ou 3. Une structure asymétrique des fonctions-test par rapport au barycentre du
simplex la rend particuliérement efficace pour le cas de grandes déformations
dans lequel la condition d'incompressibilité est non linéaire.

On prouve en particulier que sous certaines conditions d'assemblage
des éléments tré&s peu restrictive on a toujours l'existence d'une solution aux
problémes approchés linéaire et non linéaire. Dans ce cas on établit aussi des
résultats de convergence qui s'appliquent au cas de matériaux incompressibles
linéaires.

ABSTRACT

This paper deals with a class of simplicial finite elements for solving
incompressible elasticity problems in n dimensional space, n=2 or 3. An asymmetric
structure of the shape functions with respect to the centroid of the simplex
renders them particularly suitable for the large strain case, in which the incom-
pressibility condition is nonlinear.

We prove that under certain assembling conditions of the elements,
there exists a solution to both nonlinear and linear discrete problems, and in
this case we also give convergence results for linear incompressible materials.



1. Introduction

In this work we introduce and discuss a new class of finite element
methods for solving incompressible elasticity problems. We recall that
in elasticity, incompressibility means that the measure of every part of
an elastic body in any deformed state induced by loading conditions is

invariant.

More precisely our problem, can be described as follows

2 being a bounded set of ﬁﬂ, for every open subset D of 2, we shall

m, 1, D and by l'lnba,D thz usual norm and semi-norm
respectively, of the Sobolev space W' '°(D) (see e.g.[1D,mr e R, m=20
and 1 € 4 < ®» , with WO’&(D) = Lh(D). Similarly in the case 4 = 2 we denote

by (.,.) p the usual inner product of hﬁ52(D) = HT(D) and by
3
B

denote by ||

hn 3

the corresponding norm, while we will represent the norm

l',m_,D 'ngQ,D

of W2(Q) = H™(Q) by "'"ﬂgD instead of "-"m

,2,D ° In all cases we shall

drop the subscript D whenever D is  itself,

For every space of functions V defined on D , V will represent the space °
of vector fields whose n components belong to V. In the case where V is
WD) or Wzbn(D), we define the norm, semi-norm and inner product (if 4=2)
for V , by introducing obvious modifications in the scalar case, and keeping

the same notations.

We shall denote by z.y the euclidian inner product of two vectors x and y
of R and by |.| the corresponding norm. £ will be either equal to 7 in the

. XN
2 in the case of tensors of /% .

n
case of vectors of &, or equal to n
Finally for every function or vector field y defined over a certain set D,

we shall denote by Y/g its restriction to a subset S , S < D.

Now we are given an elastic body represented by a bounded domain Q c £’ s

n = 2,3, with a smooth boundary I'. Keeping fixed a part 'y of ' with
meas (Tg) # 3 , we consider a loading of Q consisting of body¥ forces acting -

on set I'" T, such that meas(To n T°) =0 and T~ v fo =T , having a

. - *
density g per unit of measure of I' .



The effect of.f and g is to' deform Q into an equilibrium configuration
defined by a displacement vector field that we will denote by ¥ . In this

way, the new position of every point X of Q is given by Z *+ ul(x) .

Now the fact that every element of ? is measure invariant in its

deformed state can be expressed mathematically by :

(1.1) Jlz + ulx)]l =1 for almost every £ e  ,

where J[V(z)] denotes the Jacobian of a vector field ¥ at point Z .

(1.1) 1is called the incompressibility condition in finite elasticity

and we shall often rewrite it as :
(.n' dét(£ + ) =1 a.e. in @ , .

where [ is the identity temsor nxn and V represents the gradient

operator.

The incompressibility condition (1.1) is obviously nonlinear but in the

case of small strains, that is to say, when

max |V u(z)|<< 1

zeQ
one can reglect products of derivatives of y of order higher than one.(1.1)
becomes then the well-known linear incompressibility condition arising in

infinitesimal elasticity or in fluid mechanics, namely :

(1.2) div y(z) = 0 for a.e. £ € Q .

Although there is a rather large range of incompressible materials, in
this work we would like to focus our study to the case of Mooney-Rivlin
materials, because they are particularly representative of the class of
materials for which (1.1) holds. We note by the way that among Mooney-

Rivlin materials rubber is a typical case.



For a Mooney-Rivlin material the elastic energy for a certain admissible

displacement vector fiékig is given by [20] :

~ Cf-
(1.3), W(g)z-g—l-IlI+zg|2dx~—2 -Jf.gdf-L*g.gdé for n = 2
Q Q -

Q

¢
(1.3), W(v)= —lq I+ 9 p|dx - 2 +93I | adj (1+32) | *dz-3 ‘I f.pdg -
~ 2 Q0 ] ~ ~ ~ 2 Q e~ o~

- I g.v ds forn =3
P*

where adj A denotes the transpose of the matrix of cofactors of an nxn

matrix A and C, and C, are positive physical constants.
Taking into account (1.1) and the fact that ¥ must be finite, it is
natural to choose the following set of admissible displacement vector fields :
X = {yve El’n(Q)- s B/Fo =0 , det[g +99(%)] =1 a.e. in 0}

with 212 2(n-1) ,whereas we shall assume that f ¢ L2(Q) and g € H/2(r").

The problem we want to solve can now be stated as follows

Find y € X such that

~

(P)

Wiy s W) YoveX

IA

It is interesting to note that X is a non convex set and that it is a

subset of the vector space lﬁ'defined by :

Zﬂ ={yp e EJ’A(Q) s By = o}

which can be normed by the semi-norm " (Q being connected 17] ).

1,

It will be useful in the sequel to consider a "linearized' finite
incompressible model that corresponds to a small strain deformed state.
In this case, taking into account that every displacement vector field
must satisfy (1.2),the usual expression of the energy for linear elastic

behavior in terms of the tensor of strains € _ is given by :
~



- 2 .
(1.4)  W(w = %IQ li (v)| : dg -Ji’ DAz - | g T

Q T
1 3?j -3Ui
where €..(V) = 5-( 53§- + 535-) and C depends on C, and C, .

The set of admissible displacement vector fields is then the linear

vector space :

X = v/ vev , div v=0 a.e. in Q}

where V = Zz .
The problem to solve for this linearized model would then be :

Find y € X such that

. )

Vw < W0 ¥ yeX

~

Although the above linearization appears to be rather unrealistic in
practice as far as Mooney-Rivlin materials are concerned, it is not only
fundamental for the convergence and existence analysis that will be given
later on, but it will allow us to treat the case of many incompressible
materials for which (1.2) does hold. Furthermore it will enable us to
treat implicitly the case of viscous fluids, by simply considering null

. *
surface forces, together with I' = ¢ .

Now, the coercivity of W over X equipped with the |-|1 norm [6]
implies the existence and uniqueness of a solution u to (ﬁ)' However,
due to the well-known difficulties in defining a well-posed discrete
finite element analogue of (5) , in this work we shall be concerned with
a mixed formulation of this problem obtained in the classical way, by
dualization of (1.2). This means that we introduce a Lagrange multiplier,

that is nothing else than a hydrostatic pressure p.

The saddle-point (u,p) arising from this dualization is characterized

as the solution to the following problem :



Find (y,p)e ¥ x @ - such that
(P') Jalu,p) + b(v,p) = L(v) ¥ vey

blu,q9) = 0 ¥ qe@

where a , b and I are given by :

n
(1.5) Ez(g,v) = ¢y je.--(g) e..(v) dx
i,g=1de Y W

(1.6) E(E,q,) = [ q div p dx
(1.7) L(g):J,f‘.jfdﬂ,-[ g - vdads

~ *
and @ = LZ(Q) in case meas (F*) #0 , and @ = Li(Q} otherwise, the latter

being the subspace of L*(9) of functions q such that (q,1), =0 .

It is trivial to prove that the bilinear form a , obtained by
differentiation of the quadratic part of W along V over V , satisfies the

following inequalities :

I

(1.8)  alu,p lalul |zl with lal =1

2
al v}

v

(1.9)  a (v,v)
where a > 0 is the constant of coercivity of ﬁ (see e.g. [6])

Therefore, according to [7] , we have existence and uniqueness of

(u,p), u being the solution of (P) .
Now, if we assume that f , g and @ are regular enough, we can say
that (u,p) satisfies the following equations
-Cbtu =V =f in R
divy = 0 in Q
(1.10) .
Ce(u). n+ pn=g on [

u=0 on [



. . * .
where 1 denotes the outer unit normal vector with respect to ', in the
sense ‘of suitable function spaces about which we are going to be more

specific later on .
.

As for problem (ﬁ), similarly to the case of (P), we will consider the
following weak formulation obtained by dualization of (1.1)" with the help
of a multiplier p , and by differentiation of W(E) along ¥V over Z& .

. 7 £
Find (4,p)e ¥ x @ such that
") aly,v) + blu,v,p) = () ¥ver"

~ z
b(u,q) = 0 ¥ q €@

where Q‘t= LI?Q), with £ such that n/2 + /£ <1 , and

~Y A

(1.11) alu,v) = C, J Yy . Vv dx + C'J adj (I + Yw-ladj (L + Yu+ Vv) -
‘ Q Y/ = ~
-adj § v} dz with C'=0 if n = 2 and C'= (C, if n = 3,

(1.12) b'(u,v,q)= [ q[ady‘(ygzyT. v vldr
Q X

(1.13) b(v,q) = f gldet(I + Y v) - 1] dz
0 3

(1.14) Z(g) = I i dr + f q.2 ds - C, J div v dx
Q r* Q

) *
REMARX : TFor the above problem we will not consider the case meas(T )
=0 . O

According to results by Le Tallec [16], under reasonable assumptions,
. . . x . .
there exists a hydrostatic pressure p, with p € L (@), associated with

every solution y to problem (P), and in this case (u,p) is a solution

to (5') .

At this stage we would like to point out that in practice, it seems
unwise to use formulation (P') for numerical computations with mixed
finite elements, such as those we are going to treat here. Indeed, there

are other mixed formulations of (P) much more suitable for such a purpose



and in this respect we refer to [39] , for instance. However, for the sake
of clearness, we prefer to consider (P') in this work, as it appears to

‘be the most natural formulation of all.

Bearing in mind that our mixed finite element methods apply to other
mixed formulations of (ﬁ) and (ﬁ)as well, we shall from now on, consider
that we are actually going to approximate problems (ﬁ') and (ﬁ'). For-this
purpose we will define two finite dimensiynal spaces Eh and Qh aimed at
approximating V(resp. zn) and @ (resp. @ ), associated with two n-simplicial
finite elements for n = 2 and n = 3, respectively. We note that the three-
dimensional element can be viewed as a certain generalization of the two-
dimensional one. It should be mentioned that the latter was first .
introduced in [21] and discussed in more details in [22]. Nevertheless, we
intend to reconsider in this work some aspects of the two-dimensional case,
in order to be able to give a systematiC analysis applying to both elements

in a fairly analogous way.

An outline of the paper is as follows :

In section 2 we introduce the two displacement-pressure finite elements -
of asymmetric type. In the same section we recall some abstract approximatio
results derived in [23], for linear problems discretized with mixed finite
elements that are nonconforming in the first variable, as the three-

dimensional element is nonconforming in displacements.

In section 3 we examine in detail some basic properties of both elements

that justify a priori their adequacy for the numerical solution of problem
Q

In section 4 we give a convergence analysis for problem (5') and finally

in section 5 we give existence results related to the approximation of (P').



LN - LN

2; Definition of the elements.

In this section, together with the two subsequent ones, we consider
to be a domain of A', n = 2,3, having a polyhedral boundary ', For thg

case n=3 we also assume that I™n Fo is a set of spacial polygonal'lines.

We are given a family ( Th)h of partitions of Q into n-simplices,
satisfying, besides the classical assembling rules for the finite element
method, some additional compatibility conditions for our asymmetric
elements to be specified hereafter. We also assume that T'* and I', can be
viewed as the union of faces of elementg of T h and that (T h)h is regular'

in the following sense :

Denoting by hK the diameter of the circumscribed sphere and by Py the

"diameter of the inscribed sphere of element K , K € Ty and setting

h = max hK and = min Py ,

T, - T
Ke A Ke h

. . .. -1 :
there exists a strictly positive constant ¢ such that ph "> ¢ Yn .

With each partition Ty we associate the flnlte dimensional spaces &y
and V3 , approximations of @ and Y(resp. Q and Vn) respectlvely We
define Qh to be the space of functions az, that are constant over each

element of Tj , such that J y, dce=0 1if r* = = ¢ , and we clearly have
Q . .
Qh c @Q(resp. Qh c Qiﬁ. For convenience we consider the degrees of freedom

of Qh to be the functional values at the centroid G of the elements. Vh in
turn consists of functions whose restriction to each simplex K € Ty

belongs to a spaée Pa‘defined as follows :

Let S denote the vertices of a simplex K ¢ T hoo 1 =1,2,...,nt1.
We flrst assign to K a priviledged face, say the face opposite to vertex
S , that will be called the basis BK of K, and let FK be the face

n+l .
opposite to vertex Si , T =-1,2,...,n. The F@ s will be called the lateral

faces of X :

Let A denote the area coordinate of K associated with vertex SL S

= 1,2,...,n+1 and S denote the centroid of BK
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Now we define Pa to be the (n+2)-dimensional space spanned by the functions

A. =12 =1,2,...,m*1 and ¢ , where :

(2
i
z.n p = A.A
der K
je

One can easily verify that the set of degrees of freedom {a } -1 ,where
a, is the value of the function at point Si , 1s Pa—unlsolvent and that the

associated basis functions are given by :

2 .
p’l::)‘l:_ﬁ‘p 1T =1,2,...,n
(2.2) Prin = “nra
n
Puvo = 79 ¢

In figure 2.1. we illustrate the so—-defined asymmetric finite elements

where O represents degrees of freedom for Zh and x represents those for Qh.

Note that the following inclusions hold : P, ¢ Pa c P, , where Pk denotes
(* )

the space of polynomials of degree less or equal to k defined over X

Sy

The asymmetric quasilinear elements

Figure 2.1

(x) Like in [227 , a can be viewed as a ratlonal subscript. In the present case

we have g = (C 1+ 1)/6'2 + .



N

It should be clear that, due to the asymmetric structure of P, , one
cannot expect to associate those elements with arbitrary partitions of {.

Indeed

must respect the following compatibility condition :

th
Every face of Th_belonging to two neighboring simplices must be either

a basis or a lateral face for both simplices.

As a matter of fact to obtain such a partition, which will be called a
compatible partition, it suffices to assign a priori, faces that are going
to be bases, in a systematic way. Notice that in practice this does not
represent a real restriction in programming with these elements. In order
to illustrate our assertion we propose below two simple constructions of

compatible partitions of an arbitrary domain :

Partition Ti : In the two-dimensional case we first construct a partition
of Q into artibrary convex quadrilaterals (like in the case of the bilinear
@, element). Next, every quadrilateral is subdivided into two triangles by
an arbitrarily chosen diagonal. Those diagonals will be the only basis of

the elements of the so—generated triangulation.

In the three—dimensional case we first construct a partition of § into
arbitrary convex hexahedrons having quadrilateral faces . Now we refer to
figure 2.2t where we show a classical subdivision of a hexahedron into 6
tetrahedrons that are precisely elements of Ti . The bases of this
partition are faces BDA' , BDC' and DBD' of each hexahedron . Note that,
like in the two-dimensional case, the diagonal B'D of the hexahedron,
which determines its partition into 6 tetrahedrons, can be chosen in an

entirely arbitrary way.

n=2

: BD

Figure 2.2a



Basés : BDA', BDC' and

DB'D’
Fig.2.2b
. . . P . 1
An illustration of the compatible partition Ty,
Figure 2.2.
o, e 2 . . ., . .
Partition Ty ¢ We first comstruct an arbitrary partition Ty, of Q into

n-simplices X. Then we subdivide each X € Ty, into n+1 simplices having a

common vertex situated in g .

This subpartition of s becomes the compatible partition Tz if we define
its bases to be the faces of T, . Note that the interior point of the simplex
Ke Ty can be arbitrary, although in this work we will choose it to be

the centroid G(see figure 4.1).

With the above considerations, we define the degrees of freedom of Vh to
be the functional values at the vertices and at the centroid of the bases
of a compatible partition Ty of 0 , except the values at those nodes lying

on . Iy, where a function of V, vanishes necessarily.
h

With the above definition of V; we can say that [, < ¥ if n=2 . However,
if n=3 this inclusion does not hold and therefore we have a nonconforming
element. Indeed, in this case a function of Vh is necessarily continuous

only along the bases of the partition, as it can be easily verified.

-
Now as far as problem (P') is concerned, since we cannot define an
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approximate problem in the case n=3, by simply replacing ¥ , @ , % and p’
by Zh » Qh s 4 and ph as usual, we need approximations of & and b . as

follows :

) CIK gy) - gln) dg - % Gk

(2.3)  ay(y, >, »)
Ke 'th

Ke T K

Note that &h and Eh are also defined over ¥ x ¥V and ¥ x @ , and that

whenever ¥,¥ € V we have &h(%,g) = alu,v) and Bh(ibq)

We will need discrete H} -inner product and norm defined as follows
. _ 1/2

(2.5) (WY, = KZ (42, ¥
€Ty,

The fact that the degrees of freedom attached to Fo vanish, together

with the continuity of the functions at the vertices of Ty s imply that
Note also that (u,p) = (k,2),¥u,u e .

.M, is actually a norm for [,

It is easy to verify that ah satisfies inequalities analogous to (1.8)
and (1.9) with the norm |-|1 replaced by "'”h , and that éh satisfies :
bh(gh,qh) < lIbll "gh"hlqh|0 with HbH.: 2 '

Thefore, if we are able to prove that Bh also satisfies the so-called

discrete Brezzi condition [4] , namely, the existence of a strictly

positive constant Bh such that

L b, (v,,q,)
" h ~h’th
2.6) s ——— = B lql, ¥q,cQ .
we have existence of a solution to the approximate problem
Find (y, , ph) el xa such that

(Ph) ah(E s Eh) + bh(gh P Ph) = L(Bh)

MR
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In this case, we can also apply the following estimates given in [23] .

e g -l s (11 "’;" ) inflly - g+ L "b" il
h ‘DheV qh 5
|, (10,9, |
+i— sup _h PR

uply gl

and

IE (u,p,2,) |
2.8) lpp,|, < 'é"" lwgly, + 1+ Blying oyl *s“ sup A2

@9 ByGup,y) =1 03) - ay0u2y) - bylyp) -

REMARK : E,(u,p,1,) vanishes identically whenever ¥, < ¥ . ]

As for problem (ﬁ) we will consider an approximate problem defined in

a similar way in section 5 .
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3. Some properties of the asymmetric elements related to the nonlinear case.

In this section we intend to justify our proposal of the elements of

asymmetric type for the numerical solution of problem (ﬁ')

First of all let us briefly recall some a priori arguments already

considered in [21] and [22] .

If a vector field of an approximation space Zh of Zﬁ is such that each
component restricted to an element K of Ty is a polynomial of Pk , its
Jacobian is a polynomial of Pn(k—l) overK. This implies that one must
satisfy constraint (1.1) in a relatively large number of peints of K in
order to rebresent the incompressibility condition within a satisfactory
degree of aécuracy. Note that this question becomes particularly critical
in the three-dimensional case. However, the number of constraints to be
satisfied in the discrete problem associated to (ﬁl) - which is precisely
dim Qh - should not exceed the total number of displacement degrees of
freedom, i.e. dim Zh , otherwise we would be dealing with an ill-posed
problem. This condition is usually expressed numerically by requiring
that the following asymptotic ratio :

dim @

0 = lim -
dim Yy

h>0

be strictly less than one (actually in practice 8 should not be too close

to one).

On the other hand, from a mathematical point of view, it is not
appropriate to choose a space Qh satisfying continuity requirements at
points situated on the interface of the elements. This fact prevents one
from reduging the dimension of Qh significantly like in the case of linear

problems solved with the so-called Taylor-Hood elements [11] .

Let us also add that Zh should be preferably conforming. Indeed, even
if condition (1.1) is properly satisfied elementwise, the nonconformity
may lead to a meaningless representation of the incompressibility
phenomenon at the global level, unless one can prove that the resulting

interpenetrations of neighboring deformed elements cancel each other or

are negligible.
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Summing up all the above considerations, we can say that, except for a
very few cases, one cannot expect to approximate éuccésfully problem (ﬁ')
by using standard spaces Zh and Qh » such as thdse that work well for
fluid problems or for linear incompressible elasticity. Therefore, a
solution that seems reasonable, is to construct Zh by means of spaces of
special polynomials of degree kX , for which the Jacobian is of maximal
degree significantly less than n(k-1). As we show hereafter this is

precisely the case of _Pa .

Theorem 3.1. If p = (v;,... ,vn) defined over X is such that v € P

¥, , then J[x + v(x)] is a polynomial of P, .

Proof : According to (2.2), each component Ui can be written as :
ntl . .
v, = ) a® A, + g*
j:i J J

z/! z! . . .
where the a, g and the B" s are scalars and ¢ 1is the quadratic function

given by (2.1) . We have : '

1 1 ¥ 1%

c, *8 ¢ Cip t B dx, °n ¥ B 3z

1 n

_ 2 3 g2 22 2 %

oD Jlg + p&)) = |0y * B 55 T B g e G, Vg
n op n op .n_ai

“n +8 3T, “na * : o, 7 “n ! g 0%,

where constant cij is the xj -~ derivative of the linear part of x.+ vi(g). :

. . n .
Now we. expand the above determinant into a sum of 2 determinants whose

T P n,T
152 %27 "'"’cnj) or -3—5.(81,82... ,B8) . As one
can easily see, the only determinants of this e‘Zcpansion that do not vanish

J-th column is either (e

identically are those having at most one column with linear entries

k.2 BT , and the results follows. q.e.d.
ij ~

An immediate consequence of Theorem 3.1, is the fact that it suffices
to satisfy (1.1) at the centroid G of K to have incompressible elements

in the following weak sense :
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The measure of X in deformed state induced by y € ga is invariant.

Indeed, if we denote by Z the deformed state induced by y of any
subset 4 of K , K € Ty s according to a well-known numerical quadrature
formula, we have :

meas(X) = j Jla + u(g)] dz = JIG + u(G)] meas(x) = meas(K) .

K
This shows that the space Qh defined in section 2 is a proper choice

for these asymmetric elements.

Let us add that using the some arguments as in [22], we can conclude

that in both cases n=2 and =3 , we have 06 = 1/2 , which 1s a reasonable

asymptotic ratio.

REMARKS :

) In the two-dimensional case, the standard @, X P, element has the
same properties as the quasi-linear asymmetric element, as far.as the
degree of the Jacobian and 6 are concerned. It can actually give satisfac-
tory numerical results as shown by many examples in [15]. However, in the
three-dimensional case, the property of Theorem 3.! no longer holds for

the Ql element.

77) Another generalization to the case n=3 of the two-dimensional
asymmetric element satisfying the property of theorem 3.1, was presented in
[21]. This element has the advantage of being conforming, but the value
of the asymptotic ratio is rather high, namely 6 = 4/5 or 0 = 8/11 in
the most favorable case of partitions. This explains the introduction of

the present nonconforming generalization.

Now, having proved that the incompressibility can be properly treated

for each element, we would like to assert that the same is true for Q .

More precisely, letting 4 denote any subset of § ; setting

Ay =AnkK, F € Th and defining

Z = VU Z-K with ‘Z‘K: %(AK) 5
© Ke Th
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where kg € za , we would like to verify that
meas(X) = meas(k) ¥Ke T, = meas(@) = mas(q) ,

or yet that

meas(Q) = | meas (X)
Ke Th

Actually letting Q be the deformed state of  induced by y to be

defined hereafter, we will prove that :

(3.2) meas(@) = § meas (X)
Ke T

In the two-dimensional case it will be convenient to set Q= Q. Indeed
if Jlz+ulx)l 20 ¥ ze Q,(3.2) is trivially satisfied since Zh is
conforming and therefore the elements in deformed state do not interpenetrate
However even under the above assumption, this is not necessarily the case
o§ a nonconforming Zﬁ . That is why for n=3 we will set § :K€¥ 4 , where

K denotes the deformed state of K induced by the vector field Ty at the
vertices of the elements of T In this way @ can be viewed as a
certain interpolation of Q at the points 5 , 5 being.a vertex of an element
of T, In so doing we can prove that (3.2) is exactly satisfied for some

kind of partitions, whereas in the general case it is satisfied up to an

0(h%) term.

Before giving the proofs, let us say that, wherever the above Jacobian
is negative for some Z ¢ @ , we must define Afordc® , not as the union
of the ﬁzs , but with modifications taking into account the interpenetrations
of the elements in deformed state that occur in the general case. This can
be achieved by assigning a subtractive meaning to the sets 4 such that
JIZ + u(x)] <0 ¥geA , AcK. In so doing, all the above assertions
for the so-defined Q would be true, and in particular (3.2) with or without
a perturbation term. Bearing this in mind, in order to simplify the notations

we shall assume in this section that ¥ ¢ [ is such that :
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(3.3) Jz +u(x@)lza for a.e. Z e Q
(3.4) J6y + u(G)1 =1  ¥KeT , where Gy is the centroid of K .

Now we note that (¥ + ﬂg)/K is nothing else than the linear part of
(gﬁg)/K . Therefore, since % vanishes at vertex E%+1 »Jd =1,2,....m,

and recalling (3.1) we have : J

IS, +u(S,, )1 =g+ u(®] Frek .

n+l

Since meas(K) = JLZ + mu(x) ldxr , assumption (3.3) implies that
meaS(i) > Q0 , which gn this case means that the K’s are oriented in the

same way as the K's , or yet that the K's do not interpenetrate.

Let us now consider the particular case n=3. We further define 4 to be

the deformed state induced by Ty of every subset A of Q. Notice that we are
actually defining T=0.
We first need the following :

Lemma 3.1 : Let K be a tetrahedron and e denote the outer unit normal
vector with respect to 9K, the boundary of X. Let ¥ be a vector field

5~
defined over K such that ¥ = B¥ , with B € R~ and ¢ be given by (2.1).

We then have :

div ¥ d :ZJ . n, ds
h * 3BK£ ~K

Proof : From Stokes' formula we have :

[ div Y dz = JQK Y. n, ds :'51 JFK Y. nds t fBK ¥.n, ds .

Ik =

Since w/FK = ijk , with 7,7 and k distinct, we have,
z

3
) J v.n ds = —— f B.n m@aﬁg)
1

where nK/F denotes the outer unit normal vector with respect to face FK

of 9K .

1
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On the other hand, for a constant valued vector field g we have :

3 i . .
0:[ divgd: =f B .n area(FIg)fg-.,v area (B%) .
TR =1~ HE ¢ =T RK/B

Thus we have :

. 1
div Yy dx = [ m, 8 -—=B.n area(BK)
IK BK 7.4 12 K/ B

The results follows from the fact that

' 1
I K‘g - npds = B nesop avea (5%)
B q.e.d.

Now we note that since my 1is conforming we clearly have :

vol(Q) = § vol(K)
Ke T

Actually we can prove that, under a reasonable assumption the above

equality also holds if the K'S are replaced by the K's .

Theorem 3.2 : 1f Th is a compatible partition of § that has no basis on

*
I' we have :

vl = ] vo1(X)
Ke Th

1
REMARK : It is interesting to note that partition T h defined in section 2

satisfies the assumptions of this theorem.

Proof : A partition satisfying the assumptions of the theorem can be viewed
as a subpartition of a first partition Xz, of Q , consisting of hexahedrons
having triangular faces. Each hexahedron H of X;, generates two tetrahedrons
of Ty » Say K, and X, , having a common basis lying in the interior of
H,and lateral faces coinciding with the faces of the hexahedron (see

figure 3.1).

Since y is continuous over B, the common basis of K, and K, , we have :

volU(H) = vol(X,) + vol (Kz)
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Now we want to 'prove that we actually have
vol(H) = vol(H) - ¥ He Xz,
which will yield the result we are looking for, since

w0l () =) wvol(A) .
Hexh
For this purpose we introduce a new variable X with the help of the

following affine transformation over each X :

W

x T oz=gtmuz)

In this way K can be regarded as a deformed state of X obtained by the

application of the displacement vector field '\’Z{ defined by :
U = Yz

3
where Y = B¢ , with B = (w, - [} (w) 1 /3 , (W, being the value of
: ~ ~ =1 "

wR
)
T
w0
-
S
]
[N
N
.
an

If we denote by Xi(é) the area coordinates of K , we have necessarily
5\1:(,%;) = Xi(f) , which means that § = B @ where

» n - .
2E S U9 S

Now we have :

vol(K) = f Iz + W1 di
P ks

where J represents the Jacobian with respect to the new variable é

Expanding the integrand above, we have :

3 - -
[zz [;’I’(g}_) + J(P] dg
=1

-

vol(X) = vol(k) +J div ¥ dx +J

-

where ¥, is the vector field obtained by replacing the £-th component
2 g mp



- 22 -

» .

of g' by xp and div represents the divergence operator associated with X

Since each Jacobian of the second integrand above has at least two columns

of form gﬁp , they vanish identically.

On the other hand, according to Lemma 3.1 we have :

P » » - _ 2 -~ . »
], d‘b'l) 2 (g) dg - 3’ I . 2 . EK Cu .
K B

However, since Ty 1is conforming, B coincides for both X, and K, together

with ¢7é » Whereas 3_ 6 TN R
2

Therefore we have :

vol(H) = vol(Ry) + vol®%y) = vol(K,) + vol(Ky) =vol (H) .
q.e.d.

A hexahedron of partition Xz,

Figure 3.1

Now for the general case we have :

Theorem 3.3 : For any compatible family (Th)h of partitions of Q we have :

’(D

lvol() -]  vol(X)| s ¢ n?|y|
KE Th 2

(x)

where C is a constant independent of A.

(x) From now on the letter C, with or without subscripts, will represent various
constants independent of the discretization parameter h.
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Proof : According to Theorem 3.2, all we have to do is proving that

I, [wol(X) - vol(X)1 | s ¢ W?|ul,
KeTh . ?

where T, = {K/K e 1, , meas (BK nT*) # 0}

h h

By a direct computation of the increments of volume of X over its

faces, due to the quadratic component g @ of u , we get :

vol(X) - vol(X) = f L U(E) . g do
oK

According to Lemma 3.1 we get :

»

F
z

\ - 3 . .
vol(K) - vol(K) = -2} f Y(x) . nygdz
=1 .

Now, F being a lateral face of element X , we define the set AF as

follows :

Let £ be the edge of F belonging to the basis of tetrahedron X and
let Ly be the plane surface delimited by E and E . AF;is-defined to be

n, -
the solid delimited by F, F and L, as illustrated in Figure 3.2 below.

E

A perturbatioh of F due to the quadratic components of u .

Figure 3.2
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Using classical arguments, if ( Th)h is regular we can estimate :

vollfsy) < € h'ly] ¥F

2,0
I

7

Now noting that

voUAFj
Z

V(% .n dg&]
KX

we have :

volyR) - voltk) < 6 C h'lul, .

Since card T < CH® the result follows. q.e.d.

>

4. Convergence results for the linear case

In this section we give a convergence analysis for the two asymmetric
finite elements introduced in Section 2, related to problem (P')., We shall
confine ourselves to ghe case where ('rh) is a family of compatible
partitions of type Ty defined in Section 2 (see Figure 4.1), due to the

following reason :

We recall that the essential difficulty for proving, not only convergence
but existence results for problem (ﬁh) lies in deriving the Brezzi
inequality (2.6). For this purpose, if we consider other partitions we have
to face at least the same difficulties as in the case of th? classical

@, x P, “element. For example, in the case of partition Ty the nodes R,S
and T lying in the interior of the quadrilateral or hexahedral superelements
of the first partition of Q illustrated in Figure 2.2, become useless as
degrees of freedom if the pressure is taken to be constant over the whole
superelement. In this case the situation becomes the same as the one of the

@, x Py element, for which the convergence properties that one can expect .

to obtain are rather weak.
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For instance, assuming'that 2 is a rectangle andI‘* is empty (two-
dimensional Stokes problem), Johnson and Pitkaranda [13] proved that
by using a uniform rectangular M x ¥ grid, with M and N even, the
following estimate holds :

IE_%hll < ChUlyl, + luly , + lpl;] for some real n,n > 1 .

Their result, that seems to reflect reality, requires a strict
regularity of the solution to problem (P) and gives no information
about the convergence of the pressure. The latter actually does not

always converge as it has been verified in practice.

S3

n=3

Construction of partition TZ for the asymmetric elements

Figure 4.1

1
With simple modifications, for a partition of type T h associated

with the rectangular grid considered by Johnson & Pitkaranta, their
result also applies to the case of the two-dimensional quasi-linear
element. For the three-dimensional case however, no similar results
seem to be available yet.
2

Now, for theﬂcase of partition‘fh we can verify that (2.6) holds
with Bh = 0(h2—°), where the value of § is to be taken in the interval
[3/2-8,2](*) , and depends on the regularity of the solution to the

following mixed Dirichlet-Neumann problem :

(x) The symbol €, as usual, denotes a strictly positive real number arbitrarily
small.
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-4z =f in Q for f e L*(Q)

9z _ *
(4.1) p 0 on I
2 =0 on [

According to the results of Grisvard [12] and Raugel[19], we have

the following for the two-dimensional case :

Let 2 be a convex polygon and {Ai}£:1 be the set of points of T at

- —e
which Ty and I' intersect. If I' is empty, we consider I to be zero.

Let now W/ai be the angle associated with Ai in such a way that it
is equal to the angle of the corner of T if Ai is a vertex of  and .=

otherwise. Then we have z ¢ H°(Q) with s = 1 + o/2 - 6 , where :

2 and § =0 if I =0

R
I

a = mnl2, max(l, min o.)] and § = ¢ if I >0
1<e<T

Moreover, there exists a constant C independent of f such that

(4.2) zll, <cllrll

In the three-dimensional case, similar regularity results are given
in [12]. However we shall confine our study to the cases in which one
can assert that 2z e H2(Q). This is because the non-conformity of the
three-dimensional element makes the analysis very complicated in general,
but if Z ¢ H*(Q) for every f e L% () , the problem can be considerably
simplified. Notice that we actually have the above regularity for z in

. * .
many important cases, such as I' =@ with Q convex l1u4] .

Nevertheless, as we will point out later on, one can give proofs of

the existence and uniqueness of the solution to problem (Ph) that do not

depend on the regularity of z .

Summing up all the above remarks, we will simply assume in this

section that. domain 2 has a polyhedral boundary consisting of two
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parts T, and r' , in such a way that the solution to problem (4.1) lies

in H°(9) for some s , 3/2 - € €8 <2, and that (4.2) holds.

Now we give some preparatory materials
First we recall the so-called Ciarlet's Lemma for bilinear forms

: Hk+1(D) x P 2> R be abilinear form, k ¢ A

Lemma 4.1 [6] : Let O
where P 1is such that PZ cPc H’eﬂ(D) , £ €N, P being normed by

. "£+1,D . If 0 satisfies :
o (y,w)

Wheia,p Whee p

o Il = sup
(y,we B (D)xP

Vye«Hk+1(D) and VwePt

o(y,w) =0
o(y,w) =0 VyePk and ¥ welP

C that only depends on D , such that

there exists a constant
¥ (yy0) e BTND) x P

Loyl < C oyl plole,

g

Let us consider for a moment the three-dimensional case alone :

Lemma 4.2 : Let m=3, and ('rh)h be a regular family of partitions
Z be a vector field such that ' z,is the solution to problem

of © and 5
(4.1) for f=f;, [= (f1.f2,0005F,) € L?(Q) . Assuming that

2 € QZ(Q) we have :

as < Ch|zl, llll,

Ke 1 " h
h K
where %% denotes the outer normal derivative of a function g ,

K
with respect to the boundary 9K of X
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. 2 94 1/2 .
Proof : Since ze H°(Q) , 3—e¢ H "(K) , which means that the
K

left hand side of (4.3) has a sense. Recalling operator Il of Section 3

we have
03 _ 3 L -

KZ oy, M B “KE L)Kan (@ - T wy) ds
for th vanishes on Po and gs on T* . Moreover we have :
;[ o[, &

(- Twy,) ds = J = (w, - T, )ds +
ke T, Yox Mk h Ket, o, P ony T Tho R
h h =1 2

9
+ ) f £ . (y,-My,) ds
Ke‘rh BK BnK h &

’
where the Ff 8 are the lateral faces, and BK is the base of X .

Since Eh is continuous over the bases of Th,the second summation

on the right hand side above vanishes, and we can write :

. a2 1 oz
ZI o (), ~Tly )dA-I—f = . (W, -, )ds
& h T~h 3 I, ~h h

=1 "k

93 _
) [ o, Ln® = )
Ke 1 K K Ket
h h Z

Now we define the bilinear form : . H2(K)x Pa > /R by

OK.

(4.8) o0 (uw) =3 Vung (v — Tw) ds + Z Tu.ny(w = Tw)ds

; JBK S

First we note that by a linear affine transformatlon A of X 1nto the

reference element K, we can define a bilinear form GK : H (K)xP - /R by

6, (0,0) =k " o, (uw)
where #[A(x)] =v(x) , £ ¢ K and ﬁa = {o/ vlA(z)) = v(g) ¥v e Pa}

Setting B = A(BK) and i?, = A(F’é) we can write :



3
R A oA, B ~a A - - ] P a - -
O (u,0) = = JZu . Ypld — Tw) ds + g C; I‘ Qi . v.(0 - Tw) ds
B _ =1 F,
Z
vhere || = Iyl =1, 2=12.3.

Since (Th) is regular we can say that there exists a constant c
such that :

max (Cg,C,,C25Cy) SC  KeTy

-~

which implies in turn the existence of C such that :

- 0, (4,5) «
ol = s —2 <C ¥Ke 1,
ue H (K),w € Pa l[ui|2j(~||ﬂ)||1’;{
for ﬁa is a finite dimensional space.
Clearly we have :
o (#,5) =0 ¥ iae B (R and ¥ e Py

On the other hand, if u € P; , we can say that B=uVu is a constant

vector over K, U being such that w - Iw = wp , ¢ given by (2.1).
Using Lemma 3.1 we have :

UK(ﬁ,ﬁ)zo VﬁePl and ¥ welb

Therefore, OK satisfies all the assumptions of Lemma 4.1 with k = 1

and £ = 0 , and we have :
o K(a,zs) < Clu

which, by standard transformations gives :

[ oK(u,w)I < CthIQ,Klwli,K Ke 1, .
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Now since the right hand side of (4.3) is nothing else than

) 2 UK(zi’wh-) the result follows . q.e.d.

Ke Th =1 7

Let now ry L= 5 be the orthogonal projection operator for the

inner product ("')h .

Lemmg 4.3 : let g, =D -1, U be the error of the projection of ¥ ¢ V .

. . s
We assume that the solution to problem (4.1) lies in H (Q) , where § = 2

if n = 3 and 3/2 —€ <8 £ 2 forn =2 . We then have :

5-1
|€h| sch vl

Proof : First we note that
(£:23)

s
Let M be the space H (Q)n V . According to the existence results
for problem (4.1) and to (4.2) we have by classical duality arguments :

-(8z,¢;)
eyl = Cop %2
zei  lzls

Using Green's formula we have

. 3
(4.5) {(bze,).| < |(z,e) | +]|] f L. g ds
R h h Ke Ty oK 3nK h

We note that the second term on the right hand side above vanishes

identically in the case n = 2 . Since p ¢ ¥V , for n = 3 we have :

Ket [ax ny

% Ket

a -
"é-,%hcu"
h

3z .
3K m h
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Now using Lemma 4.2 we get

(4.6)

93 8-1
) J . e ds | sch |8 Ir, pll, withs = 2.
Ket, )oK ony” ~h h="h

Moreover according to the Sobolev imbedding Theorems [1], taking into
account our assumptions for s, we have 3 ¢ g°£® . Therefore it has a
sense to define the Il-interpolate of Z at the vertices of T, and since

IIze Zh we can write , for both cases n = 2 and n = 3 :
[(zgy) | = 1z - Tz, gy, < la - Mgl _"zh“h

According to standard approximation results (see e.g.[3]-and [10,

Vol. 2, page 11] , we have :

8

=1
lz-Tzl, <cn® gl

which together with (4.5) and (4.6) gives :

S

-1
el s CF 7 ligy iz, A1

Since we have "rh vl < |v], and therefore llg,ll < 2|v], , the

result follows. qg.e.d.

Lemma 4.4 : With every vector field ¥ € ¥ we can associate Yy € Zh

such that :

ntl
(4.7) } f divghdg:fdivgd.g ¥Ke 1y
k=1 'K K
k
. Y
4.8) Ny, =<¢ 27 gl

where (‘rh)1 is the family of partitions from which (’t;)h is
n 2 . .
constructed and the Ké 8 are the elements of ’rh contained in
T
Kle h




Proof : We first refer to Figure 4.1 for the notations.

Let Bk be the face of K opposite to vertex Sk’ 1<sksn+1,i.e.,
the basis of Kk . By a straight forward calculation we get, for every
g belonging to space Pa associated with element Kk :
1 n+l
(4.9) I g ds =m Z g(SJ.) + (5n-6) g(Mk) meas(Bk) .
B J=1
7k
Thefore we can uniquely define a field Yy, € Y5 such that ¥X ¢ T

we have :

vhi(Sj) =ry v?;(SJ.) J = 1,2,...,n#1

5-n n—2 - -
(4.10) 3 f vhi das +—3—[ IT ‘l)h. ds = f ‘01: das k = 1,2,...,n+1
By B B

Setting M = %k /B > we multiply each side of (4.10) by “7‘1: and

we sum up with respect tozZ , 1<% <n.

For n = 2 we get :

For n = 3 we have :

2
§-J(7gh~ngh).gkd4+fth.gde:Jg.gkd/s
B By Br

But according to Lemma 3.1 we have :

2 - : -
—3-I (v, =~ Twy) .y ds = I div(y, - My,) dg
B Kk

Therefore, summing up with respect to Xk and using Stokes' formula,

we get (4.7), for both caseé n=2andn = 3.
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Let us now prove (4.8), which we do only for n = 3. As a matter of
fact, using Lemma 4.3 the proof in the case n = 2 becomes a trivial

variant of Lemma 2.5 of [8] .

First we note tha < . - + . have :
t we no tllghllh iz, v - zll, lol, We ha

Iro -l =| 5§ 1z p) - g ot)|? | 12 |2
A Lo 1T 2 = B/ Pranly
€Th k—l k

where Prsy is the basis function of Pa associated with the centroid

Mk of Bk .

According to standard estimates we have: :

|pk+u|1 X ¢ hl/z

"k

On the other hand, using (4.9) and (4.10) we get :

”Bkrh v kazh dAI .

_4

Now use the affine transformation 4 : Kk - % and we get :

1 ~ ~
=3 Jg(rkg - g, @l ]

g8 [ 3 -
[720M) - gh(Mk)I <3 [5 ‘ L} g,

Using the Trace Theorem we get

-~
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-~ S

Now noting that th interpolates r, ¥ at the vertices of K, by

standard approximation results we get :

Irh vM) - Bh(Mk)l <C [ g, "1,2 + lrh 2'1,21

Going back to element Kk we get :

<ch e 172

~h|(2)K + 'ﬁhlix + lry Qlik )
Ky Ky K

which yields :

< =2 2 2 2
lr, o0, 12 < ¢ (h |g,| + e, | S ET R
222y e Rl & 7 5

X 1,Kk 1,Kk
Summing up over k and Ty and using Lemma 4.3 we get :
leyp = ol < T+ 7 )il +lr, o )
ry¥ = 2y n s £n'y, ry B 7
and the result follows, with C; = 1 + 6C q.e.d.

As a consequence we have :

Lemma:4,5 : If ZZ is associated with partition TZ and QZ is the space

of functions that are constant over each element of Ty, , for each
9y € QZ s Bpely such that :
2
$-2

0 . .
Proof : Let 1, € Qh . According to [7], Lemma C2 there exist constants
C' and C" independent of qj and p € V such that :

2
blv,q,) = |z}

C'la, 1o < 1zl; < gyl




- 35 -

. Y

. . - K . _ .
Since qh is constant over kgl Kk s, Ke Th , 1f wg assoclate to YV

a vector field Ly of Zh in the way prescribed in Lemma 4.4 , we have:

.
b,(v,.95) = KZ g I q, div p, dz = b(p,4,)
eTh =1 Kk
which yields (4.11) with ¢, = (C')*

Finally, recalling (4.8), we have (4.12) with C2 = C1C",

which proves the theorem. q.e.d.
Now let us introduce an orthogonal basis Yy = U {YII(,YIZ(,... ,YI’:+1
Ke‘l'h

of Qh’ definedbysupp(Ylé)CK ,1<72<n+1, and by :

For n = 2 For n = 3
K, \ _ K,y -
Yl(g) =1 for ek Y,(xg) =1 for ek
1/2 for g € K, u K, ‘ + 1 forz e K, VK,
Y = e =
-1 for x € K, -1 for £ € K; U K,
-1 for g € X, +1 for z € XK, U K,
Ylg(g) = 0 for x € K, Ylg(g) =
+1 for g € K, -1 forx € XK, U K,

+1 for g € XK, U K,
Ylf(g):
-1 for x € K, u K

Let Ef be the components of qhe Qh with respect té Y. We then have :

n+l

q;, :_—2_ a; where
=1
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K .
.= ) £ yE 1sisn+1 .
% KeTy, v ’

Notice that Qz is the space gpanned by Y, = v YK
KeTh

Now we are ready to prove :

.o 2 .
Theorem 4.1 : 1f we use partition Ty for the construction of the spaces

ZZ and Qh defined in Section 2, the discrete Brezzi condition (2.6)

-8 .
is satisfied with Bh = Boh2 , where B, is a constant independent of %,

Proof : 1f the space of pressures was QZ » the problem would be already
solved, for in this case (2.6) becomes a trivial consequence of (4.11)
and (4.12). Therefore we will try to construct a suitable 3 ¢ Zh

. . K . .
associated with the pressures spanned by Yi s 2 <1 £n+tl 1in order to

prove (2.6) for the whole Qh .

—
For this purpose it will be useful to set m. = SiMf > L.e, the
oriented median of X with respect to Si s with m, = Imil s

1 =-1,2,..., n+ 1

Let also
n+l
= ] 4
1=2

Now over each simplex X , 2 will be such that i/K € Ba and E(Si) =
a2(M.) =0 ,1<71<n+t1 ., t
T

Let us first consider the case n = 2

Dropping the superscript X for simplicity and letting G be the centroid

of K we set :

206) = (g m -, m) .

It is easy to see that Z ¢ P, over each Ki » 2 € C°(0) and by a
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straightforward calculation we get (see also Figure 4,2)

2 _ 33 2 | meas(K)
lq'O,K - ( 2 + 253 ) 3 ~

and

(4.13) |zl, x < Cldly g

Let now n; be the unit vector orthogonal to m. and oriented as

~indicated in Figure 4.2

We have :

I q &v Z dx = J q é - Ry ds
K =1 aKi T

1w

£2/2+&; K,

L= O a4

Sy . M, S,

Field z associated with g € Qh

Figure 4.2

Using the elementary identity

wiro

nklmj . Eil = meas(K) whenever 7 # j
and performing simple calculations we get

. _ meas(K) 2 38283 2 2
qu div g dg = ——— (3, + =22+ 385 ) 2 gy o
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which yields :

(4.14) 'Z;h (2,9) 2 1q17 .

For the case n = 3 we choose

z(G) :'g" (_52 :E!Z + 53 m3 + EH L’h,)

Notice that here also we have (4.13) and that

IQIS,K = (&5 + E2 + £2 ) meas(k)

Now thanks to the identity :

.ng . Qijl meas(E%j) = meas(K)  1sksu , 1si<jsu , 12,5 £k

where Qﬂj is the unit normal vector to Féj oriented in a suitable
way, E%j being the face whose vertices are Si 5 S& and G , we get

(4.14) again, using the same techniques as in the two-dimensional case.

Let us now note that

by(z, q)) =0 ¥q, €9

For a given q, € Q; » let then y € Zh be a vector field satisfyin
(4.11) and (4.12)

6'732(8-2)

Now we set vy, = 2 + Yy where 0 is a parameter independent
of 7 , to be determined in such a way that there exists C, > 0 for

which we have :

2

2(s-2 2
" alt e 1g 1, )

(4.!?) bh(gh » 93) 2 C.(h

Since

- _ a208-2) 2 . Y
bh(gh ,qh-) = 0h bh(ﬁ ,q) + bh(li > qy) + bh(_q, s q)

and b, (y , q) <2 "%"h lqlo we have, according to (4.11),(4.12) and
(4.14)
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. 2(s-2), |2 2 §-2
by lugeay, ) 20 R lql, + Cola,l, - 2¢, 5 “la ] 1]

4 Ca

Ca

Therefore if we choose 6 = we have (4.15) with

Now, according to (4.12) and (4.13) we have :

s-2 [ s-2
12,1, sCsh [h lal, * lqll ] .

Thus from (4.15) we get

- 2(s-2) 2. 2
bh(gh’qh) 2:5 lal Iq-llo Cs 25, .,8-2, ,
—== — =20, h — >—hr""(Hh “lql +lql))

12| B0l + gyl o

~h'1 9l 1,
Recalling that & < 2 , we set (., = mnll, mn hs.2 ]

(14,)
h
Finally noting that
2 2 1/2
|q|0+|q1| 2(|q|0+|q1|0) = g1,
. CsCy 2-s
we have (2.6) with Bh = h qg.e.d.
2

Theorem 4.1 provides all the essential tools for obtaining error
estimates in the two-dimensional case. For the three-dimensional
element however we still need to derive suitable bounds for the term
of non-conformity Eh(g s D s Qh) given by (2.9), which we do in the

following :

Lemma 4.6 : Assume that the solution(y,p) of problem (P') belongs to
(H2(R) n V) x H'(Q). Then we have :

,1/2 '
(4.16) Ey(u,p,wy) < C [R(lyl, + |p|1) + h ]g|0,r* ] ﬂzghllh
Proof : Recalling (2.3),(2.4) and (1.7), and using Green's formula

we have :
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By (4,p,up) = f (C oy + Yp + f).4, dz + Zz [ IC g(u) om0y ds +
. Q Kéth oK

+ J g.w, ds
L R
r
According to (1.10) and recalling that Wy is continuous over the
bases of T;l we have :

3
E, (wp,w,) = } ZI (Ce(w.n, +pn,) .w ds .
h h KET; =1 FK Y 'K K h
Using again the continuity of wy, over the basis BK and (1.10),
together with the continuity of m"lh over all the faces of T2 5 like

in Lemma 4.2 we can rewrite Eh(g,p,gh) as :

3

1 .

By (w,ps1y) = KZ . {_Z C T le (w), w, 1+ Q'K(p,ggh)}—gf o 4@,y )ds
eTh 1=1 1 T

B (K) xP, > R

where gi(u) = [eil(g),eiz(}é) ;Eia(g)] , and T.K :

and §'K s BHY(K) x Ea -+ R are given respectively by :

3
. 1

T (z.19) = z f g.n(w—nw)djs+—f g.n(w—ﬂw)dxs

N SR P

3

$(p,w) =} j pn .(Q-Hw)d/si-ij pr, - (0 - T ds
K 1 FI,; K " 3 BK K

7=

Now we note that T‘K and S’K can be treated essentially in the same

way as we did for Oy in Lemma 4.2, which allows us to conclude that :

. 3 1
Ty(2,W) < Ch'5'1,Klw|1,K ¥ (2,0 e H (K) x P
and §,(p,w) s Ch lp]l’K bty g ¥ (p,w) e H'(K) x B_.
3
Since 1:;1 ]Efi(ﬁ)ll,K ]whﬁll,K <cC IE'Q,K It“zhll,K

we obtain :
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1
3!*9'(’211_“%) ds

(4.17) Eh(y,,p,yh) < C hllul, + lplxl *
. r

Now all that remains to be done is to estimate the above integral over

I‘* . We have :

. (w - Tw)ds = ] f g. (w -Ny) ds
fr"z % T BT B n " e

2
B being the bases of s
: P —* B be given by

(w) = I gw - Tw) ds , where g € L?(B)
B .

-~

Using the customary affine transformation 4 : K + K we define 7 : Pa"ﬂ?

A

B

Clearly we have :

by EZJ Gw - Tw)ds

A -~ 2
| 0, (w) | < c rE|fw)| Ket,
and -~ a
~ w - ~
Inll= _ swp ;(,) <¢lgly 5
we P, | |I1,K
Now we mote that 7(@)= 0 ¥ we PE , £ =0 or 1 . Hence by

the Bramble-Hilbert Lemma [6] we get :

|n(w)| s ¢ lgly 5 '“"1,12

which by standard transformations gives :

1/2
InK(w)I <Ch Iglo,Bh"ll,K

Now setting successively g = g; and w = wy s 1 =1,2,3 we get
Z

_ ,1/2
JI‘* g -, —My) ds < Ch "lgly px llzghllh

which, togethér with (4.17), implies (4.16) . q.e.d.
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REMARK : Using the same arguments as in the proof of Lemma 4.6 and the
results of [24] for nonconforming finite element approximation of ellibtic

boundary value problems, one can prove that for the problem
Find 2 € V such that

(Vz , W), = (fyv)y + (g,v)o_ ™ ¥veVv

approximated by
Find 2y € Vh such that

(25, » vh)h = (fyvy), *+ (g’vh)o,F* iivh €V

the following estimate holds :

I z—zhllh sch| 2], +'5h1/QIglo’r*

The optimality of this error estimate has been confirmed by numerical

experiments . [

Now, in order to obtain final convergence results we notice that if

solution (u,p) to problem (P') is so that U e Qd(Q) , we have p € Hd_i(Q).

Since P, ¢ Pa c P, , assuming that 1 £ d <2 , we can use standard
approximation results (see e.g. [2] and [10, Vol. 2, page 16]) , and we
get : )

inf g 1, < e AT g

2pely

inf | payl <ch®upi,,
p<%, ’ |

Now rétalling'(2.7) and (2.8) we obtain the following error estimates

" L . g .
for the case where (P') is approximated by (Ph)h with (Zh)h and (Qh)h
associated with a regular family of partitions (T;) defined in

h

Section 2 :

Theorem 4,2.: Let n = 2 and I, and F* be such that the solution to
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problem (4.1) belongsto HE(Q) , 3/2 - € < §< 2, and the solution (u,p)
to problem (P belong;to Hd(Q) x Hd 1(Q) , 1 <d< 2 . Then the couple
(uh?ph) solution to (Ph) satisfies :

d+s -3

IA

d-1
(4.18) |g—u~h]1 CLh ull ; + & ol 4 4 1

CLh

IA

.19 |pp,, #2675 ), + 1)

Theorem 4.3 : Let n = 3 and ') and I be such that the solution to
problem (4.1) belongs to H?(Q) and the solution to () belongs to
HA(Q) x A'(Q) . Then the sequence ((gh s ph))h converges to (y,p) as
h > 0 , in the following sense :

1/2

(4.20) Il gy, U, + Ipppl s C R Dlul, + |pl 3+ C R gl >

It is clear that (4.18) ~~ (4.20) imply convergence if s =d =2 ,
but the assumptions we have to make on I' for such a regularity are
rather restrictive. Nevertheless we would like to mention two important
cases where this optimal O(4) estimate for the Ql x L* error can be

attained.

1/2)

First, if for n = 3 no surface forces are acting on P , the 0(h
term vanishes. Secondly the same happens if we simply have P* =d.
Notice that the latter situation includes the Stokes problem as a special
case. It should also be noted that T = ¢ , both assumptions of
Theorem 4.3 and the values s = d = 2 in theorem 4.2 are realistic,

specially if Q is convex [14] .

A further remark for the case n = 3 is the following. As we mentioned
before, by introducing simple modifications in the analysis that was
carried out in this section, we could prove the existence of Bh > 0 such
that the discrete Brezzi condition (2.6) holds for n = 3 , irrespective
of the regularity of the solution of (4.1). The key to the problem is to

define the vector field Ly, of Lemma 4.4 independently of the orthogonal



- 44 -

projection rp 0, in a way proposed by J.M. Thomas [25]. Since the same

technique will be used in Section 5, we prefer to omit the proof here.

REMARKS 1. If T # ¢ only in few cases one can expect the solution of
(4.1) to belong to H*(Q). Among those we mention the case where both
F* and F} are the disjoint boundaries of two convex domains such that
one lies in the interior of the other. Notice that such a situation

appears to be unlikely to occur in practice for n = 3, even if in the

two~dimensional case this would correspond to a simplified model of a

tire.

2. A further word of caution related to regularity results is as
follows : It seems reasonable to consider that (u,p) € H (Q)x H'(R)
if T, and I'* are not only as above but also if ¥ = ¢ . However, only
for the latter case (Stokes problem) a rigorous justification of this

regularity result seems to be available [18]. 0

Let us now discuss in detail the two-dimensional case. Although
Theorem 4.2 has a scope much wider then Theorem 4.3, we must be careful
in asserting the convergence of (gh)h and (ph) . Just to have a clear
look at this question, let us assume that £ is convex and that d =§
(for such @ this is actually to be expected in many cases including

the Stokes problem).

Now if s < 3/2 we cannot guarantee that the displacements converge.
This immediately rules out the case where f; and f* intersect at a point
that is not a vertex of I. However, except for this case, according to
the regularity results for the solution of (4.1) [12], we have convergence
of the displacements whichever the angle of the corner of ' where Fo
intersects ?* . In particular, if none of those angles is greater than

II/2 we have :

i-€
=gl <€ BTE Dyl o+ llplly_ )

For example, if Q is a rectangle having one or more edges fixed, we

have practically optimal convergence rates.
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Now, as for the pressure, the condition of convergence is more
stringent, for we need s < 5/3. This value corresponds to an upper

Bound of 3N/4 for the angle of I' at a vertex where T} intersects ™.

Summing up, it is important to emphasize that for a convex Q, in
both cases n = 2 and n = 3 , optimal C Allul, + lpll] error bounds for
displacements and pressure are obtained if T =@ . This confirms the

superiority of 12 over triangulation T} (see e.g.[13] and [15]) .
h h

5. The discrete problem in the nonlinear case.

The purpose of this section is the study of a discrete analogue of
(P") , with an emphasis on the asymmetric elements defined in Section 3.
For the definition of the discrete problem below we will follow the main

lines of the work of Le Tallec [16] .

We first need a finite dimensional space of displacement vector fields
Zh to approximate Zﬂ. For the sake of simplicity we shall confine
ourselves to the case where th Zn , although the nonconforming case
can be treated in a similar way to the one which is given here. Notice
that in so doing, we are ruling out the study of our th:ee-dimensional

asymmetric element.

We are next given a finite dimensional space of pressures Qh to
. ¥ . e . . .
approximate @ , with Qh c g . Now, like in the linear case, we weaken
the requirement that the approximation Yy € Zﬁ of the solution ¥ to

problem (P) satisfy exactly (1.1), in the following way :

The incompressibility condition is to be satisfied only at those
points of § to which we attach the degrees of freedom of Qh . This 1is
equivalent to require that 4y belong to an approximation %h of X defined
by @

Xh={2h/2h€Z ’bh(gh’qh):o .thEQh}

~

where bh is a suitable approximation of b given by (1.13)
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A natural way of defining Eﬁ is to set

(5.1) by (v, , 9) = Kz by (% 5 @)

where bK corresponds to an approximation of the integral of (1.13),
restricted to element K, whose quadrature points are those associated
with the degrees of freedom of Qh . We consider two possibilities of
performing this numerical quadrature, according to the way of defining

the elements of Th .

To be more specific, if the domain  is a polygon like we have
considered so far, the elements of the partition T;, are as prescribed

in Section 2. Notice that in this case we have :

Case 1) Every K ¢ Th.is the reciprocal image of the usual reference

element K (see Figure 5.1) by an affine transformation AK : K 2K

In this case we define the approximation of I qy [det(L + ¥ u,)-11dg.
X &

to be :

m
-~ X
(5.2) by(v,,q,) = j£1 we qp(a;) [det (L +% ;) = 1] /9~C§ meas (K)

!

m . . .
. is the set of points used to define qh/K-’ and the wj

K
h x.}
where { J J:]-

are the weights of the numerical quadrature formula.

On the other hand, if  has a curved boundary, it may be interesting

to partition it into curved elements defined in the classical way,

namely :

Case i) Every K e T, 1is the reciprocal image of K by a bijective
isoparametric transformation -/QK : K K. This means that

jQ—; (é) S [af(g),..., aﬁ(é)] , where dg e P, 1<% <n, P beinga

space of shape functions defined over X , such that v, = vh/K 54% e P

¥o and VKeTh.

ne
In this case the approximation of [ qpldet(lL + Y v,) - 11 dg is

given by : X
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. — -~ ~ S~ - -1 - >n-1 N -
(5.3) | Fk(gh, q) = jg:l w qh(gj)[det ,Y,(Eh +ﬂK ) -det gﬁK_ '/"fvj meas (K)

-~

where {55}221 is the set of points of K whose reciprocal images through

)Q}( are the points of K to which we attach the degrees of freedom of Qh .

¢ 53(0,1)

5.(1/2,1/2)

~

A

oY
~

§,00,0) | 8,(1,0)

The reference element X for n=2

Figure 5.1

Now, taking into consideration (5.1), we can verify that in bothcases

~

7) aﬁd 77) we have for all Dy € Xh :
(5.4) dét(% + v Eh)/QK =1 ¥j,1sj<m and ¥ KerTy.
d

Indeed, in cgse %) this is trivial provided reas (K) in nonzero for

all K e Th . On the other hand, from the well-known formula of Calculus

[5] we have :

J(v) = 5(2) J(4) where Z = A(x) and é o Alz) = vlx) - —
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Thus we see that (5.4) also holds for case 7Z) by setting u(g) =
gh(g) +x and A :ﬂK' , and taking into account the identity

I ) = FaY .

REMARK : 1If the éj's are the points of a quadrature formula that

integrates exactly functions of form J(éh) over X ‘Vgh € P, then
like in [22] we can draw the following conclusion :
m ~
If (5.4) holds and ) w; =1, ve have meas(K) = meas (k)
¥ e Ty K being the deformed state of XK induced by Ly, - a

Now we further set

8b,
4 =

and we define the discrete mixed formulation of problem (P) to be :

Find(u, , py) € ¥ *x @, such that

(F) alwy o ) *BLy . om . a) =) Fu el

bh(gh s Q_h) 0 4 qy € Qh
According to [16], the existence of a solution to problem (ﬁh) is
directly dependent on the validity of a nonlinear discrete Brezzi-type
compatibility condition between the spaces Zh and Qh . However now this
condition must be expressed in terms of the vector field 4, itself. Since

Y4y is supposed to minimize the energy #¥ 1in some sense, the following

result proved in [16], Theorem 4.1 is of crucial importance :

The problem :

(5.6) Find 4, € Yh to minimize E';(%h) over ih has a solution .

Now, let be a local minimum of ¥ . Let also ll.ll be the norm of

u
~h
¥, and |.| be the norm of Qh induced respectively by V and L2 Q) .

The nonlinear compatibpility condition can be stated as follows :
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There exists Bh > Q such that

~
’

(u, ,v; A3, ) ' '
7 (4o 2 A
.7 s T 2 8kl ¥qp €9
v, eV <h
<h-~h
According to [16], Theorem 4.3, if condition (5.7) is fulfilled, there

exists a unique pressure Py, € Qh such that (%h 5 ph) is a solution to

(Py) .

Let us now examine the particular case of the spaces Zh and Qh defined
in Section 2 (for m = 2). In this case we have m =1 , w, =1, and the
. K . . . . .
quadrature point £, is the centroid of K in case ©) and the image of the

1
centroid of K through transformation j%k? in case it) .

It is then possible to verify, using arguments already developped in

L
Section 3, that in both cases we have :

bh(zh » qh) = [ qh[det(g + v gh) -1 1] dx

2,

and

T Zv

v, dz

bé(gh>, 2y s qp) = IQ qp Tadj (L + T u)]
h

—

o
where §; = U K and 9, = Q, . This means that, at least when
h o, h h
KetT
B L ~
- = r = 14
Qh = Q we have bh = b and bh = b,

~

REMARKS : 1) Definition (5.1) of the approximate functionals bh allows
us to take into account implicitly the case of a nonconforming space Zh .

Notice that in the case n = 3 the above identities would not hold only

because of the nonconformity of zh .

2) Strictly speaking, if Q 7 Q}z we should refefine problem
(ﬁh) by replacing @ and L by approximate functionals Eh and Zh that

take into account integration over Qh rather than over @ . 0O

Let us now prove that, under suitable assumptions on Uy the

compatibility condition (5.7) is satisfied. We treat separately cases 7)
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and 7¢) for the two-dimensional asymmetric element. Like in Section 4 we
shall.confine ourselves to the case of a partitipn of type T; .
Nevertheless for partition Ti , in some particﬁlar cases, the existence
of a solution to problem (Ph) can be proved by introducing simple

- modifications in the analysis of [15] given in Chapter 4 for the @, x P,
element. Actually, at the end of this section we give a short account of

the arguments used in [15] together with these modifications.

For the sake of simplicity we will work with the linear manifold ZZ

of Y - defined to be x + Zﬁ . We also define the following subse*

~r _ X, X ~
X, =y / 4y -z e X}

In both cases 7) and 77) we shall prove the validity of (5.7) under

the following basic assumption on 4y,

ASSUMPTION A) Let ng denote the piecewise linear interpolate of EZ
defined in Section 3. The triangulation fi of ﬁfz: I gZ(Qh) defined

to be :

» -

T; ={k/ k=1 EZ (K) , K ¢ TZ} »

is such that there exists a constant o > 0 for which we have :
% area(X) > area(k) > a area(K) ¥ K e lez . 0O

Notice that Assumption A) implies that J(HEZ) >0 a.e. in Qh .
It also implies that fz belongs to a regular family of partitions {fz} s

whenever % belongs to a bounded subset of W (Qh) ¥ n.

Indeed, in this case 1f we set :

1

h=max {4 diameter of 12}

2
Kerh
and

= min {6K = diameter of the inscribed circle in X} ,
KeTZ

LAY
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20 ¢?

we have p h ~ 2 ¢ ¥h , where c is given by 5 7 with

U=max |ul, , »c being the constant such that ohl2c>0
h 1] .

VTZ € {TZ}h , as one can easily verify.

We now consider case %)

In this case both Q = Qh and Q = Qh are polygons. Thus, since
HEZ defines an affine transformation over each triangle X onto X s
we can define a space Eh over Qh associated with Th in the same
way as Zh is associated with TZ , and ih will have the same structure

as Zh .

Also we define é to be the space of pressures analogous to &; for
h h

triangulation TZ .

. . 20
Let us first consider the subspace Qh of those pressures that are

constant over K > K being a triangle of T, . According to [7] Lemma C2,

”~

ifg={2/ D e 5LQ) , p=0 onTy =T, }, ¥ 6% € QZ , dvel
such that

(5.8) (div v, qh) 0 d 2 éo | q'Z |2

k4 2

(5.9 Iéllg,2 < Gl9°1g &

-

where B. > 0 and C. are independent of ¢° .
0 0 qh

Lemma 5.1. There exist constants B, > 0 and C(, such that with every

bl - 2 - .
éz € QZ we can assoclate a ¥y, € Zh that satisfies :

r
»

b rd . 3
(5.10) Qh(S) = 0 for all vertices S of a supertriangle U Ki L

the Ki's being the triangles of '‘a supertriangle Kt:Th, where

T, is the first partition of Q upon which Tz is constructed.

(5.11) (@v iy, 4900 5= Boldsly s
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5.12) gl oS Cldply g
1,0
Proof : Let ée }:’ satisfy (5.8) and (5.9). We associate withé a
vector field u, e Y, such that wh/f satisfies ¥ K € Ty <

Qh(é) =0 if g is a vertex of éi 7 =-1,2,3,
p ds
B.

- » 3
= - 1
By M) = 3

meas(Bi)
where Bi is the basis of Ki and &i is its mid-point. (S.IG) is thus
fulfilled.

Like in Lemma 4.4, letting {h be the partition of 2 into supertriangle:

/4 » K¢ Ty » we have :

J,divujhdng,dfvédg ¥Ke
K

A\
By

This yields :

(divw, ,4°) . =(divd,q°) .
h h 0,0 h 0,0

which in turn gives (5.11), taking into account (5.8) .

In order to prove (5.12) we first use the Trace Theorem and we get :

IQh K.

— % 1337 < -
o =Gl cly s e ) IR

|
1,X.
1

which according to Assumption A) yields :

lw, |, sc@, w) Ipl, g with C <o
1,9
Thus using (5.9) we get (5.12) with 50 =C,C . qg.e.d.

Let now 4. = area (éi) 1 = 1,2,3. Without loss of generality we

can assume that 4, 2 4, = 4,
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)l -~ .
Let Qh be the subspace of Qh generated by the set of orthogonal

functions {nf s nlg }Ker such that 8upp(n17:() ck ¢ =2,3, with :
n o

nk = -1 if z ek,

K . - 7
n, =20 if zxeKk,
K _ . - 7
n, =-1 1if zekK,

7] -

n:-—-—z if x e K
5, L€ 4

A\

As one can easily verify we have n§ 1 q; ¥<?Z € é; , T = 2,3,
- - )09 ;1

and Qh Qh Qh .

Let now q; be any function of é; . We can write :
(5.13) g} = T (K nk+gEnk)

. q}h = q5 Ny q3 L

KeTh

where the qf 's are given scalars.
Lemma 5.2 : 1f Assumption A) holds, for every éh € éh there exists

éh € jh satisfying (5.10) together with

for soﬁe éh > 0 1independent of &h .

Proof : Let ZZ;z :q;"L + q;L where q;oz € é;z and q;t € é;z

We first construct a vector field éh € Eh satisfying (5.10) in the

following way :
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-

gh(@) = 0 for every mid-point M of the basis of K s Ke {Z .

If G 1is the common vertex of X K, and K, we set :

1 ° 2

. p o e ae .
where the més are the oriented edges G Si of the Ki s ,as indicated in

Figure 5.2 below, and we refer to (5.13) for the meaning of qf .

S,

Superelements of partitions Ty and T

Figure 5.2

First of all, using Assumption A) one can easily estimate :

- 1
. 3 < 2

G.15) |z| . <0 () 19,14 4

. 1,0
Now dropping the superscript K we get after simple calculations :

3
gl . = q2In + q5In <2 (g +q)
» - 2 - 3 -
h 0.k 2 % 3 2 12 3

L] s k] 3

2 2
l |

-

Since Assumption A) implies that 45 2 a? 4, we have
172 251 2 2
h 0.k o

’
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Now we prove that
L ,E 1 ,12‘ .',.
(5.16) (dv 3 , qp)g g 2°€ ltho’g , e'>0 .

A straightforward calculation gives :

2
A1 + 5143 2 51582 +62 2
= + o ———— + + —— +
[, div éh qh db (8,+ 4, 5.F 3, ) q, (8, ; ) q;

6162
S i St i 2
Thus we have :
4 2: 1 - > n 2 + ¥ 2 " A+ A142
Ii div Z, q, dz (28, + 83) a, (251 + B2)q5 + (28,-5, 62+b3)q2q3

Now as one can easily check, for any o > O we have :

2

+ 28,8y < u(s1+52) (81+43)

which yields

IK div gh qh dg = 4 (qz * q, 2)

This in turn implies (5.16) with e’ = a“/Q

Finally we proceed like in Theorem 4.1, namely we set éh = eéh + éh R
where Qh is defined in Lemma 5.1 and 6 > 0. From (5.11),(5.12), (5.15)
and (5.16) it is clear that for 8 sufficiently small there exists Bh >0

such that (5.14) holds together with (5.10). q,e.d.
Now we further prove :
Lemmg 5.3 : With every q; € Qh we can associate Yy € Y; that satisfies

(5.17) gh(S) =0 for every vertex S of a supertriangle K , K ¢ Ty -
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: b, (y ) q,)
h % s X K]
(5.18) h h u 2 Bh Ith
Hyhﬂ ‘

where Bh is a strictly positive parameter independent of q -

Proof : Using an identity encountered in [15, page 108] we obtain :

>

(5.19) by(My 5 By » 4z) = L’z q, div v, dg

where p, (%) = p,(z) .

On the other hand, from Assumption A) it is straightforward to

establish the existence of a constant C(Q,gh) such that :

ol < ¢ @u) 2,1, ¢

whereas
_1/2 -
lq | .
h a,R

’

Ith sa

Now, if éh is the field defined in Lemma 5.2 we have (5.17) and

(5.18) with B, = o'/? o1 B, >0 . g.e.d.

As a final preparatory result we have :

Lemma 5.4 : Under Assumption A), for any g, € Zh satisfying (5.17) we

have :
~, o ‘ .
by (4, > 2 > @) = byl u, , Ly s ) Vaq,¢€q

~

. . . P ' . .
Proof : Taking into account the definitions of bh and Qh if we prove :

2

‘ adjTVu‘r.Vvdr: ady‘TVHux.Vvdx#Ker
~ Ky o 2Ry 9 ~g e 2 By R A
K K
we have the Lemma. In order to prove the above equality we rewrite :

.T X 4. 1 _
[ o W vw = tin 3 [Maemg t g e 0y

I—J(g+th+§sp)]dg;
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‘where ¢ is given by (2.1) and 8 = 4 u,

- 204y tue) s u;

2 .
. 2.
up at node Sz of X ¢ T, (See Figure 1)

being the value of .

Passing to element X using the affine transformation and notations

already encountered in Section 3 we get :

fo

680 K

x . 1 Z2,- - - %, - - -
Yy - Ly, dz = 1im E-I,EJ(x +Bw+90 gh)—J(g + B v)ldg

Expanding the right hand side above and taking the limit we have :

Tz ) w, % 0,
(5.20) J adj ¥y, .,\Yy‘hdgzj)[d’zv 2h+81(—— —_ - —
K . K 3z, ox 3z
2 1 1
a’l 35 2_123_ 8:0 - -
82( 9 1 5}; %2 5};) } d@, zh -

y V. v 5.
(2 9 _ T o Z’ _ T 2 .7 _ J 7 ~ L~
f (3%, % dx, 3, Yag = [ A Sl - f’ YO
i 1 1 9K Sk

Y
»

are the vertices of the basis B of X

where Sk and Sj s
v

Si )
ince “'h 3/5

a constant vector Y. This gives :

Sv. .o ov, 7 -

_t % __r ¥ yar = J 2039 _ 1 .23,
[Eaxz dx, % _x’z)~ —Y’LE L Sl ‘pésJ =0
K k 4

and the result follows taking into account (5.19) and (5.20).

satisfies (5.17), —— over this basis is of form Y g@
7.}

-

o
__.) +
o,

(vi,v2) .

el

for

g.e.d.

Now, as an immediate consequence of Lemmas 5.2,5.3 and 5.4 we have :

Theorem 5.1: If 4y satisfies Assumption A) for any a > 0, (5.7) holds

in ease 7).

Let us now turn to case it).

O
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In this case Qh will be the union of triangles with one parabolic edge,
such that its boundary Fh'coincides withT at least at the nodes of those
triangles that have a parabolic edge (basis) on Ph . Let also I, be the
portion of Fh consisting of such parabolic edges that have its

three nodes on Fo .

Now instead of Assumption A) we make a stronger one, namely :
ASSUMPTION B) J(%Z) >0 almost everywhere in @, . 0

Taking into account (3.5), the above assumption implies Assumption A).

. x . - .
Moreover, it allows us to say that Yy 1s a bijection between Qh and

ﬁh = EZ (QhL In this case Qh is a domain that has the same structure

as Qh , in the sense that it can also be viewed as the union of

isoparametric elements X , where X = Wi(k) , Ketl .
<h ) h

~ ~ ~t
Let then TZ be the triangulation of Qh consisting of the X s .

3
Similarly, let Ty be the set of curved superelements K = u Ki upon
. 2 ., ~ . L=
which Ty 1s constructed, and let Th be the partition =1
~ ~ f\J
of Qh into curved superelements X where X = EZ(K) > K e Ty (see

Figure 5.3)

h area(Ki)

area(?i) , 7 =1,2,3

Supertriangles of partitions T, and ?h

Figure 5.3



For simplicity we consider the case where ¥X € Ty area(K )= area(K,) =

area(K,) , although the more general case can be treated without major

difficulties.

Now if Ki = HEZ(Ki) , Assumption B), hence A), implies

%area(%)23area(Ki)2aarea(§), 1s27<3,
; %) = -1
Since area (Ki) = area (K'zl) = 3 area (K) ¥K ¢ L

Let us now define the following spaces of functions defined over ﬁh :
- {3 p X - :
G =1, /a° = %

~

oy ~ —
=0 /% 8 T2 s el
We equip Vh and Qh with the norms Il . I and |. | given respectively
by llvhll = Ighl - s Qhe Y, and lth Itho 5 qh € Qh
1,Qh h

, .l is actually a norm).

(Since Qh =0 on T,

h

Let us also denote by x the new variable gﬁ (x) .

More generally, for every function f defined over 2, we denote by F
h

the function defined over Qh such that f [uh(x)] flx) ¥x e Q, -

In order to prove that (5.7) holds, we use the following theorem given

by Le Tallec :

Theorem 5.2 : [16, Theor. 4.5] : Under Assumption B) (5.7) is equivalent

to :
3 Eh > 0 such that
Jﬁ q, vy, dz
5.21 s h o
G20 e - > B, 17,
v, Il

where div represents the divergence operator with respect to the z

O

variable.
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The above result states that if suffices to prove the linear discrete
compatibility condition between spaces Zh and Qh to have existence of a

solution to (Ph) in the isoparametric case.

Now, in order to prove (5.21) for the asymmetric triangle we give the
following lemmas :
Lemma §.5. : Let 52 be the subspace of 5h of those functions that are

constant over K ¥ K € ?h.' Then for every 5h € Q; there exists a vector

field gh € Eh such that :

v o~ ~ ~ a2
(5.22) jﬁ 9, divw,dgz 28, lth
h

5.23) Nyl <G | q |

where B, and Ch are strictly positive constants independent of aé .

Proof : According to [7] , Lemma C2 , for a given ah € 5; , there exists
Ve Ql(ﬁh) with p =0 on P“h such that

and |v|1 g < [o lghl .

Now we construct a vector field w, € ¥, associated with v in the

following way :

. >~ o~ . . K
For each triangle X € T, » ve define two perpendicular axes x,

>K . . .
and x_  oriented in such a way that they correspond to rotations of the

. . > >
reference cartesian axes x, and x, of an angle oK .

Dropping the supercript X for simplicity, we determine ¥ in such a
way that the straight line passing through nodes §2 and §3 of X forms -

an angle of II/4 with both ;3 and Ek

. . . > .
Let xy be the variable with respect to axis xj , 1 g s 4,




~2

Clearly z, and _—:54 will coincide for any pair.of elements of Ty that

3
have a basis B as a common edge. Let the local numbering of the vertices

of each element respect the usual permutation convention (in this way,

S, and S; interchange within each element of such a pair, as shown in

Figure 5.4). Now for each X e ¥;z » let 4 be the curved abcissa along

~

B with origin in S, and 7n(4) denote the outer unit normal vector

along B with respect to X . We also denote by nj(é) the component

. >
n AN
of n with respect to .'z:J

Element K and associated

=
axes x3 and x,

Figure 5.4

Let W = W,,w,) , Zi:lih/z and w,; and W, be given by

‘W3 =Wy cos P+ Wy SIN Y
W= =W, sin ¢ + W, cos ¥
Now we check that we can uniquely define % ; and %, (and consequently
W) in the following way :

The values of w; and w, at the vertices of K are given by
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w (3 = v, =0 i=1,2,3
The value of w3 and W, at node gu are such that

Ig Wy nj(é)dé = I~ v; nj(A)dA J = 3,4

. . + d
where Uj is the component of v with respect to xj ., d =3, 4.

' Since Yy € Zh we can compute the coordinates «; and ¥, in terms of

the reference coordinates Zz, and 52 (see Figure 5.1) used for defining

-~ -~

Pa over K , in the following way :

x3:[45: -2(5?"‘213 )1z x +512.’;1 +Ef£2+x13
ro=(uEs -2 +E, )18 & +E, 5 +E, 3 +a,
where Ef = xé - x; and Ef = xﬁ - x: £ = 2,3,4 and
x7'3=:1:71’ cos¢+x12: sin ¢
x%:xz sincp+x§ cos ¢ 7 =1,2,3,4 .

Using the above relations we make a change of variables in the

integral |_ wj nj(é) ds , § = 3,4, namely from 4 to 4, where 5 is
B -~ -~
the abcissa along the edge B of K with origin in S, (see Figure 5.1) .

Q

dxa

T4 and nu(b) = -z for a vector field

Since we have na(é) =

g

f defined over B , whose components with respect to ;3 are f& >
J = 3,4, we have for the x,-component :
§3 534\ -
Famsts) as = | £, Eeas = | 5|33 di, , dvy do2 ds
~ = Bxl as or ds
B - 2 52 z2 A A
x1+x2—1
o ds. .
where f.(4) = f.(s) . Since S (-1)* 2 we have :
d J En 2
iz, sy
J fyna(s)ds =j I3 £ (8) LESE )+ 148, ~ 2083 + £3)1(1- &V2)} db .
B 0
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whereas an entirely analogous relation holds for the x,- component.

Now since .,2 = 2 U3(§ ) 5 (V2 - §) we have :

J/B

(5.24) L won, (8) ds = % (£3-£3) w3(5,)

and analogously

(5.25) mewu& = 208 -8 w3
B

3 2 .
Since by construction IEi— E§ | = |&2 - &3] =<%? length(B) # 0 ,

W can be defined uniquely.

Furthermore, proceeding in the same way for every element we can

define a vector field lzh € Zﬁ such that :

§y, Qh
and consequently (5.22) holds .

On the other hand we have

g1 = J L(mwﬁﬂmwﬂﬁ@: ¥
Ee?; K Ket?

NS

But
2

K
where p,(2) = ﬁ“(é) s Dy (Z) =4z

Now, according to Assumption B)and standard

I~ 5h . nl(s8) d&s = f; v.n(s8)ds for every basis Bof X ¢ ?h .

V5h€52 3

2 ~
LIWﬂzﬁ :W(a)LI@A Eo.oJ=3n
K

8
I

x -1 A
Sk P @)

estimates we have :
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where pK denotes the diameter of the inscribed circle in K .

Now if area(X) = area(é) we clearly have :

SK > 5K > 2ar§a(K) ., 20 area(K)

BhK 3h|%h|1 .

If area(X) € area(K) we use Assumption B) together with geometrical

arguments sketched in self-explanatory Figure 5.5 (we omit details for

the sake of conciseness). It is then possible to prove that SK is greater

than the diameter of the inscribed circle in a triangle K’ , defined to

be the homotetical reduction of K with ratio 1/2 .

Hence we have in this case :

~

to 3 at gz and S

~ 5 area(k) 1 area(X)
0, 2 s L areal’/
8 %'EK ° h'%h|
1,00
8
~ H/2
|
A
_\ ~ -
/ 5~ - -
é S;'\ Tangent
|3|sin @ ::==-¢§=?“Tangency points
2|Blsin B

Triangles ¥ and K when area(X) < avea(X)

Figure 5.5.
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This gives :

4
Rty |
r g ~ C <h o) c’ 4
f lz p4|2 de < ) ' - 1‘ ) < —: %hll ©
% . Fmn (a,1/2) [area(K)] c :

where ¢ is the constant of regularity of {Tz} (see Section 2) .

On the other hand, by construction , (5.24), (5.25) and the Trace

Theorem we have :

_ 5 vl gy % luglyw

lw.(S )] < <C 2 1,

Al - 7 -
3 Pk

Therefore

-1 3 ~ -1 3 ~
lg,l <Cchr |yl lgl, 5 <c(Q)h |yl 2]
h Rl w ~ LSy h AP 1.3,

. . o — o~ 3
which proves (5.23) with Ch =C (Qh) I%hll’w /h. q.e.d.

Let us now construct a vector field %h € ¥  associated with the
subspace 52 of 5h , such that 5h = 52 @)52 . Like space Qz of

Section 4, 52 is spanned by a set of orthogonal basis .functions

{Yf ,Yf }% ~ defined in an entirely analogous way. Now we prove :
€Th

~1 . ~1 .
Lemma 5.6 & Let qﬁ be a function of Qh whose components with respect to

K ' . > .
Y, and Yf are respectively Ef and $§ , K e Ty « Under Assumption B),

~

the vector field ih € zh that vanishes at all the vertices of ?h and

whose  value at the common vertex G of Ki s 1,2,3, Ki c K is given

by (refer to Figure 5.6)

~ L~ K K
gh(G) =-t2m +&5 m;

satisfies :

(5.26) 12,1 < cag)lghl C (g) <o



- 66 -

~ ~ ~ ~ ~ g2 ' . | ~
(5.27) Jﬁ dz div z, dr =2 Bllth with B, >0
h
Proof : (5.26) is a trivial consequence of the definition of Eh

On the other hand a straight forward computation gives :

%5

[ ~ y o~ o~ 2
J~ q;L div 3 dz = (85 + 8,) == +(28,44,) Ea+ (38+43-8,)E2 &,
% .

where Ai = area(Ki) 2 =1,2,3 .

Assuming again that the local numbering of the nodes of X is such

that 4, > 4, 2 4§, we have :

2
L 2sa a5+ 80" -5 (8 + 308 + 52) <0

if we just have &, 2a area(k)/3 >0

Thus we can write :
IEC;;’L div gh dx = % ( ‘;’2 + 823) area(K)

which yields (5.27) with B, =2 q.e.d.

~

Superelement K

Figure 5.6
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Now defining p, = 0 8, + %, *, from (5.22),(5.23),(5.26) and (5.27)
we have (5.18) just like in Lemma 5.2, for a sufficiently small 6. Hence,

as an immediate consequence of Theorem 5.2 and Lemmas 5.5 and 5.6 we have:

Theorem 5.3 : Under Assumption B) the compatibility condition (5.7) holds

for case ii). O

REMARK : Assumptions B) and A) witha > O express in particular the
fact that the area delimited by the basis of the triangles in deformed
states B and B do not account for the whole of area(X) = area(K) . This
fact was crucial for the assertion of the existence results in both

cases ¢) and 77) . 0O

Let us finally consider the existence of a solution to problem d;h)

when one uses a partition of type Ti for a special case described below :

~

Let  be a domain that can be viewed as the image of a rectangle
A

with boundary [, through a mapping A4 : z + ﬁ(@) . Here w is an element

of a reference vector space Zﬁ such that det (L + ¥ w(g)) >0 a.e

in ﬁ‘. EZ is defined in tEe same way as Zﬁén Section 2, for a
compatible partition fi of © into equal triangles illustrated in Fig.5.7.
f% is constructed upon a first partition i%' of & into rectangles by
means of a uniform M x ¥ grid, in such a way that the edges of fi over

A

which éh € Zh is necessaﬁily linear, are the edges parallel to the
>

reference axes il and 52
S,
Z2
N =75
/ a8 o
q.
7 8 12 16 20
5 )
~
ol 3 7 11 15 19 H=n
b )
1 2 6 10 1t L 18
:
1 1 5 9 13 17 !
P R N S
- ~1

Reference rectangle { and partition T,

Figure 5.7
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We assume that the fixed portion of T over which Yy € ﬁz vanishes,
is the union of edges of rectangles of X, - If we define Tj to be the
image through A of Fo it is clear that Fa consists of polygonal 1lines

‘(eventually disjoint), just like [ = A(T) .

Now we define Ti to be the partition of Q into isoparametric elements .
K that are the images of R through A , ¥ Ke f% . Similarly we define

X, to be the partition of  into elements that are the images through 4

of rectangles of X,

Notice that the union of a pair of elements K and XK' of TZ that are

the images of two triangles of fé contained in a given rectangle of Xp >

is a quadrilateral (with four straight edges). Therefore every element

of Xz is a quadrilateral (see Figure 5.8)

-~

53

9282

1
Elements of Xh and Tk

52

Figure 5.8

Now, according to [16], Theorem 4.5, it suffices to prove (5.21) to
assert the existence of a solution to (ﬁh) , assuming of course that

J(gzv >0 a.e. in Q .

Let us denote the quadrilaterals of Xy by 52 , T = 1,2,..., Mx N,
where Ri = A(E%). Ri are the rectangles of iﬁ that we mumber in a
systematic way along the columms, row by row, as indicated in Fig. 5.7.

Yo

Let n = {ni’ni+MXN =1 be the basis of the space of pressures Qh

associated with Ti , in such a way that supp(ni) c Ri and

A

sztpp(n£+MxN) c R"é , 1 <72 <MxN, with :

I
[
<«
8
m
>~

n.(g) =

ni(g) = -1 Yx e Ki

where Ki and Ké are the curved triangles into which Ré is subdivided.
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Let also v = {Bi}gif be the usual basis of ¥, , where ¥V is the

number of free nodes of TZ . Each X is associated with a degree of
freedom of Zh which are assigned to two different blocks. The first one
corresponds to the 2MxN components of a field of Zh that are associated
with the nodes lying in the interior of Ri € Xz while the remaining
degrees of freedom are assigned to the second block. Now we number the
degrees of freedom of Zﬁ in such a way that those in the first block
carry the numbers from one to 2MxN and those in the second block the

numbers from 2MxN+1 to 2NN .

Finally, let Bh be the (2NN) x (2MxN) matrix whose entry at the Z -th

row and J-th column is given by

J n. div V. dx
Q ¢ J-

According to [15], Lemma 5.1, the existence of Eh > 0 such that
(5.21) holds is equivalent to the rank of Bh being equal to
dim Qh =2 x N

In order to examine this rank condition, it is convenient to split Bh

into four rectangular matrices, according to the pattern below :

_ |
A Lot 2MxN | XL ... 20N
1=
1 I
: |
B! I B"
h . h
|
o 5
MxN+1 ‘
]
3 f )
B B
& : 2
!
2MxN i
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First we notice that all the terms of Bi vanish, since the basis .
functions of Zh associated with nodes lying in the interior of the

quadrilaterals have zero flux along its boundary.

Secondly, recalling (5.24) and (5.25), we can say that the entries of
B; in the positions j = 2Z-1 or j = 22 , 1 <72 <M x N, are given by
expressions of the form * 2(x£ - xi)/3 s k =1,2 , where (xf;xf) s

£ = 2,3 are the coordinates of the vertices of the curved diagonal of
Ri . Since those veftices are necessarily distinct, at lgast one of
the above terms of Bh is nonzero.

Finally we notice that matrix Bi has exactly the same entries as the

matrix studied by Le Tallec for the le P, element associated with a

partition of Q into quadrilaterals, like Xh .

With the above considerations it is easy to conclude that the rank
of Bh is 2M x N , provided the rank of B; is M x N. Therefore the
condition of existence and uniqueness of p; such that (gh R ph) is
a solution to (Ph) becomes the same as in the case of the @ x P, , at
least for domains defined as above. That is why we refer to the work of
Le Tallec [15] for the proper answer to this question in various

situations depending on the shape of 'y .

Nevertheless, with the purpose of giving a brief illustration of his

results we mention here the following case :

If T, 1is contained in a set that is the image through 4 of two non
disjoint edges of § , then the above existence and uniqueness result is
guaranteed. If on the other hand T'; does not fall in this category this

can only be asserted under some restrictive condition.
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