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PROPRIETES DE DIFFERENTIABILITE POUR DES
PROBLEMES PSEUDOPARABOLIQUES DE CONTROLE PONCTUEL

par

Luther W. WHITE
Université de 1'Oklahoma
Départment de Mathématiques et Centre de
Ressources Energétiques
NORMAN, OKLAHOMA 73019 (USA)

RESUME :

On étudie la différentiabilité d'une solution u_ au

a
probléme de contrdle optimal :
Myt + Ly = v(t)e(x-a) dans Q x(0,T)
y(C) = 0 dans o
e yiz =0
j(a) = minimm W12+ [ly(Tsv)-2?
. L2(0,T) L2(g)
soumis @ Vv €L2(0,T)

par rapport au point a.
Pour le cas ol ¢ est une "identité approchée"” indéfiniment
difféfentiab1e, on trouve que Jj est indéfiniment différentiable.
Lorsque ¢ est la masse de Dirac en a , §(x-a), on montre
que Jj(a) est différentiable si QciRz et z¢ H%(Q).
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N ' Differentiability Properties of

Pseudoparabolic Point Control Problems®*

by
L. W. White

Department of Mathematics and Energy Resources Center, The University of
Oklahoma, Norman, Oklahoma, 73018.

Abstract

We study the differentiability of the solution u, to the optimal

control problem

v(t)e(x - a) in Q x (O,Ts

Myt + Ly =
y(0) =0 in @
yly =0
¢ . - 2 2
j(a) = minimum |v|°, + ly(Tsv) - zll%,
L(0,T) L°(R)

subject to v € L2(0,T)

with respect to the point a . For the case ¢ an infinitely differentiable
"approximate identity", we find that j is infinitely 4ifferentiable. For
¢ the Dirac measure at a , 6(x - a) , we show that j(a) is differentiable

if @c R and z ¢ H%(R) .
AMS (MOS) Subject Classification (1970). Primary 435A20, 49B25.
Key Words and Phrases. Pseudo-parabolic equation, point control.
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Differentiability Propefties of

Pseudoparabolic Point Control Problems

by

L. W. White

1. Introduction.

In this paper we study the following problem. Let & be a nonempty
bounded open subset of RrP , P=2or 3, with a smooth boundary T , and
let Q=T x (0,T) , 2 =T x (0,T) , and a € 8 . Consider the pseudo--

parabolic problem

v(it)p(x - a) in Q

M + Ly =
yt y
(1) y(x,03v) =0 in @
v y(x,t3v) =0 on 2

where M = M(x) and L = L(x) are second order symmetric uniformly elliptic
operators. The function ¢ may be an "approximate identity" with the proper-

ties:

(2) ¢ € C;(RP) , supp ¢(x - a) € B(a,e) € @ where B(a,¢)
= {y € RP ly - all =e}, =20, fgw(x - a)dx = 1 or may be the 3irac
measure at a , 6&(x - a) . Together with the equation (l); we studv
the optimization problem
¢ minimize J(v) = fgvz(t)dt + fq(y(x,T;v) - Z(X))de

()

subiect To v £ LT(W,7T)



with z € L2() .

The differential equatidn (1) arises in the modelling of various physical
systems such as flow of fluid in fissured strata [2] and the flow of second
order fluids [6]. We refer to the work of Carroll and Showalter [3] for an
extensive bibliography concerning these equations.

The control problem embodied in (1) and (3) is studied in [7, 8]. There
the existence of a unique solution uy is established. Furthermore, it is
shown that the function from & into R defined by a - j(a) = J(ua) is
continuous from % to R . Here we determine differentiability properties
of this function. More specifically for the case of the Dirac measure we show
that for R C R2 and z € H%(R) , the function a - j(a) is differentiable.
In the approximate identity case the differentiability properties are inde-
pendent of the space dimension and the smoothness of 2z . Section 2 con=
siders the case for an approximate identity and section 3 treats the Dirac

function case.

2. The case for an approximate identity.

We begin with the equations that characterize the solution of the control

problem (1) and (3), c.f. [7, 8].

Proposition 1. The control problem (1) and (3) where ¢ satisfies (2) has

a unique solution characterized by the system

My, + Ly ua(t)w(x - a) in Q

(%) y(',O;uo) =0 in &

y(x,t;ua) 0 on 2



-Mqt + Lg=0 in Q

(5) q(+,T3u) = W H(y(+,T5u) - 2(+)) in @
q(x,t;ua) =0 on 2

(6) ua(t) + fgq(x,t;ua)w(x - a)dx = 0 a.e. in (0,T) .

As a function of a € @ , we have

| 2 2
(7) ja) = gu)) = [lu_|l + flyC,Tsu) - z(-)] .
a a L2(O,T) a L2(9)

We calculate the gradient of Jj to obtain

(8) Vi(a) = (jal(a),jaz(a),jaa(a))

where

(9) j. (a) = 2(u_,6_u) + 2(y(Tsu)) - 2,6 y(Tsu))
ai a ai a LQ(O,T) a _ai a L2(R)

for i =1,2,3 , and show that equation (9) makes sense.

We consider ja , the other direvatives being similar. Set n, = 5a VAR

L 1
- — -99_ = . . . -
'51 = Salq s ¢ = aal ,.and Wy Galua . Taking the variation of equations
(4)-(6), we have
ani :
M Pl Lnl = wlw(x - a) - uawl(x f a) in Q
(10) - m0) =0 in @
mly =0
9%y .
-M 5'%—- + LT]l =0 in Q
- _ w1l .
(11) | 51(T) = M nl(T) in &
Llg =0
(12) wl(t) + fQZl(x,t)w(x - a)dx - fgq(x,t)wl(x - a)dx = 0



Multiplying (10) by q and integrating, we have

(T - 20 (M) 5 IaGa (£)fga(x,)ex - a)dx
- ua(t)fgq(x,t)¢l(x - a)dx)dt .

Thus, we may rewrite equation (9) for i =1 as
(13) j. () = ufTw (t)u_(t)at - 2fTu (t)fa(x,t)e, (x - a)dxdt
a, 0"l a 0~a 9] T :
Lemma 2. Equation (13) defines ja (a) if the system (10)-(12) has a unique
1
solution.

We approach the problem of proving the existence and uniqueness of a

solution of (10)-(12) by considefing the following quadratic confrol problem.

anl(v)
M'—7§F—_ + Dnl(v) = v(t)e(x - a) - ua(t)wl(x - a) in Q
(14) : nl(O,v) =0 in 8
| nl(v)]z =0
minimize Hv”22 + Hnl(T;V)”22
(15) L°(0,T) L7°(R)
- 2(V,fszq(xat)q>l(x - a)dx) 2

L°(0,T)

subject to v € L2(O,T)

Remark 3. Note that since ¢ is smooth, the solution of (14) has trace at
time T in LQ(R) for any v € L2(0,T) . That is, nl(-,T;v) € LQ(R) for
any v € L2(O,T)

The functional in (15) makes sense, and the following is a standard result.

Lemma 4. There exists a unique solution w, to problem (15).

By taking the variation of (15) at w; and introducing equation (1),

we obtain equation (12). Hence, we have proved the following.
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Lemma 5. There exists a uniQue solution to the system (10)-(12).

It follows then from Lemmas 2 and 5.

Theorem 6. The partial derivative ja (a) 1is given by equation (13).

1

Remark 7. Note if ¢ satisfies (2) then the set @ may be taken to be in

rRP . By inspecting the previous arguments, we can see that further differen-
tiability is possible depending on the differentiability of ¢ . In particular,

if ¢ 1is infinitely differentiable, then so is ]

.

3. The delta function case.

We now study the problem for ¢ =6 .

My, + Ly = v(t)8(x - a) in Q
(16) : y(0) =0 in
ylg =0

where £ 1s in R2 and T is smooth.

Remark 8. Since for & ¢ RP , it follows H(Q) ¢ (@) if n> P o,

2 b
3/2 3/2(53))* . Further,

For p = 2 , we see that H™ "(Q) ¢ Co(ﬁj and 5 € (H
1
by interpolation it follows that y € Hl(O,T;Hé(Q)) so that the trace

o _
y(:,T3v) € H%(Q) for each v in LQ(O,T)

t the minimization problem (3)

8t}

From the above remark, it is clear th
makes sense. In [7] it is shown that there exists a unigue solution u

in L2(O,T) , in fact in dm(O,T) .
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(16) and (3) that is characterized by the system

My, + Ly

= ua(t)ﬁ(x - a) in Q
(17) - y(0) =0 in @
le =0
—Mqt +ILg=0 in Q
(18) QT = N (y(Tsu) - 2) in @
le =0
(19) ua(t) + q(a,t;ua) =0 in (O0,T) .

As in the previous section we (formally) calculate . ja (a) and the
: 1
variation of equations (17)-(19) to obtain the system of equations

am
‘ M -a-;E—l- + L'r)l = wl(‘g)ﬁ(x - a) - ua(t)al(x -a) in Q
(20) .7 m(e) =0 in @ ‘
Tll]z = 0
o, :
-M E—‘f L&l =0 in Q
-1 .
(21) ?_’_,l(T) = M nl(T) in sz‘
Glp =0
(22) : wl(t) + gl(a,t) = q, (a,t) =0 in (0,T) ,
1
and
(23) jal(a) - -zfguamz,l(a,t)dt + ufow (t)q(a,t)dr

We seek to provide the proper setting for these equations. Because of
the irregularity involved, we prove existence of a solution of the system
(23)-(22) mv <rzns

-

ttion [w,Z .
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We. begin with some observations concerhing the regularity of the solu-

tion of (17)-(19) that follow from interpolation and results in [5].

Lemma 10. The solution y(ua) of equation (17) belongs to Hl(O,T;Hk(R)) .

5/2

The solution q of equation (18) belongs to Hk(O,T:Hé(Q) N H''7°(Q)) for

&
k20 if z € HY(R)

Remark 11. The map t - q(-,t) is an infinitely differentiable map of
/

(0,T) into Hé(&) n H5 2(SZ) . Hence, t + q(a,t) is continuous and in

L2(0,T) . Further, with 4, (-,t) € H3/2(9) for each t , we see that
1
t>aq, (a,t) is continuous and in L2(O,T) .
1
For equations (20)-(22) with the variation Wy in L2(0,T) and with

5/2(9)

6, belonging to H , the right side of equation (20) is in

L2(0,T;H-5/2)(9)) . Thus, we seek a solution 7, in Hl(O,T;H-%(Q)) .

Remark 12. In this case we have only nl(T) in H_%(R) . Hence, the method
of demonstrating the existence of a solution to the variational equations
that is used in section is not applicable here.

However, we note that if nl(-,T) is in H_%(R) ,'the solution Zl of

3/2

equation (21) belongs to Hp(o,l;Hé(Q) N H“(R)) . Accordingly, for each

a €, zl(a,t) is defined and is a continuous function of t in [0,T] .

Lemma 13. If there exists a solution to the system of equation (20)-(22)

with Cl(a,t) in L2(O,T) , then formula (23) has meaning.
We prove the existence of a solution to (20)-(22) by transposition. To

this end, we consider the following system.

t
[e0]
[
=]

O

My, + Ly =

(2u) Y(T)

"
Y
}—l
(=]
~~
3
p—
!.l
3
0



Ma.t + La =B - ¥(a,t)d(x - a) in Q
(25) a(0) =0. in 8
a]z =0

where 6 € LQ(O,T;H%(Q)) and P € L2(0,T;H_3/2(9)) .

Multiplying equation (20) by V¥ and using equation (22), we integrate

to obtain
fgﬂl(x,T)a(x,T)dx + fgfgnl(x,t)e(x,t)dxdt
(26) = Jla, (a,t) - % (a,0)¥(a,t)dt
1
- Jqu (D¥, (a,t)dt .

1

Similarly, multiplying equation (21) by a and integrating, we find that
’ T T :

(27) fgnl(x,T)a(x,T)dx = fofﬁzl(x,t)ﬁ(x,t)dxdt - IOW(a,t)Zl(a,t)dt .
Combining equations (26) and (27), we have

(28) fgfgél(x,t)ﬁ(x,t)dt + fgfgnl(x,t)e(x,t)dt

28

= fgqx(a,t)W(a,t)dt - fgua(t)wx (a,t)dt
1

-3/2

Lemma 14. TIf for every pair (6,B) in L2(0,T;H%(9)) X L2(O,T;H )

there exists a unique solution of (24) and (25), then the solution (zl,n1)

. 2 3/2 2 . . . .
in L7(0,T;H™" °(R)) x L°(0,T;H (Q)) of (20)-(22) is defined by equation (28).

We now show that the system of equations (24) and (25) has a unique solu-

tion. Thus, we consider the problem

B8 - v(t)6(x - 2) in Q

Mat(v) + La(v)

]

(29) a(0) =0 in &

ai? =0 .



'3

With B € LQ(O,T;H-3/2

(R)) given, the equation (29) defines

a € Hl(O,T;H%(R)) , c.f. [7], by interpolation [5]. Hence, it follows that
the trace a(',T) belongs to H%(R) , [5], and, as in the previous section,
we introduce the minimization problem

minimize [v]%, e latmswl®, o+ 208,00 ,
(30) L°(0,m) L(R) L°(Q)

subject to v € L2(0,T) .

Clearly, there exists a unique solution u to problem (30), see [4, 7].
Again, a characterization may be obtained by taking the variation at u of

the functional in (30). We have

i

(31) (u,v) , + (a(T;u),(8a)(T)) , + (8,(6a)) , 0

L°(0,T) L°(R) L°(Q)

where the variations satisfy

M(6a)  + L(6a) -v(t)8(x - a) in Q

(32) ‘ (6a)(0) = 0 in &

(Ga)lz 0 .

We introduce the adjoint equation

-My, + Ly =0 in Q
(2u) W(r) = Mla(Tsu) in R
Yz =0,

1 .
and we note that, with 6 € L2(O,T;H6(9)) , the solution V¥ of (24) belongs
Wl ol L5/2, s oy N o
to H (O,T,HO(Q) N g 9(R)) . ¥ultiplying (32) by V¥ and integrating, we

éee that

T. . e R oo
FATV(E(s2), + L(5a))dxdt = -Sv(e)(a,t)dt




so that.

(a(T3u),(8a)(T)) 5 + (6,(6a)) 9

10

= Iov(¥(a,t)dt

L°(R) L°(Q)

Hence, we see that

(u-\l’(a,'),V) 2 =O

L°(0,T)
for all v € L2(O,T) , and we have
(33) ' u(t) = y(a,t)
almost everywhere in [0,T] . The characterizing equations then are given
by
Mat + La = B - Y(a,t)d(x - a) in Q

(25) a(0) =0 in @

alz =0

-th + Ly =6 in Q
(24) W = ¥la(t) in @
vl =0,

and we have shown that the system of equations (2

4)

If 6=0 and B = 0 , we have by multiplying
that
2
L7(RQ) L°(0,T)
=0 and a =0 .

so that

Proposition 15. If 8 € LQ(O,T;H’a/Q(Q)) and 6

~

and (25) has a solution.

(25) by w and integrating

L2(O,T;H%(9)) , there



“

11

exists a unique solution (a,¥) of (24) and (25) with

v € (0, T:HI(®) N 13/2(2)) and « € HY(0,T3HEHR)) .

From Proposition 15 and Lemma 14, we deduce the following.

Corollary 16. There exists a solution ¥. such that ¥ (a,') belongs to
—_— . 1 1

L2(0,T) , in fact, in C(0,T)

Thus, from Lemma 13 we conclude the following.

. .
Theorem 17. Let & C R? and z € HX(Q) . Then ja (a) is well-defined and

1
is given by equation (23).

Remark 18. An analogous argument holds for ja (a) , and thus, Vj(a) is
’ 2

defined for each a € Q .
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